Классификация дисперсных систем по размеру частиц дисперсной фазы

Понятие и сущность дисперсности. Рассмотрение возможных способностей частиц дисперсной фазы взаимодействовать с дисперсионной средой с помощью понятий лиофильность и лиофобность. Характеристика и отличительные черты основных видов дисперсных систем.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 16.03.2022
Размер файла 45,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Классификация дисперсных систем по размеру частиц дисперсной фазы

Дисперсность- характеристика размеров частиц в дисперсных системах. Дисперсность D обратно пропорциональна среднему диаметру частиц би определяется удельной поверхностью Sуд, т.е. отношением общей поверхности частиц к единице объема (или иногда массы) дисперсной фазы: дисперсная фаза лиофобность

или

где S12 - поверхность между фазами 1 и 2;

V1 - объем дисперсной фазы; m1 - масса дисперсной фазы.

В зависимости от степени дисперсности и особенностей поведения все дисперсные системы обычно подразделяют на молекулярные, высокодисперсные и грубодисперсные. Зависимость удельной поверхности системы Sуд от размера ее частиц б представлена на рис.1.

1 100 1000нм

Рис. 1. Зависимось удельной поверхности системы от размера ее частиц

Данная классификация представлена также в табл. 1.

Тип системы

Размер частиц

Название

Состояние системы

Й

Молекулярно- и ионнодисперсные

< 10 Е (10-9 м)

истинные

растворы

гомогенные

ЙЙ

Высокодисперсные и микрогетерогенные

10-9 - 10-7 м и 10-7 - 10-5 м

коллоидные

растворы

ультра- и микро-

гетерогенные

ЙЙЙ

Грубодисперсные

>10-5 м (10 мкм)

взвеси

гетерогенные

Видно, что переход от грубодисперсных систем к молекулярным непрерывен и границы между ними условны. Однако, каждый из типов этих систем качественно вполне специфичен.

Основным объектом изучения коллоидной химии являются высокодисперсные (ультрамикрогетерогенные) системы, в которых частицы дисперсной фазы имеют размеры 10-9 - 10-7м(1-100 нм). Их особенностью и характерными признаками являются гетерогенность и высокая дисперсность. Эти системы обладают самой большой удельной межфазной поверхностью, величина которой составляет десятки и сотни квадратных метров на один грамм дисперсной фазы. В этой связи они обладают избытком поверхностной энергии более высоким, чем грубодисперсные системы. По традиции их называют коллоидно-дисперсными или просто коллоидными системами. Кроме них к числу объектов коллоидной химии относят также тонкопористые тела, микрогетерогенные и грубодисперсные системы. Тонкопористые тела характеризуют пористостью - понятием, аналогичным дисперсности. Примером микрогетерогенных систем являются порошки, суспензии, эмульсии, пены и ряд других систем, имеющих огромное практическое значение.Молекулярно-дисперсные системы (истинные растворы, а также смеси газов) гомогенны, удельная поверхность в них отсутствует, поскольку отдельные молекулы фазовой поверхностью не обладают. К числу объектов коллоидной химии они не относятся.

ОСНОВНЫЕ ТИПЫ ДИСПЕРСНЫХ СИСТЕМ

По дисперсности, т.е. размеру частиц дисперсной фазы дисперсные системы делят на взвеси (суспензии и эмульсии) и коллоидные системы.

Взвеси - это дисперсные системы, в которых размеры распределённых частиц (частицы дисперсной фазы) сравнительно велики (10-7 - 10-5 м). Взвеси делятся на суспезии и эмульсии. В суспезиях распределённое вещество твёрдое, а в эмульсиях - жидкое. Частицы взвесей видны простым глазом или в обычный оптический микроскоп. Поэтому взвеси представляют собой мутные системы. Взвеси неустойчивы, если диспергированное вещество в них имеет бульшую плотность, чем дисперсионная среда, то диспергированное вещество постепенно выпадает в осадок. Если его плотность меньше плотности среды - оно, наоборот, всплывает. Например, если смешать глину и воду, то через некоторое время глина постепенно будет оседать на дно сосуда. Если же смешать воду и масло, то масло, наоборот, будет всплывать на поверхность и собираться там. Первый процесс называется седиментацией (для суспезий), второй расслоением (для эмульсий). Суспензии легко разделяются фильтрованием через обычную фильтровальную бумагу, смеси можно быстро разделить в центрифуге.

Коллоидные системы (или коллоидные растворы) - это гетерогенные дисперсные системы, в которых частицы распределённого вещества имеют размеры порядка 10-9 - 10-7 м или от 1 до 100 нм. Суммарная поверхность системы, состоящей из частиц такого размера, достигает необычайно большой величины. Например, 1 г вещества при размере частиц 10-8 м будет иметь поверхность порядка нескольких сотен квадратных метров. Каждая частица может содержать большое число атомов или молекул. Однако, такие частицы не видны ни простым глазом, ни в оптический микроскоп, но они (частицы) образуют отдельную фазу.

Следует отметить, что если диспергированное вещество распределено в среде в виде молекул или ионов (размер частиц 10-10 - 10-9 м), то система является истинным раствором (или просто раствором). В данном случае граница (поверхность раздела) между растворённым веществом и растворителем отсутствует, так как понятие поверхности раздела неприменимо к отдельным атомам, молекулам и ионам. Истинный раствор представляет собой гомогенную (однородную) систему.

По агрегатному состоянию дисперсионной среды и дисперсной фазы выделяют следующие виды дисперсных систем:

1. Аэрозоли - это аэродисперсные (газодисперсные) системы с газовой дисперсионной средой. Примером таких систем являются дымы, туманы, пыли.

2. Системы с жидкой дисперсионной средой. В этих системах дисперсная фаза может быть твёрдой (грубодисперсные суспензии и пасты, высокодисперсные золи и гели) жидкой (грубодисперсные эмульсии, высокодисперсные микроэмульсии и латексы) или газовой (грубодисперсные газовые эмульсии и пены).

3. Системы с твёрдой дисперсионной средой: стеклообразные или кристаллические тела с включением мелких твёрдых частиц, капель жидкости или пузырьков газа. Например, рубиновые стёкла, минералы типа опала, разнообразные микропористые материалы.

Дисперсные системы ещё классифицируют по способности частиц дисперсной фазы взаимодействовать с дисперсионной средой (растворителем) с помощью понятий лиофильность и лиофобность.

Лиофильность (если дисперсионной средой является вода, то гидрофильность) означает хорошее смачивание коллоидных частиц, т.е. в таких системах на поверхности частиц имеется уплотнённый слой молекул растворителя. В лиофильных системах наблюдается усиление межмолекулярного взаимодействия между дисперсионной средой и дисперсной фазой. Межфазное поверхностное натяжение очень мало и достигает ? 10-2 мДж/м2, а межфазная граница может быть размыта и по толщине соизмерима с размерами частиц коллоидного раствора. Лиофильные дисперсные системы термодинамически равновесны, они всегда высокодисперсны, образуются самопроизвольно и при сохранении условий их возникновения могут существовать сколь угодно долго.

Размещено на Allbest.ru

...

Подобные документы

  • Экологические проблемы и влияние жизнедеятельности человека на атмосферу и гидросферу Земли. Дисперсные системы. Атмосферные аэрозоли, классификация и размер. Характеристика частиц дисперсной фазы. Газокинетические процессы в дисперсной системе.

    дипломная работа [939,8 K], добавлен 12.10.2008

  • Явление перемещения жидкости в пористых телах под действием электрического поля. Электрокинетические явления в дисперсных системах. Уравнение Гельмгольца–Смолуховского для электроосмоса. Движение частиц дисперсной фазы в постоянном электрическом поле.

    реферат [206,2 K], добавлен 10.05.2009

  • Проточная цитометрия как метод исследования дисперсных сред в режиме поштучного анализа элементов дисперсной фазы по сигналам светорассеяния и флуоресценции. Параметры клеток, регистрация флуоресценции. Неспецифическое связывание антител, гейтирование.

    реферат [547,0 K], добавлен 10.06.2015

  • Причины возникновения поверхностных явлений в дисперсных системах. Классификация дисперсных систем. Уравнение, описывающее диффузионно-седиментационное равновесие. Адсорбция газов на твердой поверхности. Капиллярное давление. Поверхностное натяжение.

    шпаргалка [1,3 M], добавлен 01.07.2013

  • Взаимодействие заряженных частиц и со средой. Детектирование. Определение граничной энергии бета-спектра методом поглощения. Взаимодействие заряженных частиц со средой. Пробег заряженных частиц в веществе. Ядерное взаимодействие. Тормозное излучение.

    курсовая работа [1,1 M], добавлен 06.02.2008

  • Получение композиционных материалов. Применение топологического подхода, основанного на теории катастроф, к аномальному поведению дисперсных систем и материалов. Анализ процессов структурообразования дисперсных систем при динамических воздействиях.

    статья [171,2 K], добавлен 19.09.2017

  • Ускорители заряженных частиц — устройства для получения заряженных частиц больших энергий, один из основных инструментов современной физики. Проектирование и испытание предшественников адронного коллайдера, поиск возможности увеличения мощности систем.

    реферат [685,8 K], добавлен 01.12.2010

  • Рассмотрение способов определения коэффициентов амбиполярной диффузии. Общая характеристика уравнения непрерывности. Анализ пространственного распределения частиц. Знакомство с особенностями транспортировки нейтральных частиц из объема к поверхности.

    презентация [706,1 K], добавлен 02.10.2013

  • Потенциал действия и его фазы. Роль ионов Na K в генерации потенциала действия в нервных и мышечных волокнах: роль ионов Ca и Cl. Восстановление от радиационного поражения. Основные методы регистрации радиоактивных излучений и частиц. Их характеристика.

    контрольная работа [17,3 K], добавлен 08.01.2011

  • Фундаментальные физические взаимодействия. Гравитация. Электромагнетизм. Слабое взаимодействие. Проблема единства физики. Классификация элементарных частиц. Характеристики субатомных частиц. Лептоны. Адроны. Частицы - переносчики взаимодействий.

    дипломная работа [29,1 K], добавлен 05.02.2003

  • Общие сведения о дисперсных системах, электрокинетические явления в них. Электроосмос и электроосмотическое скольжение электролита в капилляре. Электрофоретическое движение частиц в электролите. Практическое применение электрокинетических явлений в науке.

    реферат [166,0 K], добавлен 29.01.2009

  • Свойства всех элементарных частиц. Связь протонов и нейтронов в атомных ядрах. Классификация элементарных частиц. Величина разности масс нейтрона и протона. Гравитационные взаимодействия нейтронов. Экспериментальное значение времени жизни мюона.

    реферат [24,3 K], добавлен 20.12.2011

  • Анализом действующих на дипольную частицу сил. Изучение диполь-дипольного взаимодействия однодоменных дисперсных частиц. Формула расчета эффективных полей при разных формах зависимости, когда выполняется требование однородности среды.

    доклад [47,9 K], добавлен 20.03.2007

  • Ускорители заряженных частиц как устройства, в которых под действием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц. Общая характеристика высоковольтного генератора Ван-де-Граафа, знакомство с функциями.

    презентация [4,2 M], добавлен 14.03.2016

  • Рассмотрение основных особенностей изменения поверхности зонда в химически активных газах. Знакомство с процессами образования и гибели активных частиц плазмы. Анализ кинетического уравнения Больцмана. Общая характеристика гетерогенной рекомбинации.

    презентация [971,2 K], добавлен 02.10.2013

  • Явление рассеяния света. Воздействие частиц вещества на световые волны. Понятие рэлеевского рассеяния и частицы пигмента. Относительный показатель преломления частиц и среды. Увеличение количества отраженного белого света. Исчезновение насыщения цвета.

    презентация [361,6 K], добавлен 26.10.2013

  • Сущность элементарных частиц (лептонов и адронов), особенности их классификации. Общая характеристика гипотезы о существовании кварков: супермультиплеты, кварковая гипотеза. Специфика квантовой хромодинамики: понятие глюонов и асимптотической свободы.

    курсовая работа [55,2 K], добавлен 20.12.2010

  • Относительность и взаимность живого и неживого в природе. Структура планетарной системы с квантованием энергии по орбитам, параметры природных явлений. Взаимодействие частиц в макромире природы. Вихревая гипотеза образования частиц планетарной системы.

    статья [190,9 K], добавлен 04.09.2013

  • Сцинтилляционный, черенковский детектор частиц. Ионизационная камера, пропорциональный счетчик. Требования к детекторам. Каскадный ускоритель, электростатистический генератор. Ускорение протонов при облучении коротким лазерным импульсом тонкой фольги.

    курсовая работа [4,6 M], добавлен 16.11.2014

  • Квантовая статистика систем одинаковых микрочастиц допускает два класса функций: симметричные, сохраняющие свой знак при перестановке двух частиц. Взаимная перестановка двух одинаковых частиц не изменяет физического состояния системы. Квантовая теория.

    реферат [79,5 K], добавлен 10.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.