Системы оптической связи

Изучение процедуры переноса спектра из низких частот в область высоких частот. Классификация ВОСС по виду модуляции оптической несущей, назначения, способов организации оптического линейного тракта. Преобразование уровней квантования в двоичный код.

Рубрика Физика и энергетика
Вид практическая работа
Язык русский
Дата добавления 05.11.2022
Размер файла 509,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Системы оптической связи

Практическая работа №3

Ташкент 2022 г

Контрольные вопросы

Поясните классификацию ВОСС по виду модуляции оптической несущей, назначению и протяженности, способов организации оптического линейного тракта?

Поясните принципы построения и особенности функционирования цифровых ВОСС.

Поясните структурную схему одноволоконной однополосной однокабельной ВОСС?

Какие методы уплотнения линейного тракта ВОСС Вы знаете?

Ответы

Сигналы, поступающие от источников сообщений (микрофона, телевизионной камеры, датчика телеметрии и других), как правило, не могут быть непосредственно переданы по каналу радиодиапазона или оптического диапазона частот. Чтобы осуществить эффективную передачу сигналов в какой-либо среде (атмосфере или стекловолокне), необходимо перенести спектр сигналов из низкочастотной области в область достаточно высоких частот.

Процедура переноса спектра из низких частот в область высоких частот называется модуляцией.

Обратная процедура получила название демодуляции.

Модуляция в оптических системах с одноканальной и многоволновой передачей должна удовлетворять ряду требований:

при модуляции должен создаваться компактный спектр сигнала, спектральная эффективность должна приближаться к величине 0.4-0.5 бит/с/Гц (например, полоса 100ГГц при скорости 40Гбит/с);

модулированный сигнал должен быть максимально устойчив к нелинейным эффектам;

модулированный сигнал должен быть устойчивым к дисперсионным и нелинейным искажениям в волоконно-оптической линии и устройствах компенсации дисперсии и оптического усиления;

конфигурация оптического передатчика и приемника должны быть достаточно простыми.

В технике оптических систем передачи этим требованиям соответствуют в определенной степени внешняя и прямая модуляция электромагнитных излучений оптического диапазона.

Основной тенденцией развития телекоммуникаций во всем мире является цифровизация сетей связи, предусматривающая построение сети на базе цифровых методов передачи и коммутации. Это объясняется следующими существенными преимуществами цифровых методов передачи перед аналоговыми.

Высокая помехоустойчивость. Позволяет осуществлять регенерацию (восстановление) этих символов при передаче их по линии связи, что резко снижает влияние помех и искажений на качество передачи информации.

Слабая зависимость качества передачи от длины линии связи. В пределах каждого регенерационного участка искажения передаваемых сигналов оказываются ничтожными.

Стабильность параметров каналов ЦСП.

Эффективность использования пропускной способности каналов для передачи дискретных сигналов. При вводе дискретных сигналов непосредственно в групповой тракт ЦСП скорость их передачи может приближаться к скорости передачи группового сигнала. Если, например, при этом будут использоваться временные позиции, соответствующие только одному каналу ТЧ, то скорость передачи будет близка к 64 кбит/с, в то время как в аналоговых системах она обычно не превышает 33,6 кбит/с.

Для передачи непрерывного сообщения с помощью ИКМ необходимо выполнить следующие операции:

1 Дискретизацию сообщений по времени (получение амплитудно-импульсного сигнала).

2 Квантование полученных импульсов (отсчетов, выборок) по амплитуде.

3 Кодирование квантованных по амплитуде импульсов.

Преобразование сигналов при ИКМ показано на рисунке.

Дискретизация непрерывного сообщения л(t) (см. рисунок, а) производится в соответствии с теоремой Котельникова: сообщение с ограниченной шириной спектра полностью характеризуется своими отсчетами, которые следуют периодически с интервалом дискретизации T0

T0 ? 1/2Fв, (1)

где Fв - верхняя частота спектра передаваемого непрерывного сообщения.

Частота следования отсчетов должна быть в два раза больше верхней частоты спектра передаваемого непрерывного сообщения. Вертикальные линии на рисунке соответствуют моментам отсчета сообщения л(t). Отсчеты сообщения выделены точками. Вместо непрерывного сообщения л(t), согласно теореме Котельникова, можно передавать импульсы, амплитуда которых равна мгновенным значениям сообщений, как это показано на рисунке, а.

Квантование по амплитуде заключается в следующем. Возможный диапазон изменения передаваемого непрерывного сообщения по величине от лмин до лмакс (см. рисунок, а) разбивается на ряд уровней квантования лкв i с шагом ?л. Уровни пронумерованы целыми числами 0, 1, 2, ... 7 (для примера взято 8 уровней). Отсчет непрерывного сообщения в дискретный момент заменяется значением ближайшего уровня квантования. Если значение отсчета входного сигнала л(ti) удовлетворяет условию лкв i - ?л/2 ? л(ti) ? лкв i + ?л/2, то отсчету присваивается значение i-ro уровня квантования лкв i. Последовательность импульсов с квантованными амплитудами (см. рисунок, б) определяет сообщение л(t) с точностью до погрешности квантования

Кодирование представляет собой преобразование уровней квантования в двоичный код. Передаваемые номера уровней квантования 5, 7, 2, 1, 6 представляются в виде 1 и 0 соответственно следующими кодовыми словами 101, 111, 010, 001, 110. Зависимость между количеством разрядов n (количеством двоичных импульсов) кодовых комбинаций и количеством возможных уровней квантования L определяется соотношением L = 2n.

Поскольку между числом уровней квантования L, шагом квантования ?л и динамическим диапазоном DС = лмакс - лмин согласно рисунку 2, а существует зависимость лмакс - лмин = (L - 1) ?л,то средняя относительная погрешность квантования

так как екв макс = ?л/2.

Следовательно, для уменьшения средней относительной погрешности квантования необходимо увеличивать число уровней квантования, т. е. увеличивать число разрядов в кодовых комбинациях двоичного кода.

На основании вышеизложенного простейшая структурная схема цифровой системы передачи с ИКМ приведена на рисунке 1.

На передающей стороне основными операциями являются дискретизация по выборкам и кодирование (последняя операция, как правило, включает в себя квантование по уровню). В линию связи включаются промежуточные регенераторы. Расстояния, через которые они включаются, зависят от типа применяемого кабеля.

Рисунок Структурная схема цифровой системы передачи

На приемной стороне осуществляется регенерация искаженного сигнала станционным регенератором, декодирование и демодуляция (интерполяционная обработка) результирующей последовательности квантованных выборок.

Практически во всех волоконно-оптических системах передачи, рассчитанных на широкое применение, в качестве источников излучения сейчас используются полупроводниковые светоизлучающие диоды и лазеры. Для них характерны в первую очередь малые габариты, что позволяет выполнять передающие оптические модули в интегральном исполнении. Кроме того, для полупроводниковых источников излучения характерны невысокая стоимость и простота обеспечения модуляции. В качестве приемников излучения в волоконно-оптических систем передачи на ГТС применяются лавинные фотодиоды, достоинством которых является высокая чувствительность. частота модуляция оптический квантование

Однако, при использовании лавинных фотодиодов нужна жесткая стабилизация напряжения источника питания и температурная стабилизация, поскольку коэффициент лавинного умножения, а, следовательно, фототок и чувствительность ЛФД, сильно зависит от напряжения и температуры. Передача оптических сигналов в ВОСП на ГТС осуществляется в многомодовом режиме, поскольку соединительные линии относительно коротки и дисперсионные процессы в оптических волокнах незначительны. На сегодняшний день для городской телефонной сети используются кабели марки ОК имеющие четыре или восемь ступенчатых многомодовых волокон. В ближайшие годы потребность в увеличении числа каналов будет расти. Наиболее доступным способом увеличения пропускной способности ВОСП в два раза является передача по одному оптическому волокну двух сигналов в противоположных направлениях. Сегодня на городских сетях связи находят применение одноволоконные ВОСП с оптическими разветвителями и со спектральным разделением.

При проектировании одноволоконных оптических систем передачи с оптимальными характеристиками выбор структурной схемы системы и используемых технических средств определяется критериями оптимальности. Если критерием является минимальная стоимость, то в оптимальной системе должны использоваться оптические разветвители.

Максимальная длина регенерационного участка требует применения оптических циркуляторов, переключателей, оптических усилителей, когерентных методов передачи сигнала. Требования высокой надежности и стойкости к внешним воздействиям определяют выбор системы с оптическим источником на одном конце линии, а требование максимального объема передаваемой информации системы со спектральным уплотнением или с когерентными методами передачи.

Объединение может быть осуществлено на уровне электрических сигналов или на уровне оптических сигналов. Временное мультплексирование на уровне электрических сигналов приведено на рис. 3.1, где использованы следующие обозначения: 1...N - источники компонентных информационных потоков, представляющих многоканальные электрические сигналы;

MUX - временной мультиплексор,

который, создавая групповой электрический сигнал,

последовательно подключает компонентные многоканальные электрические сигналы к общему оптическому передатчику (ОПер) на определенный временной интервал; ОВ - оптическое волокно; ОПр - оптический приемник, преобразующий оптический сигнал в групповой электрический, содержащий N компонентных многоканальных электрических сигналов; DMUX - временной демультплексор, распределяет принятые компонентные многоканльные электрические сигналы по соответствующим приемникам 1...N.

Рис. 3.1. Временное мультиплексирование на уровне электрических сигналов

Мультиплексор и демультиплексор должны работать синхронно. Отметим, что компонентные информационные потоки могут быть сформированы как на основе систем передачи с частотным разделением каналов, так и на основе цифровых систем передачи.

Схема с временным мультиплексированием (уплотнением) на уровне оптических сигналов приведена на рис. 3.2, где использованы следующие обозначения: ОПер1...N - оптические передатчики 1...N компонентных информационных потоков (многоканальных электрических сигналов аналоговых или цифровых, преобразованных в оптические сигналы); OMUX - оптический мультиплексор, осуществляющий задержку оптического сигнала от каждого ОПер на величину Дф, 2Дф,...,NДф (здесь N - число компонентных информационных потоков или многоканальных оптических сигналов), объединяющий N многоканальных оптических сигналов в групповой оптический поток и направляющий его в оптическое волокно (ОВ); ODMUX - оптический демультиплексор, осуществляющий на приеме обратные преобразования.

При временном мультиплексировании, как на уровне электрических сигналов, так и на уровне оптических, требуется передача коротких (наносекундных) световых импульсов. Однако передача субнаносекундных импульсов предъявляет чрезвычайно высокие, близкие к предельным, требования к быстродействию оптоэлектронных компонентов оптических передатчиков и приемников ВОСП. Кроме того, скорость передачи или широкополосность оптических трактов ограничивается дисперсионными свойствами ОВ.

Рис. 3.2. Временное мультиплексирование на уровне оптических сигналов

Использование технологии TDM позволило увеличить пропускную способность волоконно-оптических линий связи до 10 Гбит/с. Линии со скоростью 10 Гбит/с будут постепенно заменять первоначально использовавшиеся системы TDM со скоростью 2,5 Гбит/с. Скорость передачи 10 Гбит/с в некотором роде разграничивает два типа систем TDM. Выше этой скорости некоторые основные характеристики оптического волокна (поляризационная модовая дисперсия, хроматическая дисперсия) начинают значительно влиять на качество передачи и должны приниматься во внимание при разработке систем связи. Это является серьезным препятствием для ведущихся в настоящее время разработок систем TDM со скоростями передачи 40 Гбит/с и выше. Кроме того, для дальнейшего увеличения скорости требуются новые методы модуляции лазерного излучения, что ведет к росту сложности и стоимости приемо-передающего оборудования.

Дальнейшее увеличение скорости передачи с помощью технологии TDM требует разработки и внедрения исключительно сложных и дорогостоящих электронных компонентов, кроме того, повышаются требования к точности синхронизации при мультиплексировании и демультиплексировании на сверхвысоких частотах.

Одной из перспективных технологий сверхдальней связи считается со-литонная передача данных. Солитон - это особый вид светового импульса, который при распространении в определенной среде и, в частности -оптическом волокне, сохраняет свою форму (преимущественно гауссову). При усилении солитона через равные расстояния теоретически он может распространяться сколь угодно далеко. Это связано с тем, что показатель преломления среды, в которой распространяется солитон, изменяется в зависимости от мощности сигнала. При малых мощностях сигнала это изменение незначительно, и им можно пренебречь. При большой мощности сигнала солитон обладает исключительной стабильностью параметров распространения и устойчивостью к внешним возмущениям. Несмотря на то что дальность распространения солитонов ограничена затуханием сигнала в волокне, эта технология может успешно применяться для передачи сигналов большой мощности на большие расстояния. При солитонной передаче сигналов используют кодирование с возвратом к нулю.

Технологией, позволяющей многократно (более чем в 100 раз) повысить емкость ВОЛС при использовании существующего активного оборудования, является технология спектрального разделения каналов передачи. Эта технология в зарубежной литературе получила название wavelength division multiplexing (WDM). В отечественной литературе более 20 лет применяется термин спектральное уплотнение (СУ). Используются также термины оптическое мультиплексирование с разделением по длинам волн, волновое или спектральное мультиплексирование. В руководящем документе отрасли связи (РД 45.286-2002) используется термин волоконно-оптические системы передачи со спектральным разделением (ВОСП-СР).

Сущность метода WDM заключается в одновременной передаче по одному ОВ нескольких независимых спектрально разнесенных оптических несущих, каждая из которых модулируется многоканальным сигналом, сформированным соответствующим каналообразующим оборудованием. Каждая компонента с определенной длиной волны представляет собой отдельный оптический канал передачи информации со своим передатчиком и приемником. Добавление нового канала в линию связи сводится к введению новой компоненты светового пучка на незанятой длине волны и никак не затрагивает работу уже существующих каналов передачи сигналов. Для передачи информации по разным каналам могут использоваться аналоговые и цифровые сигналы, различные протоколы и скорости передачи. Такая возможность объединения, передачи по волокну и последующего разделения каналов с разными длинами волн несущей основана на принципе суперпозиции (независимости) волн в линейной оптике. Нелинейное взаимодействие волн может привести к появлению нежелательных перекрестных помех, и поэтому требуется принимать меры по ослаблению нелинейных эффектов в WDM-системах связи.

Размещено на Allbest.ru

...

Подобные документы

  • Габаритный расчет оптической схемы. Определение углового поля окуляра, диаметра входного зрачка монокуляра, фокусного расстояния объектива, диаметра полевой диафрагмы. Аберрационный расчет окуляра и призмы. Оценка качества изображения оптической системы.

    курсовая работа [3,2 M], добавлен 02.07.2013

  • Когерентные волны. Монохроматические волны различных частот. Получение когерентных световых волн. Контрастность интерференционной картины. Параллельная плоскость симметрии оптической системы. Оптическая длина пути. Интерференция в тонких плёнках.

    реферат [82,7 K], добавлен 11.11.2008

  • Построение схем распределительного устройства высоких и низких частот. Выбор рационального напряжения для питания химического предприятия. Определение типа и мощности трансформаторов. Проектирование линий электропередач. Расчет токов короткого замыкания.

    дипломная работа [352,5 K], добавлен 14.06.2014

  • Проведение энергетического расчета и определение основных элементов оптической системы ОЭП, в котором в качестве источника излучения применяется лазер. Выбор приемника лучистой энергии, расчет согласующих линз, колимирующей системы и светофильтра.

    курсовая работа [1,3 M], добавлен 04.06.2013

  • Постановка задачи синтеза электрического фильтра. Реализация схемы фильтра низких частот. Аппроксимация частотной характеристики рабочего ослабления фильтра. Расчет спектра последовательности прямоугольных импульсов на входе и на выходе фильтра.

    курсовая работа [597,8 K], добавлен 02.06.2015

  • Расчет параксиальных лучей и кардинальных элементов оптической системы. Вычисление положения и диаметра входного, выходного зрачка и полевой диафрагмы. Результаты вычисления монохроматических аберраций 3-го порядка и хроматических аберраций 1-го порядка.

    курсовая работа [1,3 M], добавлен 25.04.2017

  • Расчет потока излучения, падающего на фоточувствительный элемент приемника оптического излучения. Вычисление интегральной чувствительности ПОИ к излучению источника. Определение отношения сигнала или шума в заданной полосе частот электронного тракта.

    курсовая работа [671,2 K], добавлен 28.09.2011

  • Методы измерения показателей преломлений и коэффициентов дисперсии оптического стекла. Измерение предельного угла выхода. Оптическая схема интерферометра ИТР-1. Измерение оптической однородности, коэффициента светопоглощения, двойного лучепреломления.

    реферат [950,0 K], добавлен 17.11.2015

  • Общие сведения об измерительных источниках оптического излучения, исследование их затухания. Основные требования к техническим характеристикам измерителей оптической мощности. Принцип действия и конструкция лазерных диодов, их сравнительный анализ.

    дипломная работа [2,5 M], добавлен 09.01.2014

  • Гамма-излучение - коротковолновое электромагнитное излучение. На шкале электромагнитных волн оно граничит с жестким рентгеновским излучением, занимая область более высоких частот. Гамма-излучение обладает чрезвычайно малой длинной волны.

    реферат [11,0 K], добавлен 07.11.2003

  • Чувствительность оптического приемного модуля. Сопротивление нагрузки фотодетектора. Интеграл Персоника для прямоугольных входных импульсов и выходных импульсов в форме "приподнятого косинуса". Длина регенерационного участка волоконно-оптической системы.

    контрольная работа [80,8 K], добавлен 18.09.2012

  • Реостатные и индуктивные преобразователи. Анализ методов и средств контроля линейных перемещений. Расчет параметров оптической системы. Описание оптико-механической схемы. Расчет интегральной чувствительности. Расчет потерь излучения в оптической системе.

    курсовая работа [662,2 K], добавлен 19.05.2013

  • Рассмотрение специфики оптической накачки активной среды лазера. Описание квантовых приборов с оптической накачкой, работающих по трёхуровневой и четырёхуровневой схеме. Параметрическая генерация света. Принцип действия полупроводниковых лазеров.

    контрольная работа [442,2 K], добавлен 20.08.2015

  • Волоконно-оптические линии связи как понятие, их физические и технические особенности. Основные составляющие элементы оптоволокна и его виды. Области применения и классификация волоконно-оптических кабелей, электронные компоненты систем оптической связи.

    реферат [836,9 K], добавлен 16.01.2011

  • Физические основы и принцип действия широкополосных фильтров. Метод расчета цепочных фильтров. Пример расчета фильтра нижних частот на заданные параметры. Построение полной характеристики затухания фильтра нижних частот. Расчет промежуточного полузвена.

    курсовая работа [1,6 M], добавлен 21.01.2011

  • Сущность закона преломления света. Условие максимума и минимума интерференции. Соотношение для напряженностей падающей и отраженной волны. Определение скорости уменьшения толщины пленки. Сущность оптической длины пути и оптической разности хода.

    контрольная работа [68,4 K], добавлен 24.10.2013

  • Применение фотоколориметрии в биологии, медицине, фармации. Природа и основные характеристики оптического излучения, закономерности поглощения света веществом. Понятие об оптической плотности, светопропускании, светопоглощении. Схема фотометра КФК-3.

    методичка [374,7 K], добавлен 30.04.2014

  • Оптическая система как основа оптического прибора. Особенности проектирования простейшей зрительной трубы Кеплера по ее основным параметрам. Габаритный расчет оптической системы, конструирование корпуса. Технические требования к оптическому прибору.

    курсовая работа [1,0 M], добавлен 13.12.2012

  • Проектирование волоконно-оптической линии передачи с использованием оптического кабеля между Великим Новгородом и Смоленском. Расчет пропускной способности проектируемой линии. Выбор схемы резервирования, схемы синхронизации и системы управления.

    курсовая работа [5,9 M], добавлен 14.11.2021

  • Оптический диапазон спектра. Теоретические основы оптических методов НК. Световые колебания. Классификация оптических методов НК. Дискретный спектр излучения газов и жидкостей. Непрерывный спектр собственного излучения твёрдых тел с разной температурой.

    реферат [355,1 K], добавлен 15.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.