Геоинформационная система

Современные геоинформационные системы как новый тип интегрированных информационных систем. Особенности организации данных в геоинформационных системах. Связи между географической и атрибутивной информацией. Процессы сбора, обработки и вывода данных.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 27.12.2012
Размер файла 578,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Геоинформационная система

1. Общая характеристика ГИС

Современные геоинформационные системы (ГИС) представляют собой новый тип интегрированных информационных систем, которые, с одной стороны, включают методы обработки данных многих ранее существовавших автоматизированных систем (АС), с другой - обладают спецификой в организации и обработке данных. Практически это определяет ГИС как многоцелевые, многоаспектные системы.

На основе анализа целей и задач различных ГИС, функционирующих в настоящее время, более точным следует считать определение ГИС как геоинформационных систем, а не как географических информационных систем. Это обусловлено и тем, что процент чисто географических данных в таких системах незначителен, технологии обработки данных имеют мало общего с традиционной обработкой географических данных и, наконец, географические данные служат лишь базой решения большого числа прикладных задач, цели которых далеки от географии.

Итак, ГИС - автоматизированная информационная система, предназначенная для обработки пространственно-временных данных, основой интеграции которых служит географическая информация.

В ГИС осуществляется комплексная обработка информации - от ее сбора до хранения, обновления и представления, в связи с этим следует рассмотреть ГИС с различных позиций.

Как системы управления ГИС предназначены для обеспечения принятия решений по оптимальному управлению землями и ресурсами, городским хозяйством, по управлению транспортом и розничной торговлей, использованию океанов или других пространственных объектов. При этом для принятия решений в числе других всегда используют картографические данные.

В отличие от автоматизированных систем управления (АСУ) в ГИС появляется множество новых технологий пространственного анализа данных. В силу этого ГИС служат мощным средством преобразования и синтеза разнообразных данных для задач управления.

Как автоматизированные информационные системы ГИС объединяют ряд технологий или технологических процессов известных информационных систем типа автоматизированных систем научных исследований (АСНИ), систем автоматизированного проектирования (САПР), автоматизированных справочно-информационных систем (АСИС) и др. Основу интеграции технологий ГИС составляют технологии САПР. Поскольку технологии САПР достаточно апробированы, это, с одной стороны, обеспечило качественно более высокий уровень развития ГИС, с другой - существенно упростило решение проблемы обмена данными и выбора систем технического обеспечения. Этим самым ГИС стали в один ряд с автоматизированными системами общего назначения типа САПР, АСНИ, АСИС.

Как геосистемы ГИС включают технологии (прежде всего технологии сбора информации) таких систем, как географические информационные системы, системы картографической информации (СКИ), автоматизированные системы картографирования (АСК), автоматизированные фотограмметрические системы (АФС), земельные информационные системы (ЗИС), автоматизированные кадастровые системы (АКС) и т.п.

Как системы, использующие базы данных, ГИС характеризуются широким набором данных, собираемых с помощью разных методов и технологий. При этом следует подчеркнуть, что они объединяют в себе как базы данных обычной (цифровой) информации, так и графические базы данных. В связи с большим значением экспертных задач, решаемых при помощи ГИС, возрастает роль экспертных систем, входящих в состав ГИС.

Как системы моделирования ГИС используют максимальное количество методов и процессов моделирования, применяемых в других автоматизированных системах.

Как системы получения проектных решений ГИС во многом применяют методы автоматизированного проектирования и решают ряд специальных проектных задач, которые в типовом автоматизированном проектировании не встречаются.

Как системы представления информации ГИС являются развитием автоматизированных систем документационного обеспечения (АСДО) с использованием современных технологий мультимедиа. Это определяет большую наглядность выходных данных ГИС по сравнению с обычными географическими картами. Технологии вывода данных позволяют оперативно получать визуальное представление картографической информации с различными нагрузками, переходить от одного масштаба к другому, получать атрибутивные данные в табличной или графовой форме.

Как интегрированные системы ГИС являют собой пример объединения различных методов и технологий в единый комплекс, созданный при интеграции технологий на базе технологий САПР и интеграции данных на основе географической информации.

Как прикладные системы ГИС не имеют себе равных по широте применения, так как используются на транспорте, в навигации, геологии, географии, военном деле, топографии, экономике, экологии и т.д. Благодаря широким возможностям ГИС на их основе интенсивно развивается тематическое картографирование.

Как системы массового пользования ГИС позволяют применять картографическую информацию на уровне деловой графики, что делает их доступными любому школьнику или бизнесмену, не только специалисту географу. Именно поэтому при принятии решений на основе ГИС-технологий не всегда создают карты, но всегда используют картографические данные.

Как уже говорилось, в ГИС используются технологические достижения и решения, применимые в таких автоматизированных системах как АСНИ, САПР, АСИС, экспертных системах. Следовательно, моделирование в ГИС носит наиболее сложный характер по отношению к другим автоматизированным системам. Но с другой стороны, процессы моделирования в ГИС и в какой-либо из вышеприведенных АС весьма близки.

АСУ полностью интегрирована в ГИС и может быть рассмотрена как подмножество этой системы.

На уровне сбора информации технологии ГИС включают в себя отсутствующие в АСУ методы сбора пространственно-временных данных, технологии использования навигационных систем, технологии реального масштаба времени, и т.д.

На уровне хранения и моделирования дополнительно к обработке социально-экономических данных (как и в АСУ) технологии ГИС включают в себя набор технологий пространственного анализа, применение цифровых моделей и видеобаз данных, а также комплексный подход к принятию решений.

На уровне представления ГИС дополняет технологии АСУ применением интеллектуальной графики (представление картографических данных в виде карт, тематических карт или на уровне деловой графики), что делает ГИС более доступными и понятными по сравнению с АСУ для бизнесменов, работников управления, работников органов государственной власти и т.д.

Таким образом, в ГИС принципиально решаются все задачи, выполняемые прежде в АСУ, но на более высоком уровне интеграции и объединения данных. Следовательно, ГИС можно рассматривать как новый современный вариант автоматизированных систем управления, использующих большее число данных и большее число методов анализа и принятия решений, причем в первую очередь использующих методы пространственного анализа.

Дополнительные возможности ГИС по сравнению с АСУ по основным уровням обработки данных.

Рис. 1

2. Особенности организации данных в ГИС

ГИС использует разнообразные данные об объектах, характеристиках земной поверхности, информацию о формах и связях между объектами, различные описательные сведения.

Для того чтобы полностью отобразить геообъекты реального мира и все их свойства, понадобилась бы бесконечно большая база данных. Поэтому, используя приемы генерализации и абстракции, необходимо свести множество данных к конечному объему, легко поддающемуся анализу и управлению. Это достигается применением моделей, сохраняющих основные свойства объектов исследования и не содержащих второстепенных свойств. Поэтому первым этапом разработки ГИС или технологии ее применения является обоснование выбора моделей данных для создания информационной основы ГИС.

Выбор метода организации данных в геоинформационной системе, и, в первую очередь, модели данных, т.е. способа цифрового описания пространственных объектов, определяет многие функциональные возможности создаваемой ГИС и применимость тех или иных технологий ввода. От модели зависит как пространственная точность представления визуальной части информации, так и возможность получения качественного картографического материала и организации контроля цифровых карт. От способа организации данных в ГИС очень сильно зависит производительность системы, например, при выполнении запроса к базе данных или рендеринге (визуализации) на экране монитора.

Ошибки в выборе модели данных могут сказаться решающим образом на возможности реализации в ГИС необходимых функций и расширения их списка в будущем, эффективности выполнения проекта с экономической точки зрения. От выбора модели данных напрямую зависит ценность формируемых баз данных географической и атрибутивной информации.

Уровни организации данных можно представить в виде пирамиды, рис. 2. Модель данных - это концептуальный уровень организации данных. Термины, типа «полигон», «узел», «линия», «дуга», «идентификатор», «таблица» как раз относятся к этому уровню, в равной степени, как и понятия «тема» и «слой».

Рис. 2. Уровни организации данных в ГИС

Более подробное рассмотрение организации данных часто называется структурой данных. В структуре фигурируют математические и программистские термины, такие как «матрица», «список», «система ссылок», «указатель», «способ сжатия информации». На следующем по детальности уровне организации данных специалисты имеют дело со структурой файлов данных и их непосредственными форматами. Уровень организации конкретной БД является уникальным для каждого проекта.

ГИС, впрочем, как и любая другая информационная система, обладает развитыми средствами обработки и анализа входящих данных с целью дальнейшей их реализации в вещественной форме. На рис. 3. представлена схема аналитической работы ГИС. На первом этапе производится «коллекционирование» как географической (цифровые карты, изображения), так и атрибутивной информации. Собранные данные являются наполнением двух баз данных. Первая БД хранит картографические данные, вторая же наполнена информацией описательного характера.

На втором этапе система обработки пространственных данных обращается к базам данных для проведения обработки и анализа востребованной информации. При этом весь процесс контролируется системой управления БД (СУБД), с помощью которой можно осуществлять быстрый поиск табличной и статистической информации. Конечно, главным результатом работы ГИС являются разнообразные карты.

Для организации связи между географической и атрибутивной информацией используют четыре подхода взаимодействия. Первый подход - геореляционный или, как его еще называют, гибридный. При таком подходе географические и атрибутивные данные организованы по-разному. Между двумя типами данных связь осуществляется посредством идентификатора объекта. Как видно из рис. 3., географическая информация хранится отдельно от атрибутивной в своей БД. Атрибутивная информация организована в таблицы под управлением реляционной СУБД.

Схематическое представление процессов сбора, обработки, анализа и вывода данных в ГИС.

геоинформационный атрибутивный обработка система

Рис. 3

Следующий подход называется интегрированным. При этом подходе предусматривается использование средств реляционных СУБД для хранения как пространственной, так и атрибутивной информации. В этом случае ГИС выступает в качестве надстройки над СУБД.

Третий подход называют объектным. Плюсы этого подхода в легкости описания сложных структур данных и взаимоотношений между объектами. Объектный подход позволяет выстраивать иерархические цепочки объектов и решать многочисленные задачи моделирования.

В последнее время самое широкое распространение получил объектно-реляционный подход, являющийся синтезом первого и третьего подходов.

Следует отметить, что в ГИС выделяют несколько форм представления объектов:

1. В виде нерегулярной сети точек;

2. В виде регулярной сети точек;

3. В виде изолиний.

Представление в виде нерегулярной сети точек - это произвольно расположенные точечные объекты, в качестве атрибутов имеющие какое-то значение в данной точке поля. Пример такой формы представления данных показан на рис. 4.

Пример формы представления объектов в виде нерегулярной сети точек.

Рис. 4

Представление в виде регулярной сети точек - это равномерно расположенные в пространстве точки достаточной густоты. Регулярную сеть точек можно получать интерполяцией из нерегулярных либо путем проведения измерений по регулярной сети.

Наиболее распространенной формой представления в картографии является представление изолиниями. Недостатком данного представления является то, что обычно нет никакой информации о поведении объектов, находящихся между изолиниями. Данный способ представления является не самым удобным для анализа. На рис. 5. приведен пример этой формы представления.

Пример формы представления объектов в виде изолиний

Рис. 5

Рассмотрим модели организации пространственных данных в ГИС.

Самой распространенной моделью организации данных является слоевая модель, рис. 6. Суть модели в том, что осуществляется деление объектов на тематические слои и объекты, принадлежащие одному слою. Получается так, что объекты отдельного слоя сохраняются в отдельный файл, имеют свою систему идентификаторов, к которой можно обращаться как к некоторому множеству. Как видно из рис. 6, в отдельные слои вынесены индустриальные районы, торговые центры, автобусные маршруты, дороги, участки учета населения. Часто один тематический слой делится еще и по горизонтали - по аналогии с отдельными листами карт. Это делается для удобства администрирования БД и во избежание работы с большими файлами данных.

Пример слоевой организации данных

В рамках слоевой модели существует две конкретных реализации: векторно-топологическая и векторно-нетопологическая модели.

Рис. 6

Первая реализация - векторно-топологическая, рис. 7. В этой модели есть ограничения: в один лист одного тематического слоя можно поместить объекты не всех геометрических типов одновременно. К примеру, в системе ARC/INFO в одном покрытии можно поместить или только точечные или только линейные, или полигональные объекты, либо их комбинации, исключая случай «точечные полигональные» и три типа объектов сразу.

Векторно-топологическая модель организации данных

Рис. 7

Векторно-нетопологическая модель организации данных - это более гибкая модель, но часто в один слой помещаются только объекты одного геометрического типа. Число слоев при слоевой организации данных может быть весьма большим и зависит от конкретной реализации. При слоевой организации данных удобно манипулировать большими группами объектов, представленных слоями как единым целым. Например, можно включать и выключать слои для визуализации, определять операции, основанные на взаимодействии слоев.

Следует отметить, что слоевая модель организации данных абсолютно преобладает в растровой модели данных.

Наряду со слоевой моделью используют объектно-ориентированную модель. В этой модели используется иерархическая сетка (топографический классификатор), рис. 8.

Пример топографического классификатора

Рис. 8

В объектно-ориентированной модели акцент делается на положение объектов в какой-либо сложной иерархической схеме классификации и на взаимоотношения между объектами. Этот подход менее распространен, чем слоевая модель по причине трудности организации всей системы взаимосвязей между объектами.

Как говорилось выше, информация в ГИС хранится в географической и атрибутивной базах данных. Рассмотрим принципы организации информации на примере векторной модели представления пространственных данных.

Любой графический объект можно представить как семейство геометрических примитивов с определенными координатами вершин, которые могут исчисляться в любой системе координат. Геометрические примитивы в разных ГИС различаются, но базовыми являются точка, линия, дуга, полигон. Расположение точечного объекта, например, угольной шахты, можно описать парой координат (x, y). Такие объекты, как река, водопровод, железная дорога описываются набором координат (x1, y2; …; xn, yn), рис. 9. Площадные объекты типа речных бассейнов, сельхоз угодий или избирательных участков представляются в виде замкнутого набора координат (x1, y1; … xn, yn; x1, y1). Векторная модель наиболее пригодна для описания отдельных объектов и менее всего подходит для отражения непрерывно изменяющихся параметров.

Пример использования векторной модели для описания геообъектов.

Рис. 9

Кроме координатной информации об объектах в географической БД может храниться информация о внешнем оформлении этих объектов. Это может быть толщина, цвет и тип линий, тип и цвет штриховки полигонального объекта, толщина, цвет и тип его границ. Каждому геометрическому примитиву сопоставляется атрибутивная информация, описывающая его количественные и качественные характеристики. Она хранится в полях табличных баз данных, которые предназначены для хранения информации разных типов: текстовая, числовая, графическая, видео, аудио. Семейство геометрических примитивов и его атрибутов (описаний) образует простой объект.

Современные объектно-ориентированные ГИС работают с целыми классами и семействами объектов, что позволяет пользователю получать более полное представление о свойствах этих объектов и присущих им закономерностях.

Взаимосвязь между изображением объекта и его атрибутивной информацией возможна посредством уникальных идентификаторов. Они в явной или неявной форме существуют в любой ГИС.

Во многих ГИС пространственная информация представляется в виде отдельных прозрачных слоев с изображениями географических объектов. Размещение объектов на слоях зависит в каждом отдельном случае от особенностей конкретной ГИС, а также особенностей решаемых задач. В большинстве ГИС информацию на отдельном слое составляют данные из одной таблицы БД. Бывает, что слои образуются из объектов, составленных из однородных геометрических примитивов. Это могут быть слои с точечными, линейными или площадными географическими объектами. Иногда слои создаются по определенным тематическим свойствам объектов, например, слои железнодорожных линий, слои водоемов, слои природных ископаемых. Практически любая ГИС позволяет пользователю управлять слоями. Основные управляющие функции - это видимость / невидимость слоя, редактируемость, доступность. Кроме всего, пользователь может увеличивать информативность цифровой карты путем вывода на экран значений атрибутов пространственных. Многие ГИС используют растровые изображения в качестве фундаментального слоя для векторных слоев, что также повышает наглядность изображения.

3. Методы и технологии моделирования в ГИС

В ГИС можно выделить четыре основные группы моделирования:

1. Семантическое - на уровне сбора информации;

2. Инвариантное - основа представления карт, за счёт использования специальных библиотек, например библиотек условных знаков и библиотек графических элементов;

3. Эвристическое - общение пользователя с ЭВМ на основе сценария, учитывающего технологические особенности программного обеспечения и особенности обработки данной категории объектов (занимает ведущее место при интерактивной обработке и в процессах контроля и коррекции);

4. Информационное - создание и преобразование разных форм информации в вид, задаваемый пользователем (является основным в подсистемах документационного обеспечения).

При моделировании в ГИС можно выделить следующие программно-технологические блоки:

1. Операции преобразования форматов и представления данных. Имеют важное значение для ГИС как средство обмена данными с другими системами. Преобразование форматов осуществляется с помощью специальных программ-конверторов (AutoVEC, WinGIS, ArcPress).

2. Проекционные преобразования. Осуществляют переход от одной картографической проекции к другой или от пространственной системы к картографической проекции. Как правило, иностранные программные средства не поддерживают напрямую распространённые в нашей стране проекции, а информацию о типе проекции и её параметрах получить довольно сложно. Это определяет преимущество отечественных разработок ГИС, содержащих наборы нужных проекционных преобразований. С другой стороны, широко распространённые в России разнообразные методы работы с пространственными данными нуждаются в анализе и классификации.

3. Геометрический анализ. Для векторных моделей ГИС это операции определения расстояний, длин ломаных линий, поиска точек пересечения линий; для растровых - операции идентификации зон, расчёта площадей и периметра зон.

4. Оверлейные операции: наложение разноимённых слоёв с генерацией производных объектов и наследованием их атрибутов.

5. Функционально-моделирующие операции:

1. расчёт и построение буферных зон (применяются в транспортных системах, лесном хозяйстве, при создании охранных зон вокруг озёр, при определении зон загрязнения вдоль дорог);

2. анализ сетей (позволяют решать оптимизационные задачи на сетях - поиск путей, аллокация, районирование);

3. генерализация (предназначены для отбора и отображения картографических объектов соответственно масштабу, содержанию и тематической направленностью);

4. цифровое моделирование рельефа (заключается в построении модели базы данных, наилучшим образом отображающей рельеф исследуемой местности).

4. Информационная безопасность в ГИС

Комплексная система защиты информации должна строиться с учетом четырех уровней любой информационной системы (ИС), в т.ч. и геоинформационной системы:

1. Уровень прикладного программного обеспечения (ПО), отвечающий за взаимодействие с пользователем. Примером элементов ИС, работающих на этом уровне, можно назвать текстовый редактор WinWord, редактор электронных таблиц Excel, почтовая программа Outlook, броузер Internet Explorer и т.д.

2. Уровень системы управления базами данных (СУБД), отвечающий за хранение и обработку данных информационной системы. Примером элементов ИС, работающих на этом уровне, можно назвать СУБД Oracle, MS SQL Server, Sybase и даже MS Access.

3. Уровень операционной системы (ОС), отвечающий за обслуживание СУБД и прикладного программного обеспечения. Примером элементов ИС, работающих на этом уровне, можно назвать ОС Microsoft Windows NT, Sun Solaris, Novell Netware.

4. Уровень сети, отвечающий за взаимодействие узлов информационной системы. Примером элементов ИС, работающих на этом уровне, можно назвать протоколы TCP/IP, IPS/SPX и SMB/NetBIOS.

Система защиты должна эффективно функционировать на всех этих уровнях. Иначе злоумышленник сможет реализовать ту или иную атаку на ресурсы ГИС. Например, для получения несанкционированного доступа к информации о координатах карт в базе данных ГИС злоумышленники могут попытаться реализовать одну из следующих возможностей:

1. Прочитать записи БД из MS Query, который позволяет получать доступ к записям многих СУБД при помощи механизма ODBC или SQL-запросов (уровень прикладного ПО).

2. Прочитать нужные данные средствами самой СУБД (уровень СУБД).

3. Прочитать файлы базы данных непосредственно на уровне операционной системы.

4. Отправить по сети пакеты со сформированными запросами на получение необходимых данных от СУБД или перехватить эти данные в процессе их передаче по каналам связи (уровень сети).

Для того, чтобы нельзя было реализовать ту или иную атаку, необходимо своевременно обнаружить и устранить уязвимости информационной системы. Причем на всех 4 уровнях. Помочь в этом могут средства анализа защищенности (security assessment systems) или сканеры безопасности (security scanners). Эти средства могут обнаружить и устранить тысячи уязвимостей на десятках и сотнях узлов, в т.ч. и удаленных на значительные расстояния.

Совокупность применения различных средств защиты на всех уровнях ГИС позволит построить эффективную и надежную систему обеспечения информационной безопасности геоинформационной системы. Такая система будет стоять на страже интересов и пользователей, и сотрудников компании-провайдера ГИС-услуг. Она позволит снизить, а во многих случаях и полностью предотвратить, возможный ущерб от атак на компоненты и ресурсы системы обработки картографической информации.

Список литературы

1. Геоинформатика / Иванников А.Д., Кулагин В.П., Тихонов А.Н. и др. М.: МАКС Пресс, 2001.349 с.

2. Замай С.С., Якубайлик О.Э. Программное обеспечение и технологии геоинформационных систем: Учеб. пособие / Краснояр. гос. ун-т. Красноярск, 1998. 110 с.

3. Кольцов А.С. Геоинформационные системы: учеб. пособие /А.С. Кольцов, Е.Д. Федорков. Воронеж: ГОУВПО «Воронежский государственный технический университет», 2006. 203 с.

4. Трифонова Т.А., Мищенко Н.В., Краснощеков А.Н. Геоинформационные системы и дистанционное зондирование в экологических исследованиях: Учебное пособие для вузов. - М.: Академический проект, 2005. 352 с.

5. Цветков В.Я. Геоинформационные системы и технологии. - М.: Финансы и статистика, 1998. 288 с.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.