Волновая оптика

Общая характеристика простых видов геометрических поверхностей. Принцип Гюйгенса как базовое утверждение волновой оптики. Знакомство с основными особенностями разложения белого света в спектр. Рассмотрение естественных примеров дифракционных решеток.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 17.05.2022
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Правда, наблюдение дифракционных явлений в оптике затруднено ввиду малости длины световой волны. Так, при = 500 нм и размере щели a = 0;5 мм имеем: =a = 0;001. Такова примерно величина угла (в радианах), характеризующая расхождение пучка после дифракции. Поэтому, чтобы зафиксировать отклонение световых лучей от прямолинейного распространения, экран должен находиться достаточно далеко (на расстоянии нескольких метров, а то и нескольких десятков метров).

Что же мы увидим на экране? Вот пример: на рис. 22 изображена дифракционная картина8, полученная в результате прохождения лазерного луча сквозь отверстие диаметром 0;2 мм.

Рис. 22. Дифракция лазерного луча на отверстии

Напоминает интерференцию, не правда ли? Это она и есть; чередующиеся светлые и тёмные кольца являются интерференционными максимумами и минимумами. Какие же волны тут интерферируют?

ѕЧистыйї принцип Гюйгенса ничего не говорит об интерференции и уж тем более не объясняет её. Соответственно, на основании принципа Гюйгенса нельзя понять и дифракцию. Необходимое усиление этого принципа было сделано Френелем.

5.1 Принцип Гюйгенса-Френеля

Напомним формулировку принципа Гюйгенса: каждая точка, вовлечённая в волновой процесс, является источником вторичных сферических волн; эти волны распространяются от данной точки, как из центра, во все стороны и накладываются друг на друга.

Что значит ѕнакладываютсяї? Гюйгенс понимал это лишь как геометрический способ построения новой волновой поверхности в качестве огибающей семейства сфер, расширяющихся от каждой точки исходной волновой поверхности. Вторичные волны Гюйгенса это математические сферы, а не реальные волны; их суммарное действие проявляется только на огибающей, т. е. на новом положении волновой поверхности.

В таком виде принцип Гюйгенса не давал ответа на естественный вопрос, почему в процессе распространения волны не возникает волна, идущая в обратном направлении. Не объяснёнными, как мы уже сказали выше, оставались и дифракционные явления.

Модификация принципа Гюйгенса состоялась лишь спустя 137 лет. Огюстен Френель заменил вспомогательные геометрические сферы Гюйгенса на реальные волны и предположил, что эти волны интерферируют друг с другом.

Принцип Гюйгенса-Френеля. Каждая точка волновой поверхности служит источником вторичных сферических волн. Все эти вторичные волны являются когерентными ввиду общности их происхождения от первичного источника (и, стало быть, могут интерферировать друг с другом); волновой процесс в окружающем пространстве есть результат интерференции вторичных волн.

Идея Френеля наполнила принцип Гюйгенса физическим смыслом. Вторичные волны, интерферируя, усиливают друг друга на огибающей своих волновых поверхностей в направлении ѕвперёдї, обеспечивая дальнейшее распространение волны. А в направлении ѕназадї происходит их интерференция с исходной волной, наблюдается взаимное гашение, и обратная волна не возникает.

В частности, свет распространяется там, где вторичные волны взаимно усиливаются. А в местах ослабления вторичных волн мы будем видеть тёмные участки пространства.

Принцип Гюйгенса-Френеля выражает важную физическую идею: волна, удалившись от своего источника, в дальнейшем ѕживёт своей жизньюї и уже никак от этого источника не зависит. Захватывая новые участки пространства, волна распространяется всё дальше и дальше вследствие интерференции вторичных волн, возбуждённых в различных точках пространства по мере прохождения волны.

Итак, какое же объяснение даёт принцип Гюйгенса-Френеля явлению дифракции? Каким образом, например, происходит дифракция на отверстии?

Экранное отверстие вырезает из бесконечной плоской волновой поверхности маленький светящийся диск. Последующее световое поле получается в результате интерференции волн вторичных источников, расположенных уже не на всей плоскости, а лишь на этом диске. Естественно, новые волновые поверхности теперь не будут плоскими; ход лучей искривляется, и волна начинает распространяться в разных направлениях, не совпадающих с первоначальным. Волна огибает края отверстия и проникает в область геометрической тени.

Вторичные волны, испущенные различными точками вырезанного светлого диска, интерферируют друг с другом. Результат интерференции определяется разностью фаз вторичных волн и зависит от угла отклонения лучей. В результате возникает чередование интерференционных максимумов и минимумов что мы и видели на рис. 22.

Френель не только дополнил принцип Гюйгенса важной идеей когерентности и интерференции вторичных волн, но и придумал свой знаменитый метод решения дифракционных задач, основанный на построении так называемых зон Френеля. Изучение зон Френеля не входит в школьную программу о них вы узнаете уже в вузовском курсе физики. Здесь мы отметим лишь, что закон прямолинейного распространения света (а именно, образование теней непрозрачных предметов, совпадающих по форме с самими предметами) получает своё качественное объяснение именно в рамках метода зон Френеля.

5.2 Опыт Юнга

Рассмотрим самый первый из классических опытов по наблюдению интерференции света. Его придумал Томас Юнг, и в нём существенно используется явление дифракции.

Всякий эксперимент с интерференцией света содержит некоторый способ получения двух когерентных световых волн. В опыте с зеркалами Френеля, как вы помните, когерентными источниками являлись два изображения одного и того же источника, полученные в обоих зеркалах.

Простейшая идея, которая возникла прежде всего, состояла в следующем. Давайте проколем в куске картона два отверстия и подставим под солнечные лучи. Эти отверстия будут когерентными вторичными источниками света, поскольку первичный источник один Солнце. Следовательно, на экране в области перекрытия пучков, расходящихся от отверстий, мы должны увидеть интерференционную картину.

Такой опыт был поставлен задолго до Юнга итальянским учёным Франческо Гримальди (который открыл дифракцию света). Интерференции, однако, не наблюдалось. Почему же? Вопрос это не очень простой, и причина заключается в том, что Солнце не точечный, а протяжённый источник света (угловой размер Солнца равен 30 угловым минутам). Солнечный диск состоит из множества точечных источников, каждый из которых даёт на экране свою интерференционную картину. Накладываясь, эти отдельные картины ѕсмазываютї друг друга, и в результате на экране получается равномерная освещённость области перекрытия пучков. Но если Солнце является чрезмерно ѕбольшимї, то нужно искусственно создать точечный первичный источник. С этой целью в опыте Юнга использовано маленькое предварительное отверстие (рис. 23).

Рис. 23. Схема опыта Юнга

Плоская волна падает на первое отверстие, и за отверстием возникает световой конус, расширяющийся вследствие дифракции. Он достигает следующих двух отверстий, которые становятся источниками двух когерентных световых конусов. Вот теперь благодаря точечности первичного источника в области перекрытия конусов будет наблюдаться интерференционная картина!

Опыт Юнга вошёл в число наиболее знаменитых экспериментов в истории физики. Юнг вывел формулу (10) и измерил в своём опыте ширину x интерференционных полос. Оставалось выразить оттуда :

С помощью этой формулы Юнг впервые вычислил длины волн видимого света.

5.3 Дифракционная решётка

Дифракционная решётка это оптический прибор, позволяющий получать разложение света на спектральные составляющие и измерять длины волн. Дифракционные решётки бывают прозрачными и отражательными.

Мы рассмотрим прозрачную дифракционную решётку. Она состоит из большого числа щелей ширины a, разделённых промежутками ширины b (рис. 24). Свет проходит только сквозь щели; промежутки свет не пропускают. Величина d = a + b называется периодом решётки.

Рис. 24. Дифракционная решётка

Дифракционная решётка изготавливается с помощью так называемой делительной машины, которая наносит штрихи на поверхность стекла или прозрачной плёнки. При этом штрихи оказываются непрозрачными промежутками, а нетронутые места служат щелями. Если, например, дифракционная решётка содержит 100 штрихов на миллиметр, то период такой решётки будет равен: d = 0;01 мм = 10 мкм.

Сперва мы посмотрим, как проходит сквозь решётку монохроматический свет, т. е. свет со строго определённой длиной волны. Отличным примером монохроматического света служит луч лазерной указки (длина волны около 0;65 мкм).

На рис. 25 мы видим такой луч, падающий на одну из дифракционных решёток стандартного набора9. Щели решётки расположены вертикально, и на экране за решёткой наблюдаются периодически расположенные вертикальные полосы.

Рис. 25. Дифракция лазерного луча на решётке

Как вы уже поняли, это интерференционная картина. Дифракционная решётка расщепляет падающую волну на множество когерентных пучков, которые распространяются по всем направлениям и интерферируют друг с другом. Поэтому на экране мы видим чередование максимумов и минимумов интерференции светлых и тёмных полос.

Теория дифракционной решётки весьма сложна и во всей своей полноте оказывается далеко за рамками школьной программы. Вам следует знать лишь самые элементарные вещи, связанные с однойединственной формулой; эта формула описывает положения максимумов освещённости экрана за дифракционной решёткой.

Итак, пусть на дифракционную решётку с перидом d падает плоская монохроматическая волна (рис. 26). Длина волны равна .

Рис. 26. Дифракция на решётке

Для большей чёткости интерференционной картины можно поставить линзу между решёткой и экраном, а экран поместить в фокальной плоскости линзы. Тогда вторичные волны, идущие параллельно от различных щелей, соберутся в одной точке P экрана (побочном фокусе линзы). Если же экран расположен достаточно далеко, то особой необходимости в линзе нет лучи, приходящие в данную точку экрана от различных щелей, будут и так почти параллельны друг другу.

Рассмотрим вторичные волны, отклоняющиеся на угол '. Разность хода между двумя волнами, идущими от соседних щелей, равна маленькому катету прямоугольного треугольника с гипотенузой d; или, что то же самое, эта разность хода равна катету AB треугольника ABC. Но угол ACB равен углу ', поскольку это острые углы со взаимно перпендикулярными сторонами. Следовательно, наша разность хода равна d sin '.

Интерференционные максимумы наблюдаются в тех случаях, когда разность хода равна целому числу длин волн:

При выполнении этого условия все волны, приходящие в точку P от различных щелей, будут складываться в фазе и усиливать друг друга10.

Формула (11) позволяет найти углы, задающие направления на максимумы:

При k = 0 получаем ' = 0. Это центральный максимум, или максимум нулевого порядка. Разность хода всех вторичных волн, идущих без отклонения, равна нулю, и в центральном максимуме они складываются с нулевым сдвигом фаз. Центральный максимум это центр дифракционной картины, самый яркий из максимумов. Дифракционная картина на экране симметрична относительно центрального максимума.

При k = 1 получаем угол:

Этот угол задаёт направления на максимумы первого порядка. Их два, и расположены они симметрично относительно центрального максимума. Яркость в максимумах первого порядка несколько меньше, чем в центральном максимуме.

Аналогично, при k = 2 имеем угол:

Он задаёт направления на максимумы второго порядка. Их тоже два, и они также расположены симметрично относительно центрального максимума. Яркость в максимумах второго порядка несколько меньше, чем в максимумах первого порядка.

Примерная картина направлений на максимумы первых двух порядков показана на рис. 27.

Рис. 27. Максимумы первых двух порядков

Вообще, два симметричных максимума kго порядка определяются углом:

При небольших k соответствующие углы обычно невелики. Например, при = 0;65 мкм и d = 10 мкм максимумы первого порядка расположены под углом '1 = arcsin(0;65=10) = 3;7 .

Яркость максимумов kго порядка постепенно убывает с ростом k. Сколько всего максимумов можно увидеть? На этот вопрос легко ответить с помощью формулы (12). Ведь синус не может быть больше единицы, поэтому

Используя те же числовые данные, что и выше, получим: k 6 15;4. Следовательно, наибольший возможный порядок максимума для данной решётки равен 15.

Посмотрите ещё раз на рис. 25. На экране видны 11 максимумов. Это центральный максимум, а также по два максимума первого, второго, третьего, четвёртого и пятого порядков.

С помощью дифракционной решётки можно измерить неизвестную длину волны. Направляем пучок света на решётку (период которой мы знаем), измеряем угол '1 на максимум первого порядка, пользуемся формулой (11) и получаем:

5.4 Дифракционная решётка как спектральный прибор

Выше мы рассматривали дифракцию монохроматического света, каковым является лазерный луч. Часто приходится иметь дело с немонохроматическим излучением. Оно является смесью различных монохроматических волн, которые составляют спектр данного излучения. Например, белый свет это смесь волн всего видимого диапазона, от красного до фиолетового.

Оптический прибор называется спектральным, если он позволяет раскладывать свет на монохроматические компоненты и тем самым исследовать спектральный состав излучения. Простейший спектральный прибор вам хорошо известен это стеклянная призма. К числу спектральных приборов относится также и дифракционная решётка.

Предположим, что на дифракционную решётку падает белый свет. Давайте вернёмся к формуле (12) и подумаем, какие выводы из неё можно сделать.

Положение центрального максимума (' = 0) не зависит от длины волны. В центре дифракционной картины сойдутся с нулевой разностью хода все монохроматические составляющие белого света. Поэтому в центральном максимуме мы увидим яркую белую полосу.

А вот положения максимумов порядка k > 1 определяются длиной волны. Чем меньше , тем меньше угол 'k для данного k. Поэтому в максимуме kго порядка монохроматические волны разделяются в пространстве: самой близкой к к центральному максимуму окажется фиолетовая полоса, самой далёкой красная.

Следовательно, в каждом порядке k > 1 белый свет раскладывается решёткой в спектр. Максимумы первого порядка всех монохроматических компонент образуют спектр первого порядка; затем идут спектры второго, третьего и так далее порядков. Спектр каждого порядка имеет вид цветной полосы, в которой присутствуют все цвета радуги от фиолетового до красного.

Дифракция белого света показана11 на рис. 28. Мы видим белую полосу в центральном максимуме, а по бокам два спектра первого порядка. По мере возрастания угла отклонения цвет полос меняется от фиолетового к красному.

Рис. 28. Дифракция белого света на решётке

дифракционный геометрический оптика

Но дифракционная решётка не только позволяет наблюдать спектры, т. е. проводить качественный анализ спектрального состава излучения. Важнейшим достоинством дифракционной решётки является возможность количественного анализа как уже говорилось выше, мы с её помощью можем измерять длины волн. При этом измерительная процедура весьма проста: фактически она сводится к измерению угла направления на максимум.

Естественными примерами дифракционных решёток, встречающихся в природе, являются перья птиц, крылья бабочек, перламутровая поверхность морской раковины. Если, прищурившись, посмотреть на солнечный свет, то можно увидеть радужную окраску вокруг ресниц. Наши ресницы действуют в данном случае как прозрачная дифракционная решётка на рис. 26, а в качестве линзы выступает оптическая система роговицы и хрусталика.

Спектральное разложение белого света, даваемое дифракционной решёткой, проще всего наблюдать, глядя на обычный компактдиск (рис. 29)12. Оказывается, дорожки на поверхности диска образуют отражательную дифракционную решётку!

Рис. 29. Компактдиск как отражательная решетка

6. Дисперсия света

дифракционный геометрический оптика

Пусть солнечный луч переходит из воздуха в прозрачную среду (например, воду или стекло). Если угол падения не равен нулю, то, как вы помните, угол преломления определяется из закона преломления:

sin = sinn :

Величина n, называемая показателем преломления, характеризует среду и от угла падения не зависит.

Оказывается, однако, что среда поразному реагирует на прохождение электромагнитных волн различных частот. Имеет место дисперсия зависимость показателя преломления среды от частоты света.

6.1 Опыт Ньютона

Классический опыт по наблюдению дисперсии был поставлен Ньютоном. Узкий луч солнечного света направлялся на треугольную стеклянную призму (рис. 30).

Рис. 30. Разложение белого света в спектр

На экране за призмой появлялся спектр радужная полоса. Один край спектра оказался красным, другой фиолетовым, а цвета внутри спектра непрерывно переходили друг в друга.

Выделяя луч какого-либо цвета (например, красного или синего) и запуская его в другую призму, мы уже не увидим изменения цвета преломлённого луча. Стало быть, компоненты радуги являются простейшими цветами, не разложимыми далее. Их можно собрать обратно с помощью второй призмы, и тогда снова получится белый свет. Следовательно, белый свет является смесью световых пучков различных цветов, непрерывно заполняющих диапазон видимого света от красного до фиолетового.

Мы видим, таким образом, что стеклянная призма является простейшим спектральным прибором она позволяет исследовать спектральный состав белого света. С действием более сложного спектрального прибора дифракционной решётки мы познакомились в предыдущем разделе.

Как показывает опыт Ньютона, слабее всего преломляется красный свет, а сильнее всего фиолетовый. В видимом диапазоне красный свет имеет наименьшую частоту, а фиолетовый наибольшую. Коль скоро показатель преломления становится всё больше по мере движения от красного конца спектра к фиолетовому, мы делаем вывод, что показатель преломления стекла увеличивается с возрастанием частоты света.

Но показатель преломления есть отношение скорости света в воздухе к скорости света в среде: n = c=v. Значит, чем больше частота света, тем с меньшей скоростью свет распространяется в стекле. Наибольшую скорость внутри стеклянной призмы имеет красный свет, наименьшую фиолетовый.

Различие в скоростях света для разных частот проявляется только при наличии среды. В вакууме скорость распространения электромагнитных волн не зависит от частоты и равна c.

Открытая и исследованная Ньютоном, дисперсия света больше двухсот лет ждала своего объяснения нужны были соответствующие сведения о строении вещества. Классическая теория дисперсии была предложена Лоренцем лишь в конце XIX века. Более точная квантовая теория дисперсии появилась в первой половине прошлого столетия.

6.2 Хроматическая аберрация

Предположим, что на собирающую линзу параллельно главной оптической оси падает пучок белого света. Преломляясь в линзе, он, казалось бы, должен собраться в её фокусе. Однако вследствие дисперсии возникает хроматическая аберрация некоторая расфокусировка пучка, вызванная различной преломляемостью разных компонент белого света.

Явление хроматической аберрации показано на рис. 31.

Рис. 31. Хроматическая аберрация

Показатель преломления материала линзы принимает наименьшее значение для красного света, и потому красный свет преломляется слабее всего. Красные лучи собираются на главной оптической оси в наиболее удалённой от линзы точке. Жёлтые лучи собираются ближе к линзе, зелёные ещё ближе, и, наконец, в ближайшей к линзе точке сойдутся фиолетовые лучи.

Хроматическая аберрация ухудшает качество изображений снижает чёткость, даёт лишние цветные полосы. Но с хроматической аберрацией можно бороться. Для этого в оптической технике применяют так называемые ахроматические линзы, получаемые накладыванием на собирающую линзу дополнительной рассеивающей линзы. Догадайтесь зачем нужна рассеивающая линза?

Размещено на Allbest

...

Подобные документы

  • Исторические факты и законы геометрической оптики. Представления о природе света. Действие вогнутых зеркал. Значение принципа Ферма для геометрической оптики. Развитие волновой теории света. Геометрическая оптика как предельный случай волновой оптики.

    реферат [231,0 K], добавлен 19.05.2010

  • Изучение особенностей распространения световой волны с помощью принципа Гюйгенса-Френеля. Характеристика разных видов дифракции Фраунгофера. Структура и методы изготовления дифракционных решеток. Конструкция дифракционных спектрографов и монохроматоров.

    курсовая работа [3,0 M], добавлен 24.03.2013

  • Дифракция механических волн. Связь явлений интерференции света на примере опыта Юнга. Принцип Гюйгенса-Френеля, который является основным постулатом волновой теории, позволившим объяснить дифракционные явления. Границы применимости геометрической оптики.

    презентация [227,5 K], добавлен 18.11.2014

  • Корпускулярная и волновая теории света. Представления Макса Планка о характере физических законов. Явление интерференции и дифракции. Распространение импульсов в упругом светоносном эфире согласно теории Гюйгенса. Закон отражения и преломления света.

    реферат [25,1 K], добавлен 22.11.2012

  • Свет как электромагнитные волны. Явление интерференции света. Характерные особенности дифракционных явлений в оптике. Демонстрационные эксперименты по волновой оптике. Изучение зависимости показателя преломления воздуха от давления, метод измерений.

    курсовая работа [544,9 K], добавлен 18.11.2014

  • Первые представления о природе света и теория зрительных лучей Евклида. Анализ законов геометрической оптики методом Гюйгенса и выведение законов отражения и преломления. Физический смысл показателя преломления и явление полного внутреннего отражения.

    презентация [493,3 K], добавлен 07.09.2010

  • Волновая теория света и принцип Гюйгенса. Явление интерференции света как пространственного перераспределения энергии света при наложении световых волн. Когерентность и монохроматичных световых потоков. Волновые свойства света и понятие цуга волн.

    презентация [9,4 M], добавлен 25.07.2015

  • Рассмотрение дифракции - отклонения световых лучей от прямолинейного распространения при прохождении сквозь узкие щели, малые отверстия или при огибании малых препятствий. Волновые свойства света. Принцип Гюйгенса–Френеля. Строение дифракционной решетки.

    презентация [1,4 M], добавлен 04.08.2014

  • История поиска ответа на вопрос о том, что такое свет. Оптика - учение о природе света, световых явлениях и взаимодействии с веществом. Открытия в области оптики. Закон отражения света. Понятие углов падения и отражения света, зеркальное отражение.

    презентация [714,6 K], добавлен 02.04.2012

  • Основные законы геометрической оптики. Принцип прямолинейного распространения света. Обратимость световых лучей. Явление полного внутреннего отражения в оптических приборах. Фотометрические величины и их единицы. Спектральное распределение яркости.

    контрольная работа [17,6 K], добавлен 09.04.2013

  • Применение интерференции для проверки качества обработки поверхностей, "просветления" оптики, измерения показателя преломления веществ. Принцип действия интерферометра. Многолучевая интерференция света. Получение изображения объекта с помощью голографии.

    реферат [165,6 K], добавлен 18.11.2013

  • Структура изучения квантовой оптики в школе. Особенности методики. Изучение вопроса о световых квантах. Внешний фотоэффект. Эффект Комптона. Фотоны. Двойственность свойств света. Применение фотоэффекта. Роль и значение раздела "Квантовая оптика".

    курсовая работа [61,0 K], добавлен 05.06.2008

  • Основные принципы геометрической оптики. Изучение законов распространения световой энергии в прозрачных средах на основе представления о световом луче. Астрономические и лабораторные методы измерения скорости света, рассмотрение законов его преломления.

    презентация [1,5 M], добавлен 07.05.2012

  • Интерференция двух наклонных плоских монохроматических волн. Построение 3D-изображения дифракционных решеток в плоскости y-z. Определение значения параметров решеток в средах с показателями преломления n2 и n1 для каждого угла падения сигнальных волн.

    курсовая работа [1,0 M], добавлен 11.05.2022

  • Особенность принципа Гюйгенса: каждая точка поверхности, достигнутая световой волной, является вторичным источником световых волн. Идеи Френеля о когерентности и интерференции элементарных волн. Закон отражения и закон преломления в изображении.

    презентация [186,2 K], добавлен 27.04.2012

  • Особенности физики света и волновых явлений. Анализ некоторых наблюдений человека за свойствами света. Сущность законов геометрической оптики (прямолинейное распространение света, законы отражения и преломления света), основные светотехнические величины.

    курсовая работа [2,1 M], добавлен 13.10.2012

  • Огибание волнами препятствий, встречающихся на пути. Отклонения законов распространения волн от законов геометрической оптики. Принцип Гюйгенса. Амплитуда распространяющихся лучей. Суперпозиция когерентных волн, излучаемых фиктивными источниками.

    реферат [428,8 K], добавлен 21.03.2014

  • Формирование когерентного оптического изображения (микроскопического и макроскопического, трехмерного и двумерного) и неоптического с использованием когерентного света (в акустике и радиологии). Использование данной оптики в биологии и медицине.

    дипломная работа [2,6 M], добавлен 14.12.2010

  • Что такое оптика? Ее виды и роль в развитии современной физики. Явления, связанные с отражением света. Зависимость коэффициента отражения от угла падения света. Защитные стёкла. Явления, связанные с преломлением света. Радуга, мираж, полярные сияния.

    реферат [3,1 M], добавлен 01.06.2010

  • Раскрытие сути понятия "дифракция", обучение основным способам наблюдения дифракции, ее положительные и отрицательные стороны для человека. Демонстрация опыта, который стал основой для открытия нового явления; установка по измерению длины световой волны.

    разработка урока [121,9 K], добавлен 01.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.