реферат Метод конечных разностей
Описание применения численных методов для решения задач математической физики. Рассмотрение сходимости, устойчивости и порядка аппроксимации как основы анализа сеточных схем. Решение одномерного уравнения теплопроводности методом конечных разностей.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 29.01.2015 |
Размер файла | 271,2 K |
Подобные документы
Метод конечных элементов (МКЭ) — численный метод решения задач прикладной физики. История возникновения и развития метода, области его применения. Метод взвешенных невязок. Общий алгоритм статического расчета МКЭ. Решение задач методом конечных элементов.
курсовая работа [2,0 M], добавлен 31.05.2012Уравнения гиперболического типа с частными производными 2-го порядка, решение равенства свободных колебаний струны методом разделения переменных. Описание дифференциальных уравнений теплопроводности для полубесконечного стержня в виде интеграла Пуассона.
курсовая работа [480,7 K], добавлен 05.05.2011Математическое моделирование тепловых процессов. Основные виды теплообмена в природе. Применение метода конечно разностной аппроксимации для решения уравнения теплопроводности. Анализ изменения температуры по ширине пластины в выбранные моменты времени.
курсовая работа [1,5 M], добавлен 22.05.2019Описание процесса распространения электромагнитной волны в волноводе дифференциальным уравнением. Исследование сходимости ряда аналитического решения. Вычисление функций Бесселя. Сравнение теоретической и практической оценок количества членов ряда Фурье.
курсовая работа [870,1 K], добавлен 27.02.2014Дифференциальное уравнение теплопроводности. Поток тепла через элементарный объем. Условия постановка краевой задачи. Методы решения задач теплопроводности. Численные методы решения уравнения теплопроводности. Расчет температурного поля пластины.
дипломная работа [353,5 K], добавлен 22.04.2011Основные положения математической физики и теории дифференциальных уравнений. Поперечные колебания. Метод разделения переменных или метод Фурье. Однородные линейные уравнения второго порядка с постоянными коэффициентами.
дипломная работа [365,5 K], добавлен 08.08.2007Современная общая теория дифференциальных уравнений. Обзор основных понятий и классификации дифференциальных уравнений в частных производных. Уравнение теплопроводности. Начальные и граничные условия. Численное решение уравнений математической физики.
курсовая работа [329,9 K], добавлен 19.12.2014Знакомство с уравнениями прямолинейного движения материальной точки. Характеристика преимуществ безразмерных переменных. Рассмотрение основных способов построения общего решения неоднородного уравнения. Определение понятия дифференциального уравнения.
презентация [305,1 K], добавлен 28.09.2013Решение краевых задач методом функции Хартри. Решение уравнения теплопроводности с разрывным коэффициентом и его приложение в электрических контактах. Определение результатов первой граничной задачи с разрывными коэффициентами с помощью функции Хартри.
дипломная работа [998,8 K], добавлен 10.05.2015Содержание классического метода анализа переходных процессов в линейных цепях: непосредственное интегрирование дифференциальных уравнений, описывающих электромагнитное состояние цепи. Два закона коммутации при конечных по величине воздействиях в цепи.
презентация [679,0 K], добавлен 28.10.2013- Вариант определения напряженно-деформированного состояния упругого тела конечных размеров с трещиной
Изучение процесса разрушения твердых тел при распространении трещины. Возникновение метода конечных элементов. Введение локальной и глобальной нумерации узлов. Рассмотрение модели трещины в виде физического разреза и материального слоя на его продолжении.
курсовая работа [2,7 M], добавлен 26.12.2014 Теоретическое описание метода Ньютона. Решение нелинейных уравнений узловых напряжений в форме баланса токов. Влияние установившегося отклонения напряжения на работу электропотребителей. Аналитическая запись решения и численный расчет энергосистемы.
контрольная работа [911,1 K], добавлен 15.01.2014Дифференциальное уравнение теплопроводности как математическая модель целого класса явлений, особенности его составления и решения. Краевые условия – совокупность начальных и граничных условий, их отличительные черты. Способы задания граничного условия.
реферат [134,2 K], добавлен 08.02.2009Общая характеристика законов динамики, решение задач. Знакомство с основными видами сил. Особенности дифференциальных уравнений движения точки. Анализ способов решения системы трех дифференциальных уравнений второго порядка, рассмотрение этапов.
презентация [317,7 K], добавлен 28.09.2013Уравнение Шредингера и физический смысл его решений. Волновые функции в импульсном представлении. Методы численного решения уравнений: преобразование Фурье, аппроксимации оператора эволюции, способ Нумерова. Программная реализация задач средствами Java.
дипломная работа [1,2 M], добавлен 19.01.2011Рассмотрение теории нелинейной теплопроводности: основные свойства, распространение тепловых возмущений в нелинейных средах и их пространственная локализация. Задача нелинейной теплопроводности с объемным поглощением и пример ее решения на полупрямой.
курсовая работа [2,5 M], добавлен 07.05.2011Постановка задачи дифракции и методы ее решения. Сведения о методах решения задач электродинамики. Метод вспомогательных источников. Вывод интегральных уравнений Фредгольма второго рода для двумерной задачи. Численное решение интегрального уравнения.
курсовая работа [1,2 M], добавлен 13.01.2011Основные положения и постулаты кинематики – раздела теоретической механики. Теоретические основы: определения, формулы, уравнения движения, скорости и ускорения точки, траектории; практические примеры в виде решения наиболее типичных задач кинематики.
методичка [898,8 K], добавлен 26.01.2011Роль одномерного анализа при решении технических задач. Уравнения Бернулли для идеальной и реальной жидкостей. Выражение скорости звука через термодинамические параметры. Изоэнтропийное течение, критический расход. Сопло Лаваля и принцип его действия.
реферат [962,8 K], добавлен 07.01.2014Понятие и сущность физических величин, их качественное и количественное выражение. Характеристика основных типов шкал измерений: наименований, порядка, разностей (интервалов) и отношений, их признаки. Особенности логарифмических и биофизических шкал.
реферат [206,2 K], добавлен 13.11.2013