Двойственная корпускулярно-волновая природа материи
Использование идеи о корпускулярно-волновом дуализме при разработке квантовой механики для интерпретации явлений микромира с точки зрения классических концепций. Обнаружение корпускулярных свойств электромагнитных волн и волновых свойств частиц.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 25.06.2024 |
Размер файла | 30,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Двойственная корпускулярно-волновая природа материи
Корпускулярно-волновой дуализм -- свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других -- свойства классических частиц. корпускулярный волновой квантовый механика
Типичные примеры объектов, проявляющих двойственное корпускулярно-волновое поведение -- электроны и свет; принцип справедлив и для более крупных объектов, но, как правило, чем объект массивнее, тем в меньшей степени проявляются его волновые свойства (речь здесь не идёт о коллективном волновом поведении многих частиц, например, волны на поверхности жидкости).
Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В действительности квантовые объекты не являются ни классическими волнами, ни классическими частицами, проявляя свойства первых или вторых лишь в зависимости от условий экспериментов, которые над ними проводятся. Корпускулярно-волновой дуализм необъясним в рамках классической физики и может быть истолкован лишь в квантовой механике.
Дальнейшим развитием представлений о корпускулярно-волновом дуализме стала концепция квантованных полей в квантовой теории поля.
Впервые проблема корпускулярно-волнового дуализма проявила себя при исследовании природы света. В XVII в. Исаак Ньютон предложил считать свет потоком мельчайших корпускул. Это позволяло просто объяснить ряд наиболее характерных свойств света, - например, прямолинейность световых лучей и закон отражения, согласно которому угол отражения света равен углу падения. Вообще, вся геометрическая оптика прекрасно согласуется с корпускулярной теорией света. Но явления интерференции и дифракции света никак в эту теорию не вписывались. Объяснить их ученым удалось лишь в XIX в. создателям волновой теории света. А теория электромагнитного поля и знаменитые уравнения Максвелла, казалось бы, вообще поставили точку в этой проблеме. Оказалось, что свет - это просто частный случай электромагнитных волн, т.е. процесса распространения в пространстве электромагнитного поля. Мало того, волновая оптика объяснила не только те явления, которые не объяснялись с помощью корпускулярной теории, но и вообще все известные к XIX в. световые эффекты. И все законы геометрической оптики тоже оказалось возможным доказать в рамках волновой оптики. Однако уже в самом начале XX в. опять возродилась корпускулярная теория света, т.к. были обнаружены явления, которые с помощью волновой теории объяснить не удавалось. Это - давление света, фотоэффект, Комптон-эффект и законы теплового излучения. В рамках корпускулярной теории эти явления прекрасно объяснялись, и корпус- 87 кулы (частицы) света даже получили специальное название. Макс Планк назвал их световыми квантами (по-русски - порциями), а Альберт Эйнштейн - фотонами. Оба эти названия прижились и употребляются до сих пор. В итоге сложилась удивительная ситуация - сосуществование двух серьезных научных теорий, каждая из которых объясняла одни свойства света, но не могла объяснить другие. Нужна синтетезированная теория, объединяющая в себе и волновую, и корпускулярную теории. Она была создана и получила название квантовой физики. Очень важно, что квантовая физика не отвергает ни корпускулярную, ни волновую теории. Каждая из них имеет свои преимущества и свой, достаточно развитый математический аппарат. Свет - диалектическое единство противоположных свойств: он одновременно обладает свойствами непрерывных электромагнитных волн и дискретных фотонов. При уменьшении длины волны все явственнее проявляются корпускулярные свойства. Волновые свойства коротковолнового излучения проявляются слабо (например, рентгеновское излучение). Наоборот, у длинноволнового (инфракрасного) излучения квантовые свойства проявляются слабо. Взаимосвязь между корпускулярными и волновыми свойствами света находит простое толкование при статистическом подходе к распространению света. Взаимодействие фотонов с веществом (например, при прохождении света через дифракционную решетку) приводит к перераспределению фотонов в пространстве и возникновению дифракционной картины на экране. Очевидно, что освещенность в различных точках экрана прямо пропорциональна вероятности попадания фотонов в эти точки экрана. Но, с другой стороны, из волновых представлений видно, что освещенность пропорциональна интенсивности света J, а та, в свою очередь, пропорциональна квадрату амплитуды А 2. Отсюда вывод: квадрат амплитуды световой волны в какой-либо точке есть мера вероятности попадания фотонов в эту точку.
Двойственная корпускулярно-волновая природа материи - одна из фундаментальных концепций современной физики, которая определяет особенности поведения микрообъектов на квантовом уровне. Эта идея заключается в том, что элементарные частицы, такие как электроны или фотоны, могут обладать как частицей, так и волновой природой. Иногда эти свойства проявляются одновременно, что делает поведение микрочастиц непредсказуемым с точки зрения классической физики.
Волновая природа материи была впервые предположена в начале XX века физиком Луи де Бройлем. Он сформулировал гипотезу о дуальном (волновом-корпускулярном) характере микрообъектов, предполагая, что каждой частице можно сопоставить волновое уравнение, а волне - частицу. Эта идея послужила основой для развития квантовой механики и получила свое подтверждение в ряде экспериментов, например, в двойной щели фотонов или в рассеянии электронов на кристаллической решетке.
Волны де Бройля имеют специфическую природу, не имеющую аналогии среди волн, изучаемых в классической физике: квадрат модуля амплитуды волны де Бройля в данной точке является мерой вероятности того, что частица обнаруживается в этой точке. Дифракционные картины, которые наблюдаются в опытах, являются проявлением статистической закономерности, согласно которой частицы попадают в определенные места в приёмниках - туда, где интенсивность волны де Бройля оказывается наибольшей. Частицы не обнаруживаются в тех местах, где, согласно статистической интерпретации, квадрат модуля амплитуды «волны вероятности» обращается в нуль.
С точки зрения квантовой физики, поведение элементарных частиц описывается не классическими понятиями, а математическими формализмами, такими как волновая функция Шрёдингера или матричные уравнения. Эти формализмы позволяют предсказывать вероятность нахождения частицы в определенном состоянии или месте, но не допускают однозначного определения траектории или скорости частицы, что противоречит классическим представлениям.
Этот дуальный характер частиц материи ставит под вопрос классическую картину мира и требует применения новой математической аппаратуры для описания и предсказания поведения микрообъектов. Такие понятия, как волновая функция и вероятностное распределение, стали основой современной квантовой механики и позволяют успешно объяснять различные экспериментальные результаты.
Обнаружение корпускулярных свойств электромагнитных волн и волновых свойств частиц показало, что объекты микромира подчиняются необычным законам. Эти законы совершенно непривычны для нас, привыкших наблюдать за макроскопическими телами. Наше сознание выработало некоторые образы частицы и волны, вполне пригодные для описания объектов классической физики. Частица -- это маленький, локализованный в пространстве сгусток вещества. Волна -- это распределённый (не локализованный) в пространстве колебательный процесс. Как же эти понятия могут совмещаться в одном объекте (например, в электроне)? Вообразить такое действительно получается с трудом. Но что поделать -- это факт. Природа оказывается намного богаче нашего воображения. В своей повседневной жизни мы находимся очень далеко от микромира, и в привычном нам диапазоне макроскопических тел природа демонстрирует свои «крайние» проявления -- в виде «только частиц» или «только волн». Вот почему корпускулярные и волновые свойства представляются нам несовместимыми друг с другом. Но на самом деле это не так: в микромире оказывается, что один и тот же объект (например, электрон) легко может обладать обоими свойствами одновременно -- словно человек, обладающий разными, несовместимыми на первый взгляд чертами характера. Так, будучи частицей, электрон локализован в пространстве; но, будучи волной, локализован не в точке, а «размазан» по некоторой области. Координаты и скорость электрона не могут быть измерены одновременно сколь угодно точно. Неопределённость координаты ?x и неопределённость соответствующей проекции импульса ?px оказываются связанными соотношением неопределённостей Гейзенберга: ?x · ?px > ~. Соотношение неопределённостей имеет фундаментальный характер -- оно применимо к любым объектам природы. Чем точнее мы знаем координаты объекта (то есть чем в меньшей пространственной области он локализован), тем больше получается разброс значений его импульса (то есть тем с большей скоростью объект «готов вылететь» из этой области). И наоборот, чем точнее мы знаем импульс объекта, тем меньше у нас информации о том, где этот объект находится. Но коль скоро нет возможности одновременно точно измерить координаты и скорость, то теряет смысл понятие траектории движения объекта. Механика Ньютона перестаёт работать в микромире и уступает место квантовой механике. После демонстрации волновых свойств фотонов и электронов аналогичные эксперименты проводились с нейтронами и протонами. Среди самых известных экспериментов -- опыты проведённые Эстерманном и Отто Штерном в 1929 году. Авторы аналогичных недавних экспериментов с атомами и молекулами, описанных ниже, утверждают, что эти более крупные частицы также демонстрируют волновые свойства.
Основополагающая серия экспериментов, подчеркивающих действие гравитации и корпускулярно-волновые свойства нейтронов проведена в 1970-х годах с использованием нейтронного интерферометра. Нейтроны, один из компонентов атомного ядра, обеспечивают большую часть массы ядра и, следовательно, массы обычного вещества. В нейтронном интерферометре они демонстрируют как волновую природу, под действием силы тяжести. Хотя результаты не были удивительными, поскольку было известно, что гравитация действует на всё, включая свет (см. Тесты общей теории относительности и эксперимент с падающими фотонами Паунда -- Ребки), самоинтерференция квантово-механической волны массивного фермиона в гравитационном поле ранее никогда не была подтверждена экспериментально.
В 1999 году исследователи Венского университета сообщили о дифракции фуллеренов С60. Фуллерены -- сравнительно большие и массивные объекты с атомной массой около 720 а. е. м.. Длина волны де Бройля падающего пучка составляла около 2,5 pm, тогда как диаметр молекулы составляет около 1 нм, примерно в 400 раз больше. В 2012 году эти эксперименты по дифракции в дальней зоне были распространены на молекулы фталоцианина и их более тяжёлые производные, которые состоят из 58 и 114 атомов соответственно. В этих экспериментах построение таких интерференционных картин можно было регистрировать в реальном времени и с чувствительностью приближенной к одной молекуле.
В 2003 году Венская группа также продемонстрировала волновую природу тетрафенилпорфирина -- плоской молекулы биокрасителя с размером около 2 нм и массой 614 а. е. м. Для этого эксперимента они использовали ближнепольный интерферометр Тальбота -- Лау. В том же интерферометре они также обнаружили интерференционные полосы для C60F48, фторированного бакибола с массой около 1600 а. е. м., состоящего из 108 атомов. Большие молекулы уже настолько сложны, что дают экспериментальный доступ к некоторым аспектам квантово-классического интерфейса, то есть к определённым механизмам декогеренции. В 2011 году для интерференции использовались молекулы с массой 6910 а. е. м. в интерферометре Капицы -- Дирака -- Тальбота -- Лау. В 2013 г. продемонстрировалась интерференция молекул с массой более 10 000 а. е. м.
Кудер, Форт и др. показали что макроскопические капли масла на поверхности колеблющейся жидкости можно использовать в качестве аналоговой модели дуальности волна-частица. Локализованная капля создаёт вокруг себя периодическое волновое поле. Резонансное взаимодействие между каплей и её собственным волновым полем проявляет поведение, аналогичное квантовым частицам: интерференцию в эксперименте с двумя щелями, непредсказуемое туннелирование (сложным образом зависит от практически скрытого состояния поля), орбитальное квантование (эта частица должна «найти резонанс» с возмущениями поля, которые она создаёт -- после одного цикла её внутренняя фаза должна вернуться в исходное состояние) и эффект Зеемана. Обратите внимание, что другие эксперименты с одной и двумя щелями показали, что взаимодействия стенка-капля, а не дифракция или интерференция пилотной волны могут отвечать за наблюдаемые гидродинамические картины, которые отличаются от интерференционных картин, вызванных щелью, демонстрируемых квантовыми частицами.
В 2019 году удалось добиться дифракции молекул массой более 25 000 а. е. м., состоящих из почти 2000 атомов каждая.
Имеют ли объекты более тяжелые, чем масса Планка (примерно масса большой бактерии) длину волны де Бройля, теоретически неясно и экспериментально недостижимо выше планковской массы комптоновская длина волны частицы будет меньше планковской длины и её собственного радиуса Шварцшильда, масштаба, в котором современные теории физики могут разрушиться или должны быть заменены более общими.
Дуальность волна-частица содержится в основаниях квантовой механики. В формализме теории вся информация о частице закодирована в её волновой функции, комплекснозначной функции, примерно аналогичной амплитуде волны в каждой точке пространства. Зависимость этой функции от времени определяется уравнением Шредингера. Для частиц, обладающих массой, это уравнение имеет решения, которые аналогичны решениям волнового уравнения. Распространение таких волн приводит к волновым явлениям, таким как интерференция и дифракция. Частицы без массы, как и фотоны, не являются решениями уравнения Шредингера. Вместо волновой функции частицы, которая локализует массу в пространстве, волновая функция фотона может быть построена из кинематики Эйнштейна для локализации энергии в пространственных координатах.
Частице-подобное поведение наиболее очевидно из-за явлений, связанных с измерениями в квантовой механике. После измерения местоположения частицы она будет переведена в более локализованное состояние в соответствии с принципом неопределенности. Если использовать этот формализм, измерение волновой функции случайным образом приведёт к коллапсу волновой функции к виду с резко выраженным максимумом функции в каком-то месте. Для частиц с массой вероятность обнаружения частицы в любом конкретном месте равна квадрату амплитуды волновой функции там. Измерение вернёт чётко определённое положение, которое подчиняется принципу неопределенности Гейзенберга.
С развитием квантовой теории поля двусмысленность исчезла. Поле допускает решения, соответствующие волновому уравнению, которые называются волновыми функциями. Термин частица используется для обозначения неприводимых представлений группы Лоренца, разрешённых полем. Взаимодействие на диаграмме Фейнмана, принимается в качестве удобного с точки зрения вычислений приближения, когда известно, что исходящие стрелки являются упрощением для распространения частиц, а внутренние линии в некотором порядке разложение полевого взаимодействия. Поскольку поле нелокально и квантовано, объясняются явления, которые раньше считались парадоксами. В рамках дуализма волна -- частица квантовая теория поля приводит к тем же результатам.
Экспериментально показано, что фотон не является коротким импульсом электромагнитного излучения. Он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году. Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона. Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).
Не имеет значение в какой области рассматривать свет. Например, в области зрения и цветного зрения, свет выполняет функции как волны так и частицы - кванта энергии (фотона). Сфокусированная предметная точка на фоторецептор сетчатки, например, мембрану колбочки позволяет глазу отфильтровать, сформировать её значение в виде основных спектральных лучей света RGB согласно их длинам волн, и согласно значениям квантов энергии монолучей (не в цвете), которые в мозгу переводятся в наше ощущение цвета (сфокусированной предметной точки оптического изображения).
Таким образом, двойственная корпускулярно-волновая природа материи является ключевым аспектом квантовой физики, расширяющим наше понимание микромира и требующим пересмотра привычной картины мира на макроуровне. Эта концепция остается объектом активного изучения и исследований в современной науке, открывая новые горизонты в понимании природы вселенной.
Список использованной литературы
1. Герштейн С. С. Корпускулярно-волновой дуализм // Физическая энциклопедия: [в 5 т.] / Гл. ред. А. М. Прохоров. М.: Советская энциклопедия, 1990. Т. 2: Добротность -- Магнитооптика. 704 с.
2. Гальцов Д. В. Корпускулярно-волновой дуализм // Физический энциклопедический словарь. под ред. А. М. Прохорова. М., Большая Российская энциклопедия, 2003. Тираж 10000 экз.
3. Луи де Бройль. Революция в физике (Новая физика и кванты). 2-е изд. М.: Атомиздат, 1965. 232 с.
4. Широков Ю. М., Юдин Н. П. Ядерная физика. М.: Наука, 1972.
5. Яворский Б.Н., Детлаф А.А. Справочник по физике. М.: Наука, 1985. 512 с.
Размещено на Allbest.ru
...Подобные документы
Физический смысл волн де Бройля. Соотношение неопределенности Гейзенберга. Корпускулярно-волновая двойственность свойств частиц. Условие нормировки волновой функции. Уравнение Шредингера как основное уравнение нерелятивистской квантовой механики.
презентация [738,3 K], добавлен 14.03.2016Открытие явления фотоэффекта не вписывалось в рамки классической физики. Это привело к созданию квантовой механики. Фотоэлектрический эффект и дискретная природа света. Дифракция электронов. Применение явления корпускулярно – волнового дуализма.
реферат [39,6 K], добавлен 24.06.2008История зарождения квантовой теории. Открытие эффекта Комптона. Содержание концепций Резерфорда и Бора относительно строения атома. Основные положения волновой теории Бройля и принципа неопределенности Гейзенберга. Корпускулярно-волновой дуализм.
реферат [37,0 K], добавлен 25.10.2010"Планетарная модель" атома Бора в основе квантовой механики, ее основные принципы, идеи и значение. Попытки объяснить корпускулярные и волновые свойства вещества в квантовой (волновой) механике. Анализ волновой функции и ее вероятностного смысла.
реферат [90,7 K], добавлен 21.11.2011Начало развития квантовой механики. Формирование квантовых представлений. Проблемы интерпретации квантовой теории. Парадокс Эйнштейна-Подольского-Розена и его интерпретации. Неравенство Белла и открытие А.Аспекта. Физический вакуум и его свойства.
реферат [34,8 K], добавлен 06.01.2009Теория атомно-молекулярного строения мира. Объекты микромира: электрон, фундаментальные частицы, фермионы, лептоны, адроны, атомом, ядром атома и молекула. Разработка квантовой механики и явлений микромира. Концепции микромира и квантовая механика.
реферат [35,9 K], добавлен 26.07.2010Принципы неклассической физики. Современные представления о материи, пространстве и времени. Основные идеи и принципы квантовой физики. Современные представления об элементарных частицах. Структура микромира. Фундаментальные физические взаимодействия.
реферат [52,2 K], добавлен 30.10.2007Предпосылки возникновения квантовой теории. Квантовая механика (волновая механика, матричная механика) как раздел теоретической физики, описывающий квантовые законы движения. Современная интерпретация квантовой теории, взаимосвязь с классической физикой.
реферат [44,0 K], добавлен 17.02.2010Развитие квантовой физики: гипотеза квантов, теория атома, природа света, концепция целостности. Создание нерелятивистской квантовой механики, принципы ее интерпретации. Парадокс Эйнштейна-Подольского-Розена, принцип неопределенности Гейзенберга.
реферат [94,0 K], добавлен 14.02.2009Уравнение плоской бегущей волны материи. Операторы импульса и энергии. Общая схема вычислений физических наблюдаемых в квантовой механике. Понятие о конфигурационном пространстве системы частиц. Уравнение Шрёдингера для простейших стационарных движений.
реферат [56,2 K], добавлен 28.01.2009Понятие оптического излучения и светового луча. Оптический диапазон длин волн. Расчет и конструирование оптических приборов. Основные законы геометрической оптики. Проявление прямолинейного распространения света. Закон независимости световых пучков.
презентация [12,0 M], добавлен 02.03.2016Описание свойств электромагнитных полей математическими средствами. Дефект традиционной классической электродинамики. Базовые физические представления современной теории электромагнитного поля, концепция корпускулярно-полевого дуализма микрочастицы.
статья [225,0 K], добавлен 29.11.2011Теория диэлектрических волноводов. Анализ распространения волн в плоском оптическом волноводе с геометрической точки зрения и с точки зрения электромагнитной теории. Распределение электромагнитного поля и зависимость свойств волновода от его параметров.
курсовая работа [5,4 M], добавлен 07.05.2012Сценарий развития Вселенной после Большого Взрыва. Современные представления об элементарных частицах как первооснове строения материи Вселенной. Классификация элементарных частиц. Корпускулярно-волновой дуализм в современной физике. Теория атома Н. Бора.
реферат [49,0 K], добавлен 17.05.2011Квантовая теория в ряду других современных физических теорий. Споры и дискуссии о реальности квантово-механических состояний. Необычайность свойств квантовой механики. Основные трактовки и интерпретации квантово-механической теории различными учеными.
реферат [41,8 K], добавлен 28.03.2011Основные методы описания распространения электромагнитных волн в периодических средах с использованием волновых уравнений. Теории связанных волн, вывод уравнений. Выбор метода для описания генерации второй гармоники в периодически поляризованной среде.
дипломная работа [1,1 M], добавлен 17.03.2014Фундаментальные понятия квантовой механики: гипотеза де Бройля, принцип неопределённостей Гейзенберга. Квантовое состояние, сцепленность, волновая функция. Эксперимент над квантовомеханической системой: движение микрочастиц, принципы проведения измерений.
реферат [99,1 K], добавлен 26.09.2011Открытие сложного строения атома - важнейший этап становления современной физики. В процессе создания количественной теории строения атома, объясняющей атомные системы, сформированы представления о свойствах микрочастиц, описанные квантовой механикой.
реферат [146,3 K], добавлен 05.01.2009Нахождение показателя преломления магнитоактивной плазмы. Рассмотрение "обыкновенной" и "необыкновенной" волн, исследование их свойств. Частные случаи распространения электромагнитных волн в магнитоактивной плазме. Определение магнитоактивных сред.
курсовая работа [573,6 K], добавлен 29.10.2013Понятие электромагнитных волн, их сущность и особенности, история открытия и исследования, значение в жизни человека. Виды электромагнитных волн, их отличительные черты. Сферы применения электромагнитных волн в быту, их воздействие на организм человека.
реферат [776,4 K], добавлен 25.02.2009