Модель ISO/OSI
OSI - международный стандарт для проектирования сетевых коммуникаций, предполагающий уровневый подход к построению сетей. Стандарты и протоколы передачи данных. Кадры Ethernet с тегами VLAN 802.1q, их особенности. Протокол HDLC, типы станций и состояния.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 26.12.2012 |
Размер файла | 70,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Модель ISO/OSI
В 1984 году Международной Организацией по Стандартизации (International Standard Organization, ISO) была разработана модель взаимодействия открытых систем (Open Systems Interconnection, OSI). Модель представляет собой международный стандарт для проектирования сетевых коммуникаций и предполагает уровневый подход к построению сетей. Каждый уровень модели обслуживает различные этапы процесса взаимодействия. Посредством деления на уровни сетевая модель OSI упрощает совместную работу оборудования и программного обеспечения. Модель OSI разделяет сетевые функции на семь уровней: прикладной, уровень представления, сессионный, транспортный, сетевой, канальный и физический.
Уровни модели OSI
Канальный уровень
Канальный уровень (англ. Data Link layer) -- уровень сетевой модели OSI, предназначенный для передачи данных узлам, находящимся в том же сегменте локальной сети. Также может использоваться для обнаружения и если возможно исправления ошибок возникших на физическом уровне. Примерами протоколов работающих на канальном уровне являются Ethernet для локальных сетей (многоузловой), Point-to-Point Protocol (PPP), HDLC и ADCCP для подключений точка-точка (двухузловой).
Задача канального уровня - обеспечить взаимодействие устройств внутри локальной сети путем передачи специальных блоков данных, которые называются кадрами (frame). В процессе формирования они снабжаются служебной информацией (заголовком), необходимой для корректной доставки получателю, и, в соответствии с правилами доступа к среде передачи, отправляются на физический уровень.
При приеме данных с уровня PHY необходимо выделить кадры, предназначенные данному устройству, проверить их на отсутствие ошибок, и передать сервису или протоколу, которому они предназначались.
Нужно обратить внимание, что именно канальный уровень отправляет, принимает, и повторяет кадры в случае коллизии. Но определяет состояние разделяемой среды физический уровень.
ФУНКЦИИ
Получение доступа к среде передачи. Обеспечение доступа -- важнейшая функция канального уровня. Она требуется всегда, за исключением случаев, когда реализована полносвязная топология (например, два компьютера, соединенных через кроссовер, или компьютер со свичом в полнодуплексном режиме).
Выделение границ кадра. Эта задача также решается всегда. Среди возможных решений этой задачи -- резервирование некоторой последовательности, обозначающей начало или конец кадра.
Аппаратная адресация (или адресация канального уровня). Требуется в том случае, когда кадр могут получить сразу несколько адресатов. В локальных сетях аппаратные адреса (MAC-адреса) применяются всегда.
Обеспечение достоверности принимаемых данных. Во время передачи кадра есть вероятность, что данные исказятся. Важно это обнаружить и не пытаться обработать кадр, содержащий ошибку. Обычно на канальном уровне используются алгоритмы контрольных сумм, дающие высокую гарантию обнаружения ошибок.
Адресация протокола верхнего уровня. В процессе декапсуляции указание формата вложенного PDU существенно упрощает обработку информации, поэтому чаще всего указывается протокол, находящийся в поле данных, за исключением тех случаев, когда в поле данных может находится один-единственный протокол.
На этом уровне работают коммутаторы, мосты.
Стандарты и протоколы передачи данных
ARCnet
ATM,
Controller Area Network (CAN),
Econet,
Ethernet,
Ethernet Automatic Protection Switching (EAPS),
Fiber Distributed Data Interface (FDDI),
Frame Relay,
High-Level Data Link Control (HDLC),
IEEE 802.2 (provides LLC functions to IEEE 802 MAC layers),
IEEE 802.11 wireless LAN,
Link Access Procedures, D channel (LAPD),
LocalTalk,
Multiprotocol Label Switching (MPLS),
Point-to-Point Protocol (PPP),
Serial Line Internet Protocol (SLIP) (obsolete),
Spanning tree protocol,
StarLan,
Token ring,
x.25.
Спецификация IEEE 802 разделяет этот уровень на 2 подуровня -- MAC (Media Access Control) регулирует доступ к разделяемой физической среде, LLC (Logical Link Control) обеспечивает обслуживание сетевого уровня.
Информационное взаимодействие на канальном уровне сетей стандарта Ethernet так же, как и на физическом, принято разделять на дополнительные подуровни, которые не были предусмотрены стандартом OSI-7.
LLC (Logical Link Control). Уровень управления логическим каналом;
MAC (Media Access Control). Уровень доступа к среде.
Подуровень MAC
В идеология множественного доступа к среде Ethernet передачу данных приходится реализовать по широковещательному принципу "каждый для всех" (broadcasting). Это не может не наложить отпечаток на процесс формирования и распознавания кадров. Рассмотрим строение кадра Ethernet DIX, как наиболее часто используемого для передачи IP трафика.
Для идентификации устройств используются 6-ти байтовые MAC-адреса, которые отправитель обязательно должен указать в передаваемом кадре. Старшие три байта представляют собой идентификатор производителя оборудования (Vendor codes), младше - индивидуальный идентификатор устройства.
За уникальность последних несет ответственность производитель оборудования. С идентификаторами производителя дело обстоит сложнее. Существует специальная организация в составе IEEE, которая ведет список вендоров, выделяя каждому из них свой диапазон адресов. Кстати, занести туда свою запись стоит совсем не дорого, всего US $1250. Можно отметить, что создатели технологии Ethernet, Ксерокс и DEC, занимают первую и последнюю строчку списка соответственно.
Такой механизм существует для того, что бы физический адрес любого устройства был уникальным, и не возникло ситуации его случайного совпадения в одной локальной сети.
Нужно особо отметить, что на большинстве современных адаптеров можно программным путем установить любой адрес. Это представляет определенную угрозу работоспособности сети, и может быть причиной тяжелых "мистических" неисправностей.
MAC-адрес может быть записан в различной форме. Наиболее часто используется шестнадцатеричная, в которой пары байтов отделяются друг от друга символами "-" или ":". Например, сетевая карта Realtek, установленная в моем домашнем компьютере, имеет адрес 00:C0:DF:F7:A4:25.
МАС-адрес позволяет выполнять единичную (Unicast), групповую (Multicast) и широковещательную адресацию кадров (Broadcast).
Единичная адресация означает, что узел-источник направляет свое сообщение только одному получателю, адрес которого явно указывается.
В режиме групповой адресации кадр будет обработан теми станциями, которые имеют такой же Vendor Code, как и у отправителя. Признаком такой посылки является "1" в младшем бите старшего байта МАС-адреса (X1:XX:XX:XX:XX:XX). Такой формат достаточно удобен для "фирменного" взаимодействия устройств, но на практике используется достаточно редко.
Другое дело широковещательная посылка, в которой адрес получателя кодируется специальным значением FF-FF-FF-FF-FF-FF. Переданный пакет будет принят и обработан всеми станциями, которые находятся в локальной сети.
Таблица 9.2. Формат кадра Ethernet
Preamble Преамбула |
SFD |
DA Адрес назначения |
SA Адрес Источника |
Type/Length |
Data Данные |
FCS Контрольная сумма |
|
7 байт |
1 байт |
6 байт |
6 байт |
2 байта |
46-1500 байт |
4 байта |
Для успешной доставки одного адреса назначения явно недостаточно. Нужна дополнительная служебная информация - длина поля данных, тип сетевого протокола и др.
Преамбула (Preamble). Состоит из 8 байтов. Первые семь содержат одну и ту же циклическую последовательность битов (10101010), которая хорошо подходит для синхронизации приемопередатчиков. Последний (Start-of-frame-delimiter, SFD), 1 байт (10101011), служит меткой начала информационной части кадра. Это поле не учитывается при определении длины кадра и не рассчитывается в контрольной сумме.
МАС-адрес получателя (Destination Address, DA).
МАС-адрес отправителя (Source Address, SA). Первый бит всегда равен нулю.
Поле длины либо тип данных (Length/Type, L/T). Два байта, которые содержат явное указание длины (в байтах) поля данных в кадре или указывают на тип данных. Ниже, в описании LLC будет показано, что возможно простое автоматическое распознавание разных типов кадров.
Данные (Data). Полезная нагрузка кадра, данные верхних уровней OSI. Может иметь длину от 0 до 1500 байт.
Для корректного распознавания коллизий необходим кадр не менее чем из 64 байт. Если поле данных менее 46 байт, то кадр дополняется полем заполнения (Padding).
Контрольная сумма (Frame Check Sequence, FCS). 4 байта, которые содержит контрольную сумму всех информационных полей кадра. Вычисление выполняется по алгоритму CRC-32 отправителем и добавляется в кадр. После приема кадра в буфер, приемник выполняет аналогичный расчет. В случае расхождения результата вычислений, предполагается ошибка при передаче, и кадр уничтожается.
Подуровень LLC
Данный подуровень обеспечивает единый, независимый от используемого метода доступа, интерфейс с верхним (сетевым) уровнем. По сути, можно сказать, что на нем определяется логическая структура заголовка кадра Ethernet.
Как ни странно, единый стандарт не определен до сих пор. Так как особых технических трудностей при определении типов кадров устройствами не оказалось, на практике могут параллельно использоваться четыре модификаций:
802.3/LLC (или кадр Novell 802.2)
Raw 802.3 (или кадр Novell 802.3)
Ethernet DIX (или кадр Ethernet II)
Ethernet SNAP
Причина вполне обычна. Технология Ethernet начала свое развитие задолго до принятия стандартов IEEE 802. Первоначально подуровень LLC не выделялся из общего протокола и, соответственно, в специальном заголовке не было нужды. После принятия стандартов IEEE, и появления двух отличных друг от друга форматов кадров канального уровня, понадобился механизм согласования. Попытка введения нового, "объединяющего" варианта заголовка, привела к возникновению очередного формата кадра.
Чтобы не слишком запутаться в частных (и не слишком важных) отличиях, рассмотрим только наиболее широко распространенный в локальных сетях кадр Ethernet DIX (Ethernet II), структура которого уже была рассмотрена в описании подуровня МАС.
Как наиболее важный момент, необходимо отметить смысл поля Length/Type (длина/типа данных). 2-байтовое поле Length (Длина) кадра Raw 802.3, в кадре Ethernet DIX используется в качестве поля типа протокола (Type), и явно указывает на тип протокола верхнего уровня, вложившего свой пакет в поле данных кадра. Если подходить строго, то видно, что к Ethernet DIX название Length (Длина) не имеет отношения. Но терминология устоялась, и проще пойти на неоднозначную формулировку, чем ее ломать.
Автоматическое распознавание типов кадров Ethernet выполняется достаточно просто, и поддерживается подавляющим большинством сетевых устройств. Так, для отличия Ethernet DIX от Raw 802.3 в поле Type указываются значения, превышающие значение максимальной длины поля данных (1500 байт). Например, для IP используется код 0800, для IPX - 8037, Х.25 - 0805, и т.п.
Так же, в случае наличия полей LLC, несложно отличить кадр Ethernet SNAP от 802.3/LLC. Но эти форматы не используются в 10/100baseT, и подробно останавливаться на них в рамках данного изложения не имеет смысла.
Кадры Ethernet с тегами VLAN 802.1q
Первое время массовому внедрению Ethernet не мешали "врожденные" недостатки стандарта (в особенности полное отсутствие средств обеспечения безопасности). Но сети быстро росли, и ограничения начали всерьез сдерживать технологию в целом.
Для решения проблемы было предложено несколько "фирменных" методов маркировки фреймов (например ISL, VLT), однако на сегодня имеет смысл говорить только о стандарте 802.1q. Его смысл достаточно прост - в заголовок добавляется 4 байта, в которых содержится информация о номере виртуальной сети (vlan), и информация о приоритете.
Таким образом, заголовок приобретает следующий вид:
Preamble |
SFD |
DA Адрес назначения |
SA Адрес Источника |
Ether |
Метка |
Type/Length |
Data Данные |
FCS Контр. сумма |
|
7 байт |
1 байт |
6 байт |
6 байт |
2 байта |
2 байта |
2 байта |
46-1500 байт |
4 байта |
Поле EtherType, TPID (Tagged Protocol Identifier) содержит код 0x8100. Оно соответствует полю тип протокола стандартного поля кадра Ethernet и указывает на необходимость обработки кадра согласно требованиям IEEE 802.1q.
Поле "Метка" надо рассмотреть подробнее:
Приоритет |
CFI |
VLAN ID |
|
3 байта |
1 байт |
12 байт |
Поле приоритета кадра - 3 бита, 1-битовое поле CFI (Canonical Format Identifier) и 12-битовое поле VID (идентификатор виртуальной сети) называются TCI (Tagged Control Information).
Такое решение позволило решить проблемы приоритезации и разделить одну сеть на множество отдельных виртуальных сетей. Т.е. основные проблемы оказались решены.
Однако, тут не обошлось и без проблем. Прежде всего, фрейм ethernet увеличил длину до 1522 октетов, и с 802.1q может корректно работать далеко не всякое старое оборудование (регулируется спецификацией 802.3ас). Да и вообще, нововведение серьезно усложнило коммутаторы - для распознавания тегов о них требуется большая мощность, и для соблюдения приоритетов - несколько очередей в исходящих буферах. А для установки тегов приоритета более того. Способность анализировать более высокие протоколы (например 4-го уровня по модели OSI), и исходя из порта назначения и настроек устанавливать тэги.
Во-вторых, внедрение дополнительных тегов не решило всех проблем Ethernet - количество VLAN ограничено 4096. С приоритетами до сих пор оборудование разных брендов обращается довольно произвольным образом...
Тем не менее, стандарт 802.1q позволил сильно усложнить структуру сетей, и добавил принципиальные возможности. Сейчас без него просто невозможно представить сколь-нибудь большую сеть.
Протокол HDLC
High-Level Data Link Control (HDLC) -- бит-ориентированный протокол канального уровня сетевой модели OSI, разработанный ISO.
Текущим стандартом для HDLC является ISO 13239.
HDLC может быть использован в соединениях с множественным доступом, но в настоящее время в основном используется в соединениях точка-точка с использованием асинхронного сбалансированного режима (ABM).
История
HDLC был разработан на основе протокола SDLC (англ.) фирмы IBM. Его несильно изменённые дочерние протоколы --LAPB (англ.), LAPM (англ.), LAPF (англ.), LAPD (англ.) были встроены ITU соответственно в стеки протоколов X.25, V.42, Frame Relay, ISDN. Также HDLC был базой при разработке кадровых механизмов в протоколе PPP, широко используемом в Интернете.
Типы станций
Первичная (ведущая) станция (Primary terminal) ответственна за управление каналом и восстановление его работоспособности. Она производит кадры команд. В соединениях точка-многоточка поддерживает отдельные связи с каждой из вторичных станций.
Вторичная (ведомая) станция (Secondary terminal) работает под контролем ведущей, отвечая на её команды. Поддерживает только 1 сеанс связи.
Комбинированная станция (Combined terminal) сочетает в себе функции как ведущей, так и ведомой станций. Производит и команды и ответы. Только соединения точка-точка.
Логические состояния
Каждая из станций в каждый момент времени находится в одном из 3 логических состояний :
Состояние логического разъединения (LDS -- Logical Disconnect State)
Если вторичная станция находится в режиме нормального разъединения (NDM), то она может принимать кадры только после получения явного разрешения от первичной. Если же в асинхронном режиме разъединения (ADM), то вторичная станция может самовольно инициировать передачу.
Состояние инициализации (IS -- Initialization State)
Используется для передачи управления на удалённую комбинированную станцию и для обмена параметрами между удалёнными станциями.
Состояние передачи информации (ITS -- Information Transfer State)
Всем станциям разрешено вести передачу и принимать информацию. Станции могут находиться в режимах NRM, ARM, ABM.
Режимы состояния передачи
HDLC поддерживает три режима логического соединения, отличающиеся ролями взаимодействующих устройств:
Режим нормального ответа (Normal Response Mode, NRM) требует инициации передачи в виде явного разрешения на передачу от первичной станции. После использования канала вторичной станцией (ответа на команду первичной), для продолжения передачи она обязана ждать другого разрешения. Для выбора права на передачу первичная станция проводит круговой опрос вторичных. Используется в основном в соединениях точка-многоточка.
Режим асинхронного ответа (Asynchronous Response Mode, ARM) даёт возможность вторичной станции самой инициировать передачу. В основном используется в соединениях типа кольцо и многоточечных с неизменной цепочкой опроса, так как в этих соединениях одна вторичная станция может получить разрешение на передачу от другой вторичной и в ответ начать передачу. То есть разрешение на передачу передаётся по типу маркера (token). За первичной станцией сохраняются обязанности по инициализации линии, определению ошибок передачи и логическому разъединению. Позволяет уменьшить накладные расходы, связанные с началом передачи.
Асинхронный сбалансированный режим (Asynchronous Balanced Mode, ABM) используется комбинированными станциями. Передача может быть инициирована с любой стороны, может происходить в полном дуплексе. В режиме ABM оба устройства равноправны и обмениваются кадрами, которые делятся на кадры-команды и кадры-ответы.
Конфигурации канала
Для обеспечения совместимости между станциями, которые могут менять свой статус(тип), в протоколе HDLC предусмотрены 3 конфигурации канала:
Несбалансированная конфигурация (UN -- Unbalanced Normal) обеспечивает работу 1 первичной и одной или нескольких вторичных станций в (симплексном)полудуплексном и полнодуплексном режимах, с коммутируемым или некоммутируемым каналом.
Симметричная конфигурация (UA -- Unbalanced Asynchronous) обеспечивает взаимодействие двух двухточечных несбалансированных станций. Используется 1 канал передачи, в который мультиплексируются и команды и ответы. В данное время не используется.
Сбалансированная конфигурация (BA -- Balanced Asynchronous) состоит из 2 комбинированных станций. Передача в(симплексном) полудуплексном и полнодуплексном режимах, с коммутируемым или некоммутируемым каналом. Каждая станция несёт одинаковую ответственность за управление каналом.
Кадры
Кадры HDLC можно передавать, используя синхронные и асинхронные соединения. В самих соединениях нет механизмов определения начала и конца кадра, для этих целей используется уникальная в пределах протокола битовая последовательность (FD -- Frame Delimiter) '01111110'(0x7E в шестнадцатеричном представлении), помещаемая в начало и конец каждого кадра. Уникальность флага гарантируется использованием битстаффинга в синхронных соединениях и байтстаффинга в асинхронных. Битстаффинг -- вставка битов, здесь -- бита 0 после 5 подряд идущих битов 1. Битстаффинг работает только во время передачи информационного поля (поля данных) кадра. Если передатчик обнаруживает, что передано подряд пять единиц, то он автоматически вставляет дополнительный ноль в последовательность передаваемых битов (даже если после этих пяти единиц и так идёт ноль). Поэтому последовательность 01111110 никогда не появится в поле данных кадра. Аналогичная схема работает в приемнике и выполняет обратную функцию. Когда после пяти единиц обнаруживается ноль, он автоматически удаляется из поля данных кадра. В байтстаффинге используется escape-последовательность, здесь -- '01111101'(0x7D в шестнадцатеричном представлении), то есть байт FD(0x7E) в середине кадра заменяется последовательностью байтов (0x7D, 0x5E), а байт (0x7D) -- последовательностью байтов (0x7D, 0x5D).
Во время простоя среды передачи при синхронном соединении последовательность 0x7E ('01111110') постоянно передаётся по каналу для поддержания битовой синхронизации. Может иметь место совмещение последнего бита 0 одного флага и начального бита 0 следующего. Время простоя также называется межкадровым временнымм заполнением.
модель стандарт данный сетевой
Источники:
http://files.school-collection.edu.ru/dlrstore/a06edd6f-0ba8-4f53-974c-ec13b32bf308/model_ISO-OSI.htm
http://www.on-lan.ru/ch9-5.html
http://ru.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D1%83%D1%80%D0%BE%D0%B2%D0%B5%D0%BD%D1%8C
http://ru.wikipedia.org/wiki/HDLC
Размещено на www.allbest.
...Подобные документы
Описание основных типов станций протокола HDLC. Нормальный, асинхронный и сбалансированный режимы работы станции в состоянии передачи информации. Методы управления потоком данных. Формат и содержание информационного и управляющего полей протокола HDLC.
лабораторная работа [77,1 K], добавлен 02.10.2013Распространенные сетевые протоколы и стандарты, применяемые в современных компьютерных сетях. Классификация сетей по определенным признакам. Модели сетевого взаимодействия, технологии и протоколы передачи данных. Вопросы технической реализации сети.
реферат [22,0 K], добавлен 07.02.2011Базовые технологии, протоколы и стандарты построения локальных и глобальных сетей. Протоколы передачи данных в телекоммуникационных системах. Стеки коммуникационных протоколов, линии связи, стандарты кабелей, коаксиальные и волоконно-оптические кабели.
курсовая работа [47,9 K], добавлен 15.07.2012Модели и протоколы передачи данных. Эталонная модель OSI. Стандартизация в области телекоммуникаций. Стеки протоколов и стандартизация локальных сетей. Понятие открытой системы. Internet и стек протоколов TCP/IP. Взаимодействие открытых систем.
дипломная работа [98,9 K], добавлен 23.06.2012Понятие, особенности и уровни промышленных сетей. Сравнение протоколов передачи данных HART, Industrial Ethernet, Foundation Filedbus, CAN, Modbus, их достоинства и недостатки. Физический и канальный уровни сети Profibus. Распределение функций управления.
презентация [812,9 K], добавлен 29.11.2013Структура современных корпоративных сетей. Применение технологии Intranet в корпоративных сетях передачи данных. Принципы их построения и главные тенденции развития. Особенности стандартов Fast Ethernet и Gigabit Ethernet. Технология 100VG-AnyLAN.
курсовая работа [1,5 M], добавлен 02.07.2011Официальные международные организации, выполняющие работы по стандартизации информационных сетей, протоколы IP, ARP, RARP, семиуровневая модель OSI. TCP/IP, распределение протоколов по уровням ISO в локальных и в глобальных сетях, разделение IP-сетей.
шпаргалка [50,0 K], добавлен 24.06.2010Разработка Ethernet как пакетной технологии передачи данных преимущественно локальных компьютерных сетей. Особенности операционной системы как части системного программного обеспечения. Применение в глобальных технологиях Asynchronous Transfer Mode.
курсовая работа [453,7 K], добавлен 01.02.2015Взаимодействие компьютеров, работающих в сетях разнообразной структуры, с использованием различного программного обеспечения. Стандарты беспроводной передачи данных. Стандарты проводных ethernet-сетей. Нормы технической организации компьютерных сетей.
реферат [28,3 K], добавлен 26.05.2015Особенности проектирования и анализ современных информационных локальных и глобальных вычислительных сетей. Проведение настройки виртуальной локальной вычислительной сети (VLAN), HTTP и DNS серверов, сетевых протоколов OSPF, RIP, STP, технологий NAT.
курсовая работа [182,1 K], добавлен 16.01.2014Периоды развития и основные стандарты современных беспроводных сетей. История появления и области применения технологии Bluetooth. Технология и принцип работы технологии беспроводной передачи данных Wi-Fi. WiMAX - стандарт городской беспроводной сети.
презентация [1,9 M], добавлен 22.01.2014Понятие и функциональные особенности Ethernet как пакетной технологии передачи данных преимущественно локальных компьютерных систем. Стандарты данной системы и основные требования, предъявляемые к ней. Структура и взаимосвязь элементов, принцип работы.
лекция [166,9 K], добавлен 15.04.2014Технология построения сетей передачи данных. Правила алгоритма CSMA/CD для передающей станции. Анализ существующей сети передачи данных предприятия "Минские тепловые сети". Построение сети на основе технологии Fast Ethernet для административного здания.
дипломная работа [2,5 M], добавлен 15.02.2013Горизонтальные и вертикальные протоколы модели OSI. Типы данных: сегмент, пакет, кадр, бит. Прикладной, транспортный, сетевой и представительский уровень: понятие, главные особенности. Основные функции сетевого адаптера и последовательного порта.
лекция [177,1 K], добавлен 15.04.2014Топологии компьютерных сетей. Методы доступа к каналам связи. Среды передачи данных. Структурная модель и уровни OSI. Протоколы IP и TCP, принципы маршрутизации пакетов. Характеристика системы DNS. Создание и расчет компьютерной сети для предприятия.
курсовая работа [2,3 M], добавлен 15.10.2010Элементы коммуникационной сети. Сетевое сообщение согласно модели ISO. Уровни сетевых протоколов. Устойчивость сетей к ошибкам, их обнаружение и реконфигурация. Задачи проектирования. Функционирование сети Ethernet, структура пакета. Схема работы GPRS.
лекция [1,7 M], добавлен 24.01.2014Достоинства компьютерных сетей. Основы построения и функционирования компьютерных сетей. Подбор сетевого оборудования. Уровни модели OSI. Базовые сетевые технологии. Осуществление интерактивной связи. Протоколы сеансового уровня. Среда передачи данных.
курсовая работа [2,7 M], добавлен 20.11.2012Стандарты технологии Ethernet. Поддержка в коммерческих продуктах. Оптический транспорт с поддержкой 100-гигабит. Преимущества использования витой пары по сравнению с коаксиальным кабелем. Новый стандарт 10-гигабитного Ethernet, перспективы его развития.
курсовая работа [317,0 K], добавлен 06.04.2014Центральные магистрали передачи данных. Улучшение параметров мультисервисной сети за счет использования имитационного моделирования. Сети с трансляцией ячеек и с установлением соединения. Коммутация в сети Ethernet. Многоуровневая модель протоколов.
курсовая работа [2,3 M], добавлен 25.06.2014Концепция построения, назначение и типы компьютерных сетей. Архитектура локальной сети Ethernet. Обзор и анализ сетевого оборудования и операционных систем. Обоснование выбора аппаратно-программной платформы. Принципы и методы проектирования ЛВС Ethernet.
дипломная работа [162,5 K], добавлен 24.06.2010