Сетевые операционные системы
Назначение, функции, основные задачи ОС при управлении ресурсами. Понятия процесса и потока. Мультипрограммирование в системах пакетной обработки. Управление памятью и виртуализация адресного пространства в многозадачных ОС. Тупики, способы борьбы с ними.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 22.12.2012 |
Размер файла | 4,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
· Пространственная локальность. Если произошло обращение по некоторому адресу, то с высокой степенью вероятности в ближайшее время произойдет обращение к соседним адресам.
29. Задачи ОС по управлению файлами и устройствами
Подсистема ввода-вывода (Input-Output Subsystem) мультипрограммной ОС при обмене данными с внешними устройствами компьютера должна решать ряд общих задач, из которых наиболее важными являются следующие:
· организация параллельной работы устройств ввода-вывода и процессора;
Каждое устройство ввода-вывода вычислительной системы снабжено специализированным блоком управления, называемым контроллером. Контроллер взаимодействует с драйвером - системным программным модулем, предназначенным для управления данным устройством. Контроллер периодически принимает от драйвера выводимую на устройство информацию, а также команды управления, которые говорят о том, что с этой информацией нужно сделать. Под управлением контроллера устройство может некоторое время выполнять свои операции автономно, не требуя внимания со стороны центрального процессора.
Данная задача является классической задачей планирования систем реального времени и обычно решается на основе многоуровневой приоритетной схемы обслуживания по прерываниям. Для обеспечения приемлемого уровня реакции все драйверы (или части драйверов) распределяются по нескольким приоритетным уровням в соответствии с требованиями ко времени реакции и временем использования процессора. Для реализации приоритетной схемы обычно задействуется общий диспетчер прерываний ОС.
· согласование скоростей обмена и кэширование данных;
При обмене данными всегда возникает задача согласование скорости. Например, если один пользовательский процесс вырабатывает некоторые данные и передает их другому пользовательскому процессу через оперативную память, то в общем случае скорости генерации данных и их чтения не совпадают. Согласование скорости обычно достигается за счет буферизации данных в оперативной памяти и синхронизации доступа процессов к буферу.
В подсистеме ввода-вывода для согласования скоростей обмена также широко используется буферизация данных в оперативной памяти. Однако буферизация только на основе оперативной памяти в подсистеме ввода-вывода оказывается недостаточной (ее объема может просто не хватить). Для таких случаев необходимо предусмотреть особые меры, и часто в качестве буфера используется дисковый файл, называемый также спул-файлом (от spool -- шпулька, тоже буфер, только для ниток).
Другим решением этой проблемы является использование большой буферной памяти в контроллерах внешних устройств. Такой подход особенно полезен в тех случаях, когда помещение данных на диск слишком замедляет обмен (или когда данные выводятся на сам диск). Например, в контроллерах графических дисплеев применяется буферная память, соизмеримая по объему с оперативной, и это существенно ускоряет вывод графики на экран.
· разделение устройств и данных между процессами;
Устройства ввода-вывода могут предоставляться процессам как в монопольное, так и в совместное (разделяемое) использование. При этом ОС должна обеспечивать контроль доступа теми же способами, что и при доступе процессов к другим ресурсам вычислительной системы - путем проверки прав пользователя или группы пользователей, от имени которых действует процесс, на выполнение той или иной операции над устройством.
При разделении устройства между процессами может возникнуть необходимость в разграничении порции данных двух процессов друг от друга. Обычно такая потребность возникает при совместном использовании так называемых последовательных устройств, данные в которых в отличие от устройств прямого доступа не адресуются. Для подобных устройств организуется очередь заданий на вывод, при этом каждое задание представляет собой порцию данных, которую нельзя разрывать. Для хранения очереди заданий используется спул-файл.
· обеспечение удобного логического интерфейса между устройствами и остальной частью системы;
Разнообразие устройств ввода-вывода делают особенно актуальной функцию ОС по созданию экранирующего логического интерфейса между периферийными устройствами и приложениями. Практически все современные операционные системы поддерживают в качестве основы такого интерфейса файловую модель периферийных устройств, когда любое устройство выглядит для прикладного программиста последовательным набором байт, с которым можно работать с помощью унифицированных системных вызовов (например, read и write), задавая имя файла-устройства и смещение от начала последовательности байт. Привлекательность модели файла-устройства состоит в ее простоте и унифицированности для устройств любого типа.
· поддержка широкого спектра драйверов с возможностью простого включений в систему нового драйвера
Чтобы операционная система не испытывала недостатка в драйверах, необходимо наличие четкого, удобного и открытого интерфейса между драйверами и другими компонентами ОС. Такой интерфейс нужен для того, чтобы драйверы писали не только непосредственные разработчики данной операционной системы, но и большая армия программистов по всему миру, в первую очередь -- тех предприятий, которые выпускают внешние устройства для компьютеров. Открытость интерфейса драйверов, то есть доступность его описания для независимых разработчиков программного обеспечения (а возможно, также и разработка его на основе согласительных процедур между ведущими коллективами разработчиков), является необходимым условием успешного развития операционной системы.
· динамическая загрузка и выгрузка драйверов;
Так как набор потенциально поддерживаемых данной ОС периферийных устройств всегда существенно шире набора устройств, которыми ОС должна управлять при установке на конкретной машине, то ценным свойством ОС является возможность динамически загружать в оперативную память требуемый драйвер (без останова ОС) и выгружать его после того, как потребность в поддержке устройства миновала, что может существенно сэкономить системную область памяти.
Альтернативой динамической загрузке драйверов при изменении текущей конфигурации внешних устройств компьютера является повторная компиляция кода ядра с требуемым набором драйверов, что создает между всеми компонентами ядра статические связи вместо динамических. При статических связях между ядром и драйверами структура ОС упрощается, но этот подход требует наличия исходных кодов модулей операционной системы.
· поддержка нескольких файловых систем;
Поддержка нескольких популярных файловых систем для подсистемы ввода-вывода также важна, как и поддержка широкого спектра периферийных устройств. Важно также, чтобы архитектура подсистемы ввода-вывода позволяла достаточно просто включать в ее состав новые типы файловых систем, без необходимости переписывания кода. Обычно в операционной системе имеется специальный слой программного обеспечения, отвечающий за решение данной задачи, например слой VFS (VirtualFile System) в версиях UNIX.
· поддержка синхронных и асинхронных операций ввода-вывода.
Операция ввода-вывода может выполняться по отношению к программному модулю, запросившему операцию, в синхронном или асинхронном режимах. Синхронный режим означает, что программный модуль приостанавливает свою работу до тех пор, пока операция ввода-вывода не будет завершена, а при асинхронном режиме программный модуль продолжает выполняться в мультипрограммном режиме одновременно с операцией ввода-вывода
Подсистема ввода-вывода должна предоставлять своим клиентам (пользовательским процессам и кодам ядра) возможность выполнять как синхронные, так и асинхронные операции ввода-вывода, в зависимости от потребностей вызывающей стороны. Системные вызовы ввода-вывода чаще оформляются как синхронные процедуры в связи с тем, что такие операции длятся долго и пользовательскому процессу или потоку все равно придется ждать получения результатов операции для того, чтобы продолжить свою работу. Внутренние же вызовы операций ввода-вывода из модулей ядра обычно выполняются в виде асинхронных процедур, так как кодам ядра нужна свобода в выборе дальнейшего поведения после запроса операции ввода-вывода. Использование асинхронных процедур приводит к более гибким решениям, так как на основе асинхронного вызова всегда можно построить синхронный, создав дополнительную промежуточную процедуру, блокирующую выполнение вызвавшей процедуры до момента завершения ввода-вывода.
30. Многослойная модель подсистемы ввода-вывода
Общая схема
Многослойное построение программного обеспечения, характерное для операционных систем вообще, оказывается особенно естественным и полезным при построении подсистемы ввода-вывода. При большом разнообразии устройств ввода-вывода, обладающих существенно различными характеристиками (принтер и диски, графический монитор и сетевой адаптер и т. п.), иерархическая структура программного обеспечения позволяет соблюсти баланс между двумя весьма противоречивыми требованиями: с одной стороны, необходимо учесть все особенности каждого устройства, а с другой стороны, обеспечить единое логическое представление и унифицированный интерфейс для устройств всех типов. При этом нижние слои подсистемы ввода-вывода должны включать индивидуальные драйверы, написанные для конкретных физических устройств, а верхние слои должны обобщать процедуры управления этими устройствами, предоставляя общий интерфейс если не для всех устройств, то по крайней мере для групп устройств, обладающих некоторыми общими характеристиками, например для принтеров определенного производителя или для всех матричных принтеров и т. п.
память виртуализация адресный мультипрограммирование
Из рисунка видно, что программное обеспечение ввода-вывода делится не только на горизонтальные слои, но и на вертикальные. Это объясняется тем, что для такого разнообразного мира, как внешние устройства, трудно обеспечить единообразие в разбиении функций управления на слои. Поэтому общий принцип многослойное остается справедливым, однако для устройств определенного типа он реализуется по-разному, со своим количеством слоев и их функциями. В представленной структуре в качестве примера приведены три вертикальные подсистемы, управляющие дисками, графическими устройствами, такими как мониторы, принтеры и плоттеры, и сетевыми адаптерами. Естественно, к этому перечню можно добавить и другие, например подсистему управления символьными терминалами или какими-либо специализированными устройствами, такими как аналого-цифровые и цифро-аналоговые преобразователи.
В каждой вертикальной подсистеме существует несколько слоев модулей. Нижний слой образуют так называемые аппаратные драйверы устройств, название которых отражает тот факт, что они управляют аппаратурой внешних устройств, осуществляя обмен байтами и блоками байтов, и не имеют, как правило, дела с более высокоуровневыми вопросами логической организации данных, например с файлами или сложными графическими объектами. Функции вышележащих слоев в значительной степени зависят от типа вертикальной подсистемы.
Менеджер ввода-вывода
В подсистеме ввода-вывода наряду с модулями, отражающими специфику внешних устройств и образующими вертикальные подсистемы, существуют модули универсального назначения. Эти модули организуют согласованную работу всех остальных компонентов подсистемы ввода-вывода и взаимодействие с пользовательскими процессами и другими подсистемами ОС. Так же как и функции управления устройствами, эти организующие функции распределены по всем уровням, образуя оболочку. Эта оболочка иногда называется менеджером ввода-вывода. Задачи такого менеджера довольно разнообразны.
Верхний слой менеджера составляют системные вызовы ввода-вывода, которые принимают от пользовательских процессов запросы на ввод-вывод и переадресуют их отвечающим за определенный класс устройств модулям и драйверам, а также возвращают процессам результаты операций ввода-вывода. Таким образом этот слой поддерживает пользовательский интерфейс ввода-вывода, создавая для прикладных программистов максимум удобств по манипулированию внешними устройствами и расположенными на них данными.
Нижний слой менеджера реализует непосредственное взаимодействие с контроллерами внешних устройств, экранируя драйверы от особенностей аппаратной платформы компьютера -- шины ввода-вывода, системы прерываний и т.п. Этот слой принимает от драйверов запросы на обмен данными с регистрами контроллеров в некоторой обобщенной форме с использованием независимых от шины ввода-вывода адресации и формата, а затем преобразует эти запросы в зависящий от аппаратной платформы формат. Диспетчер прерываний может входить в состав менеджера ввода-вывода или же представлять собой отдельный модуль ядра. В последнем случае менеджер ввода-вывода выполняет для диспетчера прерываний первичную обработку запросов прерываний, передавая диспетчеру обобщенные сведения об источнике запроса.
Важной функцией менеджера ввода-вывода является создание некоторой среды для остальных компонентов подсистемы, которая бы облегчала их взаимодействие друг с другом.
Еще одной функцией менеджера ввода-вывода является организация взаимодействия модулей ввода-вывода с модулями других подсистем ОС, таких как подсистема управления процессами, виртуальной памятью и другими.
Многоуровневые драйверы
Первоначально термин «драйвер» применялся в достаточно узком смысле: под драйвером понимался программный модуль, который:
· входит в состав ядра операционной системы, работая в привилегированном режиме;
· непосредственно управляет внешним устройством, взаимодействуя с его контроллером с помощью команд ввода-вывода компьютера;
· обрабатывает прерывания от контроллера устройства;
· предоставляет прикладному программисту удобный логический интерфейс работы с устройством, экранируя от него низкоуровневые детали управления устройством и организации его данных;
· взаимодействует с другими модулями ядра ОС с помощью строго оговоренного интерфейса, описывающего формат передаваемых данных, структуру буферов, способы включения драйвера в состав ОС, способы вызова драйвера, набор общих процедур подсистемы ввода-вывода, которыми драйвер может пользоваться, и т. п.
Постепенно, по мере развития операционных систем и усложнения структуры подсистемы ввода-вывода, наряду с традиционными драйверами в операционных системах появились так называемые высокоуровневые драйверы, которые располагаются в общей модели подсистемы ввода-вывода над традиционными драйверами. Появление высокоуровневых драйверов можно считать дальнейшим развитием идеи многослойной организации подсистемы ввода-вывода. Вместо того чтобы концентрировать все функции по управлению устройством в одном программном модуле, во многих случаях гораздо эффективней распределить их между несколькими модулями в соседних слоях иерархии. Традиционные драйверы, которые стали называть аппаратными драйверами, низкоуровневыми драйверами, или драйверами устройств, подчеркивая их непосредственную связь с управляемым устройством, освобождаются от высокоуровневых функций и занимаются только низкоуровневыми операциями. Эти низкоуровневые операции составляют фундамент, на котором можно построить тот или иной набор операций в драйверах более высоких уровней.
При таком подходе повышается гибкость и расширяемость функций по управлению устройством -- вместо жесткого набора функций, сосредоточенных в единственном драйвере, администратор ОС может выбрать требуемый набор функций, установив нужный высокоуровневый драйвер. Если различным приложениям необходимо работать с различными логическими моделями одного и того же физического устройства, то для этого достаточно установить в системе несколько драйверов на одном уровне, работающих над одним аппаратным драйвером.
Количество уровней драйверов в подсистеме ввода-вывода обычно не ограничивается каким-либо пределом, но на практике чаще всего используют от двух до пяти уровней драйверов - слишком большое количество уровней может снизить скорость операций ввода-вывода. Несколько драйверов, управляющих одним устройством, но на разных уровнях, можно рассматривать как набор отдельных драйверов или как один многоуровневый драйвер.
Высокоуровневые драйверы оформляются по тем же правилам и придерживаются тех же внутренних интерфейсов, что и аппаратные драйверы. Единственным отличием является то, что высокоуровневые драйверы, как правило, не вызываются по прерываниям, так как взаимодействуют с управляемым устройством через посредничество аппаратных драйверов.
31. Файловые системы. Организация. Разновидности. Особенности
Файловая система - это часть операционной системы, назначение которой состоит в том, чтобы обеспечить пользователю удобный интерфейс при работе с данными, хранящимися на диске, и обеспечить совместное использование файлов несколькими пользователями и процессами.
В широком смысле понятие "файловая система" включает:
· совокупность всех файлов на диске,
· наборы структур данных, используемых для управления файлами, такие, например, как каталоги файлов, дескрипторы файлов, таблицы распределения свободного и занятого пространства на диске,
· комплекс системных программных средств, реализующих управление файлами, в частности: создание, уничтожение, чтение, запись, именование, поиск и другие операции над файлами.
Файлы
Файл -- это именованная область внешней памяти, в которую можно записывать и из которой можно считывать данные. Файлы хранятся в памяти, не зависящей от энергопитания, обычно -- на магнитных дисках.
Типы файлов
Файловые системы поддерживают несколько функционально различных типов файлов, в число которых, как правило, входят обычные файлы, файлы-каталоги, специальные файлы, именованные конвейеры, отображаемые в память файлы и другие.
Обычные файлы, или просто файлы, содержат информацию произвольного характера, которую заносит в них пользователь или которая образуется в результате работы системных и пользовательских программ.
Каталоги -- это особый тип файлов, которые содержат системную справочную информацию о наборе файлов, сгруппированных пользователями по какому-либо неформальному признаку (например, в одну группу объединяются файлы, содержащие документы одного договора, или файлы, составляющие один программный пакет).
Специальные файлы -- это фиктивные файлы, ассоциированные с устройствами ввода-вывода, которые используются для унификации механизма доступа к файлам и внешним устройствам. Специальные файлы позволяют пользователю выполнять операции ввода-вывода посредством обычных команд записи в файл или чтения из файла. Эти команды обрабатываются сначала программами файловой системы, а затем на некотором этапе выполнения запроса преобразуются операционной системой в команды управления соответствующим устройством.
Современные файловые системы поддерживают и другие типы файлов, такие как символьные связи, именованные конвейеры, отображаемые в память файлы.
Логическая организация файла
В общем случае данные, содержащиеся в файле, имеют некую логическую структуру. Эта структура является базой при разработке программы, предназначенной для обработки этих данных. Поддержание структуры данных может быть либо целиком возложено на приложение, либо в той или иной степени эту работу может взять на себя файловая система.
В первом случае, когда все действия, связанные со структуризацией и интерпретацией содержимого файла целиком относятся к ведению приложения, файл представляется ФС неструктурированной последовательностью данных. При этом формат файла, в котором хранится объектный модуль, известен только этим программам.
Другая модель файла, которая применялась в ОС OS/360, DEC RSX и VMS, а в настоящее время используется достаточно редко, -- это структурированный файл. В этом случае поддержание структуры файла поручается файловой системе. Файловая система видит файл как упорядоченную последовательность логических записей. Приложение может обращаться к ФС с запросами на ввод-вывод на уровне записей, например «считать запись 25 из файла FILE.DOC». ФС должна обладать информацией о структуре файла, достаточной для того, чтобы выделить любую запись. ФС предоставляет приложению доступ к записи, а вся дальнейшая обработка данных, содержащихся в этой записи, выполняется приложением. Развитием этого подхода стали системы управления базами данных (СУБД), которые поддерживают не только сложную структуру данных, но и взаимосвязи между ними.
Логическая запись является наименьшим элементом данных, которым может оперировать программист при организации обмена с внешним устройством. Даже если физический обмен с устройством осуществляется большими единицами, операционная система должна обеспечивать программисту доступ к отдельной логической записи.
Файловая система может использовать два способа доступа к логическим записям: читать или записывать логические записи последовательно (последовательный доступ) или позиционировать файл на запись с указанным номером (прямой доступ).
Очевидно, что ОС не может поддерживать все возможные способы структурирования данных в файле, поэтому в тех ОС, в которых вообще существует поддержка логической структуризации файлов, она существует для небольшого числа широко распространенных схем логической организации файла.
К числу таких способов структуризации относится представление данных в виде записей, длина которых фиксирована в пределах файла (рис. 7.7, а). В таком случае доступ к n-й записи осуществляется либо путем последовательного чтения (n-1) предшествующих записей, либо прямо по адресу, вычисленному по ее порядковому номеру. Например, если L -- длина записи, то начальный адрес n-й записи равен L*n. Заметим, что при такой логической организации размер записи фиксирован в пределах файла, а записи в различных файлах, принадлежащих одной и той же файловой системе, могут иметь различный размер.
Другой способ структуризации состоит в представлении данных в виде последовательности записей, размер которых изменяется в пределах одного файла. Если расположить значения длин записей так, как это показано на рис. 7.7, б, то для поиска нужной записи система должна последовательно считать все предшествующие записи. Вычислить адрес нужной записи по ее номеру при такой логической организации файла невозможно, а следовательно, не может быть применен более эффективный метод прямого доступа.
Файлы, доступ к записям которых осуществляется последовательно, по номерам позиций, называются неиндексированными, или последовательными.
Другим типом файлов являются индексированные файлы, они допускают более быстрый прямой доступ к отдельной логической записи. В индексированном файле (рис. 7.7, в) записи имеют одно или более ключевых (индексных) полей и могут адресоваться путем указания значений этих полей. Для быстрого поиска данных в индексированном файле предусматривается специальная индексная таблица, в которой значениям ключевых полей ставится в соответствие адрес внешней памяти. Этот адрес может указывать либо непосредственно на искомую запись, либо на некоторую область внешней памяти, занимаемую несколькими записями, в число которых входит искомая запись. В последнем случае говорят, что файл имеет индексно-последовательную организацию, так как поиск включает два этапа: прямой доступ по индексу к указанной области диска, а затем последовательный просмотр записей в указанной области. Ведение индексных таблиц берет на себя файловая система. Понятно, что записи в индексированных файлах могут иметь произвольную длину.
Все вышесказанное в большей степени относится к обычным файлам, которые могут быть как структурированными, так и неструктурированными. Что же касается других типов файлов, то они обладают определенной структурой, известной файловой системе. Например, файловая система должна понимать структуру данных, хранящихся в файле-каталоге или файле типа «символьная связь».
Физическая организация и адресация файла
Важным компонентом физической организации файловой системы является физическая организация файла, то есть способ размещения файла на диске. Основными критериями эффективности физической организации файлов являются:
· скорость доступа к данным;
· объем адресной информации файла;
· степень фрагментированности дискового пространства;
· максимально возможный размер файла.
Непрерывное размещение -- простейший вариант физической организации (рис. 7.11, а), при котором файлу предоставляется последовательность кластеров диска, образующих непрерывный участок дисковой памяти. Основным достоинством этого метода является высокая скорость доступа, так как затраты на поиск и считывание кластеров файла минимальны. Также минимален объем адресной информации -- достаточно хранить только номер первого кластера и объем файла. Данная физическая организация максимально возможный размер файла не ограничивает. Однако этот вариант имеет существенные недостатки, которые затрудняют его применимость на практике, несмотря на всю его логическую простоту. При более пристальном рассмотрении оказывается, что реализовать эту схему не так уж просто. Действительно, какого размера должна быть непрерывная область, выделяемая файлу, если файл при каждой модификации может увеличить свой размер? Еще более серьезной проблемой является фрагментация. Спустя некоторое время после создания файловой системы в результате выполнения многочисленных операций создания и удаления файлов пространство диска неминуемо превращается в «лоскутное одеяло», включающее большое число свободных областей небольшого размера. Как всегда бывает при фрагментации, суммарный объем свободной памяти может быть очень большим, а выбрать место для размещения файла целиком невозможно. Поэтому на практике используются методы, в которых файл размещается в нескольких, в общем случае несмежных областях диска.
Следующий способ физической организации -- размещение файла в виде связанного списка кластеров дисковой памяти (рис. 7.11, б). При таком способе в начале каждого кластера содержится указатель на следующий кластер. В этом случае адресная информация минимальна: расположение файла может быть задано одним числом -- номером первого кластера. В отличие от предыдущего способа каждый кластер может быть присоединен к цепочке кластеров какого-либо файла, следовательно, фрагментация на уровне кластеров отсутствует. Файл может изменять свой размер во время своего существования, наращивая число кластеров. Недостатком является сложность реализации доступа к произвольно заданному месту файла -- чтобы прочитать пятый по порядку кластер файла, необходимо последовательно прочитать четыре первых кластера, прослеживая цепочку номеров кластеров. Кроме того, при этом способе количество данных файла, содержащихся в одном кластере, не равно степени двойки (одно слово израсходовано на номер следующего кластера), а многие программы читают данные кластерами, размер которых равен степени двойки.
Популярным способом, применяемым, например, в файловой системе FAT, является использование связанного списка индексов (рис. 7.11, в). Этот способ является некоторой модификацией предыдущего. Файлу также выделяется память в виде связанного списка кластеров. Номер первого кластера запоминается в записи каталога, где хранятся характеристики этого файла. Остальная адресная информация отделена от кластеров файла. С каждым кластером диска связывается некоторый элемент -- индекс. Индексы располагаются в отдельной области диска -- в MS-DOS это таблица FAT (File Allocation Table), занимающая один кластер. Когда память свободна, все индексы имеют нулевое значение. Если некоторый кластер N назначен некоторому файлу, то индекс этого кластера становится равным либо номеру М следующего кластера данного файла, либо принимает специальное значение, являющееся признаком того, что этот кластер является для файла последним. Индекс же предыдущего кластера файла принимает значение N, указывая на вновь назначенный кластер.
При такой физической организации сохраняются все достоинства предыдущего способа: минимальность адресной информации, отсутствие фрагментации, отсутствие проблем при изменении размера. Кроме того, данный способ обладает дополнительными преимуществами. Во-первых, для доступа к произвольному кластеру файла не требуется последовательно считывать его кластеры, достаточно прочитать только секторы диска, содержащие таблицу индексов, отсчитать нужное количество кластеров файла по цепочке и определить номер нужного кластера. Во-вторых, данные файла заполняют кластер целиком, а значит, имеют объем, равный степени двойки.
Еще один способ задания физического расположения файла заключается в простом перечислении номеров кластеров, занимаемых этим файлом (рис. 7.11, г). Этот перечень и служит адресом файла. Недостаток данного способа очевиден: длина адреса зависит от размера файла и для большого файла может составить значительную величину. Достоинством же является высокая скорость доступа к произвольному кластеру файла, так как здесь применяется прямая адресация, которая исключает просмотр цепочки указателей при поиске адреса произвольного кластера файла. Фрагментация на уровне кластеров в этом способе также отсутствует.
Последний подход с некоторыми модификациями используется в традиционных файловых системах ОС UNIX s5 и ufs1. Для сокращения объема адресной информации прямой способ адресации сочетается с косвенным.
В стандартной на сегодняшний день для UNIX файловой системе ufs используется следующая схема адресации кластеров файла. Для хранения адреса файла выделено 15 полей, каждое из которых состоит из 4 байт (рис. 7.12). Если размер файла меньше или равен 12 кластерам, то номера этих кластеров непосредственно перечисляются в первых двенадцати полях адреса. Если кластер имеет размер 8 Кбайт (максимальный размер кластера, поддерживаемого в ufs), то таким образом можно адресовать файл размером до 8192x12 *» 98 304 байт.
Если размер файла превышает 12 кластеров, то следующее 13-е поле содержит адрес кластера, в котором могут быть расположены номера следующих кластеров файла. Таким образом, 13-й элемент адреса используется для косвенной адресации. При размере в 8 Кбайт кластер, на который указывает 13-й элемент, может содержать 2048 номеров следующих кластеров данных файла и размер файла может возрасти до 8192х(12+2048)=16 875 520 байт.
Если размер файла превышает 12+2048 = 2060 кластеров, то используется 14-е поле, в котором находится номер кластера, содержащего 2048 номеров кластеров, каждый из которых хранят 2048 номеров кластеров данных файла. Здесь применяется уже двойная косвенная адресация. С ее помощью можно адресовать кластеры в файлах, содержащих до 8
192х(12+2048+20482) = 3,43766x10*° байт.
И наконец, если файл включает более 12+2048+20482 = 4 196 364 кластеров, то используется последнее 15-е поле для тройной косвенной адресации, что позволяет задать адрес файла, имеющего следующий максимальный размер:
8192х(12+2048+20482+20483)=7,0403х1013байт.
Таким образом, файловая система ufs при размере кластера в 8 Кбайт поддерживает файлы, состоящие максимум из 70 триллионов байт данных, хранящихся в 8 миллиардах кластеров. Как видно на рис. 7.12, для задания адресной информации о максимально большом файле требуется: 15 элементов по 4 байта (60 байт) в центральной части адреса плюс 1+(1+2048)+(1+2048+20482) - 4 198 403 кластера в косвенной части адреса. Несмотря на огромную величину, это число составляет всего около 0,05 % от объема адресуемых данных.
Файловая система ufs поддерживает дисковые кластеры и меньших размеров, при этом максимальный размер файла будет другим. Используемая в более ранних версиях UNIX файловая система s5 имеет аналогичную схему адресации, но она рассчитана на файлы меньших размеров, поэтому в ней используется 13 адресных элементов вместо 15.
Метод перечисления адресов кластеров файла задействован и в файловой системе NTFS, используемой в ОС Windows NT/2000. Здесь он дополнен достаточно естественным приемом, сокращающим объем адресной информации: адресуются не кластеры файла, а непрерывные области, состоящие из смежных кластеров диска. Каждая такая область, называемая отрезком (run), или экстентом (extent), описывается с помощью двух чисел: начального номера кластера и количества кластеров в отрезке. Так как для сокращения времени операции обмена ОС старается разместить файл в последовательных кластерах диска, то в большинстве случаев количество последовательных областей файла будет меньше количества кластеров файла и объем служебной адресной информации в NTFS сокращается по сравнению со схемой адресации файловых систем ufs/s5.
Для того чтобы корректно принимать решение о выделении файлу набора кластеров, файловая система должна отслеживать информацию о состоянии всех кластеров диска: свободен/занят. Эта информация может храниться как отдельно от адресной информации файлов, так и вместе с ней.
Организация
Функционирование любой файловой системы можно представить многоуровневой моделью (рисунок 2.36), в которой каждый уровень предоставляет некоторый интерфейс (набор функций) вышележащему уровню, а сам, в свою очередь, для выполнения своей работы использует интерфейс (обращается с набором запросов) нижележащего уровня.
Рис. Общая модель файловой системы
Задачей символьного уровня является определение по символьному имени файла его уникального имени. В файловых системах, в которых каждый файл может иметь только одно символьное имя (например, MS-DOS), этот уровень отсутствует, так как символьное имя, присвоенное файлу пользователем, является одновременно уникальным и может быть использовано операционной системой. В других файловых системах, в которых один и тот же файл может иметь несколько символьных имен, на данном уровне просматривается цепочка каталогов для определения уникального имени файла. В файловой системе UNIX, например, уникальным именем является номер индексного дескриптора файла (i-node).
На следующем, базовом уровне по уникальному имени файла определяются его характеристики: права доступа, адрес, размер и другие. Характеристики файла могут входить в состав каталога или храниться в отдельных таблицах. При открытии файла его характеристики перемещаются с диска в оперативную память, чтобы уменьшить среднее время доступа к файлу. В некоторых файловых системах (например, HPFS) при открытии файла вместе с его характеристиками в оперативную память перемещаются несколько первых блоков файла, содержащих данные.
Следующим этапом реализации запроса к файлу является проверка прав доступа к нему. Для этого сравниваются полномочия пользователя или процесса, выдавших запрос, со списком разрешенных видов доступа к данному файлу. Если запрашиваемый вид доступа разрешен, то выполнение запроса продолжается, если нет, то выдается сообщение о нарушении прав доступа.
На логическом уровне определяются координаты запрашиваемой логической записи в файле, то есть требуется определить, на каком расстоянии (в байтах) от начала файла находится требуемая логическая запись. При этом абстрагируются от физического расположения файла, он представляется в виде непрерывной последовательности байт. Алгоритм работы данного уровня зависит от логической организации файла.
Например, если файл организован как последовательность логических записей фиксированной длины l, то n-ая логическая запись имеет смещение l(n-1) байт. Для определения координат логической записи в файле с индексно-последовательной организацией выполняется чтение таблицы индексов (ключей), в которой непосредственно указывается адрес логической записи.
Рис. Функции физического уровня файловой системы
Исходные данные: V - размер блока N - номер первого блока файла S - смещение логической записи в файле
Требуется определить на физическом уровне:
n - номер блока, содержащего требуемую логическую запись
s - смещение логической записи в пределах блока
n = N + [S/V]
где [S/V] - целая часть числа S/V
s = R [S/V] - дробная часть числа S/V
На физическом уровне файловая система определяет номер физического блока, который содержит требуемую логическую запись, и смещение логической записи в физическом блоке. Для решения этой задачи используются результаты работы логического уровня - смещение логической записи в файле, адрес файла на внешнем устройстве, а также сведения о физической организации файла, включая размер блока. Рисунок 2.37 иллюстрирует работу физического уровня для простейшей физической организации файла в виде непрерывной последовательности блоков. Подчеркнем, что задача физического уровня решается независимо от того, как был логически организован файл.
После определения номера физического блока, файловая система обращается к системе ввода-вывода для выполнения операции обмена с внешним устройством. В ответ на этот запрос в буфер файловой системы будет передан нужный блок, в котором на основании полученного при работе физического уровня смещения выбирается требуемая логическая запись.
Разновидности
FAT - Файловая система MS DOS, предположительно разработана лично Биллом Гейтсом. В основе системы FAT лежит таблица размещения файлов (также называемая FAT). FAT представляет собой таблицу элементов, каждый из которых соответствует одному кластер, два экземпляра FAT (основной и резервный) хранятся в начале диска, сразу после загрузочного сектора) Имеются системы FAT12, FAT16 и FAT32 в зависимости от числа бит, отводимых на элемент FAT.
В загрузочном секторе тома FAT хранится код загрузчика, метка диска и различная информация, в том числе размер кластера и т. п.
Имена файлов хранятся в виде записей в каталогах. Каталог занимает один или более кластеров. Структура записи в каталоге (FAT32):
Если файл занимает несколько кластеров, он необязательно хранится в смежных кластерах. Элемент каталога указывает на первый кластер, а в элементе FAT, соответствующием этому кластеру, записан номер следующего кластера (или FF - признак конца файла). Некоторые кластеры могут быть помечены в FAT как плохие, в случае если они содержат поврежденные сектора диска.
Общее число кластеров на диске определяется размерностью элемента FAT, размер кластера - соотношением общего числа и раздела диска. Увеличение размера элемента приводит к более эффективному использованию дискового пространства больших дисков, так как увеличивается число кластеров, хотя размер самой FAT увеличивается. При числе секторов в кластере 64 максимальный размер тома FAT16 2Гб
В Windows 95 к файловой системе FAT добавлена возможность использования длинных имен файлов и использования ранее запрещенных символов в именах. Для файлов с длинными именами в каталоге создаются специальные элементы каталога.
NTFS - файловая система Windows NT, имеет повышенную надежность за счет журналирования файловых операций и встроенную поддержку контроля доступа.
Первые 12% дискового пространства NTFS отводится под MFT (master file table), которая представляет собой таблицу записей о всех файлах тома (под файлом понимается любой объект, записываемый на диск, в том числе сама MFT и различные области метаданных). В начале MFT содержатся записи о 16 метафайлах: самой MFT, копия первых 16 записей MFT в середине тома, размещенная посередине тома, файл журналирования, общая информация (о метке тома и т. п.), список стандартных атрибутов файлов (в смысле NTFS), корневой каталог, карта свободного места, загрузочный сектор, файл дисковых квот (Windows 2000, NTFS 5.0), таблица соответствия больших и малых букв.
Каждый файл идентифицируется номером записи в MFT. Запись MFT имеет размер от 1К и содержит всю информацию о файле, а также сам файл, если его размер не велик. Кроме записи с файлом может быть связаны один или несколько атрибутов.
HPFS - файловая система OS/2
Файловые системы UNIX - Существует много разновидностей файловых систем UNIX, но основные принципы во всех системах одни и те же (это все inode-файловые системы).
Примерами ФС этого семейства являются s5fs (System V UNIX, в настоящее вермя устарела) , ffs (FreeBSD), minix и extfs - файловые системы первых версий Linux, ext2fs - основная файловая система LINUX, ReiserFS и ext3fs - системы для Linux c поддержкой журанлирования.
Большинство современных UNIX поддерживают несколько файловых систем, в том числе FAT и NTFS благодаря мощной системе управления файлами, называемой «виртуальной файловой системой» (VFS). В отличии от Windows в UNIX на файловую систему возлагаются функции интерфейса с драйверами и ядром ОС.
32. Синтаксис команды MS DOS. Соглашения об имени файла, именах устройств, пути
Общие сведения о командах
Диалог пользователя с MS DOS осуществляется в форме команд. Операционная система готова к диалогу, если на экране имеется приглашение A: или C:>. Команда состоит из имени команды и параметров, разделенных пробелами.
Команда может набираться как прописными так и строчными латинскими буквами, а завершается нажатием клавиши <ENTER>.
Синтаксис структуры команды MS DOS удобно представить в форме Бэкуса-Наура:
<команда>::=<имя команды><пробел><параметр 1><пробел><параметр 2><пробел> <параметр i>
<параметр i>::=<устройство> | <имя каталога> | <путь> | <спецификация файла> | <переключатель>
В качестве параметров команд выступают имена устройств, каталогов, имена файлов, путей доступа к файлам и переключатели ,уточняющие действие команды. Команды MS DOS бывают двух типов: внутренние и внешние. Внутренние команды выполняются командным процессором MS DOS (файл COMMAND.COM). Внешние команды реализуются программами, поставляемыми вместе с операционной системой в виде отдельных файлов.
Имя устройства
В состав компьютера входит множество устройств, к некоторым из них можно обращаться через команды ОС. К таким устройствам относятся внешние запоминающие устройства (ВЗУ), клавиатура, монитор, принтер, порты.
В качестве ВЗУ используются устройства хранения информации на магнитных, лазерных и магнитооптических дисках, которые обозначаются буквами латинского алфавита. Имена A: и B: зарезервированы за гибкими магнитными дисками. Обратите внимание: после имени диска обязательно ставится двоеточие!
Для смены текущего диска достаточно набрать его имя в командной строке. Например: A: - переключение на работу с гибким диском.
Клавиатура и монитор являются устройствами системного ввода и вывода, для обозначения которых в информатике применяется специальный термин «консоль», поэтому для обращения к этим устройствам используется групповое имя CON. При вводе информации консолью является клавиатура, а при выводе - монитор.
Обмен данными с внешним миром компьютер реализует через специальные устройства, получившие название портов. Для ОС порты и устройства, подключаемые через соответствующий порт к компьютеру, имеют одинаковое имя. В системе известны следующие имена портов:
COM1 - COM3 - устройства (порты) с последовательным интерфейсом;
LPT1 - LPT3 - устройства (порты) с параллельным интерфейсом.
Для принтера в системе зарезервировано имя PRN, а поскольку принтер обычно подключается через параллельный порт, то к нему можно обратиться и по имени порта, например, LPT1
В ОС имеется также зарезервированное имя для фиктивного устройства NUL, которое удобно использовать в командах переназначения вывода.
Имя файла
Синтаксис имени файла:
<имя файла>::=<имя>.<расширение>
Имя файла MS DOS содержит от 1 до 8 символов, а расширение - от 0 до 3 символов. Допустимы прописные и строчные буквы латиницы и кириллицы, цифры, знаки пунктуации и специальные символы: $, #, &, @, !, %, (, ), {, }, ~, ^, -, _. В системе WINDOWS 95/98/2000 имя файла может содержать до 255 символов.
Имена файлов не должны совпадать с именами устройств, зарезервированными в системе.
Имя каталога
Каталог - специальное место на диске, в котором хранятся имена файлов и основные сведения о них. В каждом каталоге - множество файлов, но каждый файл регистрируется только в одном каталоге. Каждый каталог имеет свое имя и может быть зарегистрирован в другом каталоге. Если каталог А зарегистрирован в каталоге В, то А является подкаталогом В, а В - надкаталог или родительский каталог для А.
Каждый магнитный диск имеет один главный (корневой) каталог и множество подкаталогов. Корневой каталог создается во время форматирования диска, поэтому его размер ограничен. Подкаталоги создаются пользователем и представляют собой файлы специального вида. Каталог, с которым в данное время работает пользователь, называется текущим.
Требования к имени каталога те же, что и к именам файлов, как правило расширение имени для каталога не используется. В ОС имеется несколько зарезервированных имен для каталогов:
. - имя текущего каталога;
.. - имя родительского каталога;
… - имя прародительского каталога (поддерживается только в WINDOWS).
Имя пути
Путь - это последовательность из имен каталогов, разделенных символом "\". Путь задает маршрут от текущего или корневого каталога к тому каталогу, где находится нужный файл.
Если путь начинается с символа "\", то он называется абсолютным и вычисляется от корневого каталога диска, иначе - путь является относительным и отсчитывается от текущего каталога.
Например: CD \DOS\EXE - смена текущего каталога с абсолютным указанием пути; CD ..\LETTER - смена текущего каталога с относительным указанием пути.
Полное имя файла.
Полное имя файла (или спецификация файла) имеет вид:
<имя дисковода><путь>\<имя файла>
По умолчанию используются текущий дисковод и текущий каталог.
Во многих командах в именах файлов могут использоваться метасимволы: «*» и «?» для выполнения групповых операций. Символ "*" обозначает любое число любых символов, "?" - один произвольный символ. Например: С:\DOS\EXE\PRINT.BAT - полная спецификация файла; C:\DOS\EXE\*.BAT - групповая спецификация файлов с любым допустимым именем и расширением BAT.
33. Командные файлы MS DOS
Командные файлы - это текстовые файлы, которые содержат списки внутренних или внешних команд, а также свои специальные команды. Эти файлы обрабатываются специальным интерпретатором, который встроен в транзитную часть command.com
Описание внутренних команд DOS, предназначенных для программирования командных файлов:
Команда CALL
Вызывает один командный файл из другого, не завершая его выполнение.
CALL [диск:][маршрут]имя_файла [параметры_ком_файла]
Параметр [диск:][маршрут]имя_файла
задает расположение и имя вызываемого командного файла. Файл должен иметь расширение .BAT."Параметры_ком_файла" - это информация командной строки, необходимая для вызываемого командного файла, включая параметры, имена файлов, подставляемые параметры с %1 по %9 и переменные операционной среды.
Вы можете вызывать командный файл рекурсивно, однако при этом во избежание зацикливания требуется обеспечить команду выхода. Не используйте в команде CALL конвейеризацию (|) и символы перенаправления (<<, <, > и >>).
Команда CHOICE
Выводит пользователю заданную подсказку для выбора командного файла. Ждет, пока пользователь выберет из указанного набора клавиш. Эту команду можно использовать только в командных файлах.
CHOICE [/C[:]клавиши] [/N] [/S] [/T[:]c,nn] [текст]
Параметр "текст" задает текст, который вы хотите выводить перед подсказкой. Вопросительный знак необходим только в том случае, если вы включаете в текст перед подсказкой символ /. Если вы не задаете текст, CHOICE выводит на экран только подсказку.
Параметр /C[:]клавиши задает допустимые в подсказке клавиши. При выводе на экран клавиши будут разделяться запятыми, заключаться в квадратные скобки ([]) и сопровождаться вопросительным знаком. Если вы не указываете параметр /C, CHOICE использует по умолчанию YN. Двоеточие (:) не обязательно.
Параметр /N приводит к тому, что CHOICE не выводит подсказку. Однако текст перед подсказкой выводится. При задании /N указанные клавиши все равно будут доступны.
/S приводит к различимости в CHOICE регистра символов. Если параметр /S не задан, то для любых заданных пользователем клавиш будет восприниматься как верхний, так и нижний регистр.
Если задан параметр /T[:]c,nn, то команда CHOICE перед использованием заданной клавиши по умолчанию делает паузу в течении заданного числа секунд. В /T указываются следующие значения: c -определяет символ, который спустя nn секунд будет задаваться по умолчанию (этот символ должен быть в наборе символов, заданном в параметре /C); nn - задает продолжительность паузы в секундах (допустимые значения лежат в диапазоне от 0 до 99 - если задается 0, то перед назначением по умолчанию будет пауза).
Первая назначенная вами клавиша возвращает значение 1, вторая - 2, третья - 3 и т.д. Если пользователь нажимает клавишу, отсутствующую в списке назначенных клавиш, то CHOICE дает предупреждающий звуковой сигнал (передает на консоль символ 07h).
Если CHOICE обнаруживает состояние ошибки, то возвращает значение 255. Если пользователь передает CTRL+BREAK или CTRL+C, CHOICE возвращает значение, равное 0.
Если по истечении 7 секунд пользователь не нажмет клавишу, CHOICE выбирает N и возвращает значение ERRORLEVEL 2. При нажатии соответствующей клавиши до истечения 7 секунд CHOICE возвращает значение, соответствующее выбору пользователя.
Команда ECHO
Выводит на экран или скрывает текст командного файла при его выполнении. Показывает также, включено или выключено средство эхоотображения. При запуске командного файла MS-DOS обычно отображает выполняемые команды на экране. Этот режим можно выключить или включить.
ECHO [ON¦OFF]
Чтобы использовать команду для вывода сообщения, запишите:
echo [сообщение]
Параметр ON¦OFF определяет, нужно ли включить или выключить эхоотображение. Чтобы вывести на экран текущую установку, задайте команду ECHO без параметра. "Сообщение" задает текст выводимого на экран сообщения.
О приостановке выполнения командного файла рассказывается в описании команды PAUSE.
Команду ECHO с параметром сообщения полезно использовать при выключенном эхоотображении. Для вывода длинного сообщения, превышающего размер строки, задайте несколько команд ECHO.
При указании команды ECHO OFF в командной строке командная подсказка не выводится на экран. Чтобы вновь ее увидеть, наберите
ECHO ON.
Для предотвращения эхоотображения конкретной строки вы можете задать перед ней в командном файле символ @. Чтобы отобразить на экране пустую строку, наберите команду ECHO с точкой (ECHO.).
Пробел между ними не указывается.
При использовании команды ECHO нельзя указывать символ конвейеризации (|) или перенаправления (< или >).
Команда FOR
Выполняет заданную команду для каждого файла или набора файлов. Эту команду можно использовать в командных файлах или в ответ на командную подсказку.
В первом случае используется синтаксис:
FOR %%переменная IN (множество) DO команда [параметры]
...Подобные документы
Общая характеристика основных операций с процессами. Мультипрограммирование как способ организации вычислительного процесса. Цели, алгоритмы и оценка эффективности систем пакетной обработки. Достоинства и недостатки интерактивных операционных систем.
реферат [558,0 K], добавлен 09.10.2010Сетевые операционные системы. Классификация ОС. Особенности алгоритмов управления ресурсами. Поддержка многозадачности. Процессы и нити в распределенных системах. Современные концепции и технологии проектирования ОС.
реферат [233,9 K], добавлен 12.06.2007Особенности ламповых вычислительных устройств. Программные мониторы, мультипрограммирование, многотерминальные системы. Разработка формализованного языка. Переход от транзисторов к микросхемам. Система пакетной обработки. Глобальные компьютерные сети.
реферат [282,6 K], добавлен 19.09.2009Операционные системы пакетной обработки, разделения времени, реального времени. Особенности алгоритмов управления ресурсами. Поддержка многопользовательского режима. Вытесняющая и невытесняющая многозадачность. Операционные системы и глобальные сети.
реферат [55,0 K], добавлен 11.12.2011Эволюция и классификация ОС. Сетевые операционные системы. Управление памятью. Современные концепции и технологии проектирования операционных систем. Семейство операционных систем UNIX. Сетевые продукты фирмы Novell. Сетевые ОС компании Microsoft.
творческая работа [286,2 K], добавлен 07.11.2007Определение назначения, характеристика типов операционных систем и анализ многозадачности в системах пакетной обработки. Ознакомление с приемами управления работой печатающих устройств в MS-DOS и формирование новых команд и символов матричного принтера.
курсовая работа [421,0 K], добавлен 22.06.2011Основные классификации операционных систем. Операционные системы семейства OS/2, UNIX, Linux и Windows. Разграничение прав доступа и многопользовательский режим работы. Пользовательский интерфейс и сетевые операции. Управление оперативной памятью.
реферат [22,8 K], добавлен 11.05.2011Компьютеры – универсальные устройства для обработки информации; активное и пассивное сетевое и телекоммуникационное оборудование, его функции, классификация. Операционные системы и прикладное программное обеспечение: назначение, виды и свойства.
реферат [19,0 K], добавлен 06.01.2011Понятие и назначение операционной системы, ее структура и элементы, принцип работы и функциональные особенности. Порядок пакетной обработки заданий. Виды модулей, специфика. Функциональность рентабельной программы. Значение драйверов внешних устройств.
контрольная работа [14,0 K], добавлен 29.10.2010Общая характеристика требований, предъявляемых к операционным системам. Структура сетевой операционной системы (ОС). Одноранговые сетевые ОС и с выделенными серверами. Сетевые продукты Microsoft. ОС для рабочих групп и ОС для сетей масштаба предприятия.
дипломная работа [83,7 K], добавлен 27.09.2012Способы организации вычислительного процесса в системах с несколькими процессорами. Разработка программы на основе алгоритмов мультипроцессорных систем при пакетной обработке задач. Вычисление основных показателей эффективности для каждого алгоритма.
курсовая работа [102,3 K], добавлен 21.06.2013Основные функции и процессы подсистемы управления процессами. Диспетчеризация процессов (потоков). Алгоритмы планирования выполнения потоков. Назначение и разновидности приоритетов в операционных системах. Функции подсистемы управления основной памятью.
презентация [117,7 K], добавлен 20.12.2013Основные принципы организации пакетной связи, структура ее кадра, состав и назначение используемой аппаратуры, ее функциональные особенности. Управление в режимах пакетной связи. Этапы разработки программы, ее листинг, применяемые языки программирования.
дипломная работа [4,3 M], добавлен 20.04.2012Применение цифровых микросхем для вычисления, управления и обработки информации. Назначение микропроцессора и устройств микропроцессорной системы, их структурная и принципиальная схемы. Системная шина процессора и распределение адресного пространства.
курсовая работа [1,5 M], добавлен 29.02.2012Операционные системы и их функции для автономного компьютера: управление процессами, памятью, файлами и внешними устройствами; защита данных и администрирование; интерфейс прикладного программирования. Матричные принтеры, проектирование символов.
курсовая работа [54,1 K], добавлен 22.06.2011Виртуальная память и организация адресного пространства Windows NT4/2000: файл подкачки, PAE, Application Memory Tuning, Address Windowing Extensions. Производительность, архитектурные ограничения, RAM, 64–битные процессоры и адресные пространства.
курсовая работа [3,5 M], добавлен 14.07.2012Общая характеристика и особенности операционной системы Windows 95, ее сетевые возможности, оценка преимуществ и недостатков. Сравнительная характеристика Windows 95, 98 и Millennium. Принципы работы и устройство принтеров, их части и назначение.
курсовая работа [42,2 K], добавлен 05.03.2010Требования, предъявляемые с сетевым операционным системам. Принцип работы Windows Server 2008, Windows Home Server 2011, Linux. Принципы управления ресурсами в сетевой операционной системе. Множественные прикладные среды. Основные ресурсы и службы.
дипломная работа [179,6 K], добавлен 16.08.2013Операционная система NetWare фирмы Novell. Сетевые операционные системы LAN Meneger, Windows NT и LAN Server. Сетевая операционная система Windows NT Advanced Server. Сетевая операционная система Lantastic. Компоненты сетевой операционной системы.
контрольная работа [34,3 K], добавлен 02.11.2004Понятие операционной системы. История ее создания и развития. Разновидности современных операционных систем. Основные функции ОС общего и специального назначения. Вычислительные и операционные системы, их функции. Генерация операционной системы.
курсовая работа [46,8 K], добавлен 18.06.2009