Протоколы обмена ключами

Характеристика протоколов обмена ключами Диффи-Хэллмана, Kerberos и других протоколов аутентификации с помощью центра распространения ключей, которые позволяют решить проблему распространения ключей в сети. Криптографическая стойкость алгоритма.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 13.01.2013
Размер файла 30,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Министерство образования и науки Российской Федерации.

Государственное образовательное учреждение высшего профессионального образования

Дальневосточный Федеральный университет

Кафедра информационной безопасности

КУРСОВАЯ РАБОТА

по дисциплине: «Информатика»

на тему: «Протоколы обмена ключами»

Выполнил:

Студент: Пинчук А. Ю.

Группа: С-8423

Проверил: Кузнецов А. С.

2012

СОДЕРЖАНИЕ

протокол ключ аутентификация криптографическая

1. ВВЕДЕНИЕ

2. ПРОТОКОЛ ОБМЕНА КЛЮЧАМИ ДИФФИ -- ХЭЛЛМАНА

2.1 История

2.2 Описание алгоритма

2.3 Криптографическая стойкость алгоритма

3. АУТЕНТИФИКАЦИЯ С ПОМОЩЬЮ ЦЕНТРА РАСПРОСТРАНЕНИЯ КЛЮЧЕЙ

4. ПРОТОКОЛ АУТЕНТИФИКАЦИИ KERBEROS

4.1 Описание и ранние версии протокола

4.2 Kerberos 4

4.3 Kerberos 5

4.4 Использование и распространение

5. ЗАКЛЮЧЕНИЕ

6. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. ВВЕДЕНИЕ

При симметричном шифровании два участника, которые хотят обмениваться конфиденциальной информацией, должны иметь один и тот же ключ. Частота изменения ключа должна быть достаточно большой, чтобы у противника не хватило времени для полного перебора ключа. Следовательно, сила любой криптосистемы во многом зависит от технологии распределения ключа. Этот термин означает передачу ключа двум участникам, которые хотят обмениваться данными, таким способом, чтобы никто другой не мог ни подсмотреть, ни изменить этот ключ. Для двух участников А и B распределение ключа может быть выполнено одним из следующих способов.

Ключ может быть создан А и физически передан B.

Третья сторона может создать ключ и физически передать его А и B.

А и В имеют предварительно созданный и недолго используемый ключ, один участник может передать новый ключ другому, применив для шифрования старый ключ.

Если А и В каждый имеют безопасное соединение с третьим участником C, C может передать ключ по этому безопасному каналу А и B.

Первый и второй способы называются ручным распределением ключа. Это самые надежные способы распределения ключа, однако во многих случаях пользоваться ими неудобно и даже невозможно. В распределенной системе любой хост или сервер должен иметь возможность обмениваться конфиденциальной информацией со многими аутентифицированными хостами и серверами. Таким образом, каждый хост должен иметь набор ключей, поддерживаемый динамически. Проблема особенно актуальна в больших распределенных системах.

Количество требуемых ключей зависит от числа участников, которые должны взаимодействовать. Если выполняется шифрование на сетевом или IP-уровне, то ключ необходим для каждой пары хостов в сети. Таким образом, если есть N хостов, то необходимое число ключей [N (N - 1)]/2. Если шифрование выполняется на прикладном уровне, то ключ нужен для каждой пары прикладных процессов, которых гораздо больше, чем хостов.

Третий способ распределения ключей может применяться на любом уровне стека протоколов, но если атакующий получает возможность доступа к одному ключу, то вся последовательность ключей будет раскрыта. Более того, все равно должно быть проведено первоначальное распространение большого количества ключей.

В данной курсовой работе будут рассмотрены: протокол обмена ключами Диффи-Хэллмана, протокол Kerberos и другие протоколы аутентификации с помощью центра распространения ключей, которые позволяют решить проблему распространения ключей в сети.

2. ПРОТОКОЛ ОБМЕНА КЛЮЧАМИ ДИФФИ -- ХЭЛЛМАНА

2.1 История

Схема обмена ключами Диффи -- Хеллмана, изобретённая в 1976 году при сотрудничестве Уитфилда Диффи и Мартина Хеллмана, под сильным влиянием работы Ральфа Меркля о системе распространения публичных ключей, стала первым практическим методом для получения общего секретного ключа при общении через незащищенный канал связи. Для обеспечения устойчивости, по совету Джона Гилла (John Gill), была использована проблема дискретного логарифмирования.

Годом позже был изобретен первый алгоритм асимметричного шифрования RSA, который решил проблему общения через незащищённый канал кардинально.

В 2002 году Мартин Хеллман писал:

«Эта система … с тех пор известна под названием алгоритма Диффи -- Хеллмана. Однако, когда система была впервые описана на бумаге Диффи и мной, это была система распространения публичных ключей, концепция которой была выработана Мерклем, и поэтому она должна называться „алгоритмом Диффи -- Хеллмана -- Меркля“, если её связывают с именами. Я надеюсь что это небольшое изменение поможет признанию равного вклада Меркля в изобретение криптографии с открытыми ключами.»

В патенте U.S. Patent 4 200 770 (в настоящее время истекшем), описывающем данный алгоритм, изобретателями значатся Хеллман, Диффи и Меркль.

В декабре 1997 года была обнародована информация, что в 1974 году Малькольм Вильямсон изобрел математический алгоритм, основанный на коммутативности показателей при последовательном возведении в степень (то есть, (b^x)^y = (b^y)^x = b^{xy}), аналогичный алгоритму Диффи-Хеллмана.

2.2 Описание алгоритма

Алиса и Боб хотят передать зашифрованную информацию. Для этого им нужен, известный обоим секретный ключ. Как им его получить? Алиса может позвонить Бобу и передать ему ключ по телефону, но он, возможно, спросит: «Как вы докажете, что вы -- Алиса, а не злоумышленник?» Они могут попытаться организовать встречу, на которую каждый придет с паспортом, водительскими правами и тремя кредитными картами, но, будучи занятыми людьми, они, возможно, не смогут найти устраивающую обоих дату встречи в течение нескольких месяцев. К счастью, существует способ для совершенно незнакомых людей установить общий секретный ключ средь бела дня, даже если злоумышленник старательно записывает каждое сообщение. Протокол, позволяющий не встречавшимся ранее людям устанавливать общий секретный ключ, называется протоколом обмена ключами Диффи--Хеллмана (Diffie и Hellman, 1976) и работает следующим образом. Алиса и Боб договариваются о двух больших простых числах, n и g, где (n - 1)/2 также является простым числом, кроме того, на число g накладываются некоторые дополнительные условия. Эти числа могут быть открытыми, поэтому каждый из них может просто выбрать n и g и открыто сообщить о них другому. Затем Алиса выбирает большое (например, 512-разрядное) число х и держит его в секрете. Аналогично, Боб выбирает большое секретное число у. Алиса начинает протокол обмена ключами с того, что посылает Бобу сообщение, содержащее (n, g, gx mod n), как показано на рисунке 2.1. Боб отвечает Алисе сообщением, содержащим g mod n. Теперь Алиса берет число, присланное ей Бобом, и возводит его в степень х, получая (gy mod n)x . Боб выполняет подобные вычисления и получает (gx mod n)y. В соответствии с законами арифметики оба вычисления должны быть равны gxy mod n. Таким образом, у Алисы и Боба есть общий секретный ключ gxy mod n..

Конечно, злоумышленник видел оба сообщения. Ему известны значения n и g из первого сообщения. Если бы ему удалось вычислить значения х и у, ему бы удалось получить секретный ключ. Беда в том, что, зная gx mod n и n, найти значение х очень трудно. На сегодняшний день неизвестен алгоритм вычисления дискретного логарифма модуля очень большого простого числа.

Для примера возьмем (совершенно нереальные) значения n = 47 и g = 3. Алиса выбирает значение х = 8, а Боб выбирает у = 10. Оба эти числа хранятся в секрете. Сообщение Алисы Бобу содержит числа (47, 3, 28), так как 38 mod 47 = 28. Боб отвечает Алисе числом 17. Алиса вычисляет 178 mod 47 и получает 4. Боб вычисляет 2810 mod 47 и получает также 4. Таким образом, независимо друг от друга Алиса и Боб определили, что значение секретного ключа равно 4. Злоумышленнику придется решить уравнение 3х mod 47 = 28, что можно сделать путем полного перебора для таких небольших чисел, но только не для чисел длиной в несколько сотен бит. Несмотря на всю элегантность алгоритма Диффи--Хеллмана, имеется одна проблема: когда Боб получит три числа (47, 3, 28), как он сможет удостовериться в том, что они посланы Алисой, а не злоумышленником? Способа узнать это не существует. К сожалению, злоумышленник может воспользоваться этим, чтобы обмануть Алису и Боба. Здесь, пока Алиса с Бобом выбирают значения х и у, злоумышленник выбирает свое случайное число z. Алиса посылает Бобу сообщение 1. Злоумышленник перехватывает его и отправляет вместо него Бобу сообщение 2, используя правильные значения n и g (которые посылались открытым текстом), но со своим значением z вместо х. Он также посылает обратно Алисе сообщение 3. Позднее Боб отправляет Алисе сообщение 4, которое злоумышленник снова перехватывает и хранит у себя. Теперь все занимаются вычислением остатков от деления. Алиса вычисляет значение секретного ключа: gxz mod n. Те же самые вычисления производит злоумышленник (для общения с Алисой). Боб вычисляет gyz mod n, что также делает и злоумышленник (для общения с Бобом). Каждое сообщение, посылаемое Алисой в шифрованном сеансе, перехватывается злоумышленником, сохраняется, изменяется, если это нужно, и отправляется (по желанию злоумышленника) Бобу. То же самое происходит и в обратном направлении. Злоумышленник видит все сообщения и может изменять их по своему усмотрению, в то время как Алиса и Боб полагают, что у них имеется защищенный канал для связи друг с другом. Подобные действия злоумышленника называются атакой типа «человек посередине».

Данный алгоритм может также использоваться в качестве алгоритма шифрования с открытым ключом. В этом случае общая схема остаётся аналогичной приведённой выше, но с небольшими отличиями. Алиса не передаёт значения n, g и (gx mod n) Бобу напрямую, а публикует их заранее в качестве своего открытого ключа. Боб выполняет свою часть вычислений, после чего шифрует сообщение симметричным алгоритмом, используя полученный секретный ключ, и передаёт шифротекст Алисе вместе со значением B. Однако такой подход не получил распространения, в этой области доминирует алгоритм RSA.

2.3 Криптографическая стойкость алгоритма

Криптографическая стойкость алгоритма Диффи -- Хеллмана (то есть сложность вычисления K=gab mod p по известным p, g, A=ga mod p и B=gb mod p), основана на предполагаемой сложности проблемы дискретного логарифмирования. Однако хотя умение решать проблему дискретного логарифмирования позволит взломать алгоритм Диффи -- Хеллмана, обратное утверждение до сих пор является открытым вопросом (другими словами, эквивалентность этих проблем не доказана).

Необходимо отметить, что алгоритм Диффи -- Хеллмана работает только на линиях связи, надёжно защищённых от модификации. Если бы он был применим на любых открытых каналах, то давно снял бы проблему распространения ключей и, возможно, заменил собой всю асимметричную криптографию. Однако, в тех случаях, когда в канале возможна модификация данных, появляется возможность атаки «человек посередине». Атакующий заменяет сообщения переговоров о ключе на свои собственные и таким образом получает два ключа -- свой для каждого из законных участников протокола. Далее он может перешифровывать переписку между участниками, своим ключом для каждого, и таким образом ознакомиться с их сообщениями, оставаясь незамеченным.

3. АУТЕНТИФИКАЦИЯ С ПОМОЩЬЮ ЦЕНТРА РАСПРОСТРАНЕНИЯ КЛЮЧЕЙ

Установка общего секретного ключа с незнакомцем почти удалась, но чтобы общаться с m людьми, вам понадобится хранить n ключей. Для людей, чей круг общения широк, хранение ключей может превратиться в серьезную проблему.

Другой подход состоит в организации доверительного центра распространения ключей (KDC, key distribution center). При такой схеме у каждого пользователя всего один ключ, общий с KDC-центром. Операции с ключами аутентификации и сеансовыми ключами проходят через KDC-центр.

Идея, лежащая в основе протокола, проста: Алиса выбирает ключ сеанса, KS, и заявляет KDC-центру, что она желает поговорить с Бобом при помощи ключа Ks. Это сообщение шифруется секретным ключом КА, которым совместно владеют только Алиса и центр распространения ключей. Центр распространения ключей расшифровывает это сообщение и извлекает из него идентификатор личности Боба и ключ сеанса. Затем он формирует новое сообщение, содержащее идентификатор личности Алисы и ключ сеанса, и посылает его Бобу. Это сообщение зашифровывается ключом Кв -- секретным ключом, общим для Боба и центра распространения ключей. Расшифровав это сообщение, Боб узнает, что Алиса желает с ним поговорить и какой ключ она хочет использовать.

Аутентификация в данном случае происходит сама собой. KDC знает, что сообщение 1 пришло от Алисы, так как больше никто не может зашифровать его секретным ключом Алисы. Аналогично, Боб знает, что сообщение 2 пришло от KDC, так как кроме него их общий секретный ключ никому не известен.

К сожалению, этот протокол содержит серьезную ошибку. Труди нужны деньги, поэтому она придумывает некую легальную услугу, которую она могла бы выполнить для Алисы. Затем Труди делает Алисе заманчивое предложение и получает эту работу. Выполнив ее, Труди вежливо предлагает Алисе оплатить услуги, переведя деньги на ее банковский счет. Чтобы оплатить работу, Алиса устанавливает ключ сеанса со своим банкиром Бобом. Затем она посылает Бобу сообщение с просьбой перевести деньги на счет Труди.

Тем временем Труди возвращается к своим темным делам. Она копирует сообщение 2 (рисунок 3.1) и запрос на перевод денег, следующий за ним. Затем она воспроизводит оба сообщения для Боба. Боб получает их и думает: «Должно быть, Алиса снова наняла Труди. Похоже, она хорошо справляется с работой». Боб перечисляет еще столько же денег со счета Алисы на счет Труди. Получив пятидесятый запрос на перевод денег, Боб выбегает из офиса, чтобы найти Труди и предложить ей большую ссуду, чтобы она могла расширить свой чрезвычайно успешный бизнес. Подобная проблема получила название атаки повторным воспроизведением.

Существует несколько решений этой проблемы. Первое решение состоит в помещении в каждое сообщение временного штампа. Все устаревшие сообщения просто игнорируются. Беда здесь в том, что системные часы в сети синхронизировать с большой степенью точности невозможно, поэтому должен существовать какой-то срок годности временного штампа. Труди может обмануть протокол, послав повторное сообщение во время этого интервала.

Второе решение заключается в помещении в сообщение уникального порядкового номера, обычно называемого нонсом (попсе -- данный случай, данное время). Каждая сторона должна запоминать все предыдущие нонсы и отвергать любое сообщение, содержащее использованный ранее ноне. Однако нонсы должны храниться вечно, иначе Труди попытается воспроизвести сообщение пятилетней давности. Кроме того, если машина потеряет список нонсов в результате сбоя, она снова станет уязвимой к атакам повторным воспроизведением. Можно комбинировать временные штампы и нонсы, чтобы ограничить срок хранения нонсов, но так или иначе, протокол должен быть значительно усложнен.

Более сложный метод аутентификации состоит в использовании многостороннего протокола оклик--отзыв. Хорошо известным примером такого протокола является протокол аутентификации Нидхэма--Шредера, один из вариантов которого показан на рисунке 3.2.

Работа протокола начинается с того, что Алиса сообщает KDC-центру, что она желает поговорить с Бобом. Это сообщение содержит в качестве нонса большое случайное число RA. Центр распространения ключей посылает обратно сообщение 2, содержащее случайное число Алисы, ключ сеанса и так называемый билет, который она может послать Бобу. Цель посылки случайного числа RA состоит в том, чтобы убедить Алису в том, что сообщение 2 является свежим, а не повторно воспроизведенным. Идентификатор Боба также помещается в сообщение 2 на случай, если злоумышленник (Труди) вздумает заменить его идентификатор на свой в сообщении 1, так чтобы KDC-центр зашифровал билет в конце сообщения 2 ключом Кт (ключ Труди) вместо Кв. Билет, зашифрованный ключом Кв, помещается внутри зашифрованного сообщения, чтобы злоумышленник не смог заменить его чем-либо другим, пока сообщение 2 добирается до Алисы.

Затем Алиса посылает билет Бобу вместе с новым случайным числом RA2, зашифрованным ключом сеанса Ks. В сообщении 4 Боб посылает обратно KS(RA2-1), чтобы доказать Алисе, что она разговаривает с настоящим Бобом. Отсылать обратно просто KS(RA2) бессмысленно, так как это число могло быть украдено злоумышленником из сообщения 3.

Получив сообщение 4, Алиса убеждается, что разговаривает с Бобом и что до сих пор не было использовано повторных сообщений. Между отправкой случайного числа RA2 и получением ответа на него в виде Ks(RA2-i) проходит довольно короткий промежуток времени. Цель сообщения 5 -- убедить Боба, что он действительно разговаривает с Алисой и что в этом сеансе связи также отсутствуют повторно воспроизведенные данные. Возможность атаки с помощью повторного воспроизведения ранее записанной информации исключается этим протоколом благодаря тому, что каждая сторона формирует оклик другой стороны и получает на него отзыв.

Несмотря на всю кажущуюся солидность протокола, в нем, тем не менее, имеется небольшое слабое место. Если злоумышленнику удастся каким-либо способом раздобыть старый ключ сеанса Ks, он сможет инициировать новый сеанс с Бобом, повторно воспроизведя сообщение 3 с использованием скомпрометированного ключа, и выдать себя за Алису. На этот раз злоумышленник может украсть деньги со счета Алисы, даже не выполнив никаких услуг.

Позднее Нидхэм и Шредер опубликовали протокол, решающий эту проблему (Needham и Shroeder, 1987). В том же выпуске того же журнала Отуэй (Otway) и Рис (Rees) также опубликовали протокол, решающий эту проблему более коротким путем.

В протоколе Отуэя--Риса Алиса начинает с формирования пары случайных номеров: R, который будет использоваться в качестве общего идентификатора, и RA, который Алиса будет использовать в качестве оклика Боба. Получив это сообщение, Боб формирует новое сообщение из зашифрованной части сообщения Алисы и аналогичной собственной части. Обе части сообщения, зашифрованные ключами КА и Кв, идентифицируют Алису и Боба, содержат общий идентификатор и оклики. Центр распространения ключей проверяет, совпадают ли общие идентификаторы R в обеих частях сообщения. Они могут не совпадать, если злоумышленник подменил R в сообщении 1 или заменил часть сообщения 2. Если оба общих идентификатора R совпадают, KDC-центр считает сообщение, полученное от Боба, достоверным. Затем он формирует ключ сеанса Ks и отправляет его Алисе и Бобу, зашифровав ключ сеанса ключами Алисы и Боба. Каждое сообщение также содержит случайное число получателя в доказательство того, что эти сообщения посланы KDC-центром, а не злоумышленником. К этому моменту Алиса и Боб обладают одним и тем же ключом сеанса и могут начать обмен информацией. После первого же обмена данными они увидят, что обладают одинаковыми копиями ключа сеанса Ks, на чем процесс аутентификации можно будет считать завершенным.

4. ПРОТОКОЛ АУТЕНТИФИКАЦИИ KERBEROS

4.1 Описание и ранние версии протокола

Kerberos -- сетевой протокол аутентификации, позволяющий передавать данные через незащищённые сети для безопасной идентификации. Ориентирован , в первую очередь , на клиент-серверную модель и обеспечивает взаимную аутентификацию -- оба пользователя через сервер подтверждают личности друг друга. Данная модель является одним из вариантов Нидхем-Шрёдер-протокола аутентификации на основе доверенной третьей стороны.

Ранние версии Kerberos (c 1 по 3) были созданы внутри Массачусетского технологического института и использовались в целях тестирования. Эти реализации содержали существенные ограничения и были полезны только для изучения новых идей и выявления проблем, которые могли возникнуть во время разработки.

4.2 Kerberos 4

Этап аутентификации клиента

Kerberos 4 в значительной степени основан на протоколе Нидхема-Шредера, но с двумя существенными изменениями:

Первое изменение протокола уменьшало количество сообщений пересылаемых между клиентом и сервером аутентификации.

Второе, более существенное изменение базового протокола заключается в ведении TGT (Ticket Granting Ticket -- билет для получения билета) концепции, позволяющей пользователям аутентифицироваться на несколько сервисов используя свои верительные данные только один раз.

Как результат, протокол Kerberos 4 содержит два логических компонента: Сервер аутентификации (СА) и сервер выдачи билетов (TGS -- Ticket Granting Server). Обычно эти компоненты поставляются как единая программа, которая запускается на центре распределения ключей (ЦРК -- содержит базу данных логинов/паролей для пользователей и сервисов использующих Kerberos).

Сервер аутентификации выполняет одну функцию: получает запрос содержащий имя клиента запрашивающего аутентификацию и возвращает ему зашифрованный TGT. Затем пользователь может использовать этот TGT, для запроса дальнейших билетов на другие сервисы. В большинстве реализаций Kerberos время жизни TGT 8-10 часов. После этого клиент снова должен запросить его у СА.

Первое сообщение, отправляемое центру распределения ключей -- запрос к СА, так же известен как AS_REQ. Это сообщение отправляется открытым текстом и содержит идентификационные данные клиента, метку времени клиента и идентификатор сервера предоставляющего билет (TGS).

Когда ЦРК получает AS_REQ сообщение, он проверяет, что клиент, от которого пришел запрос, существует, и его метка времени близка к локальному времени ЦРК (обычно ± 5 минут). Данная проверка производится не для защиты от повторов (сообщение посылается открытым текстом), а для проверки соответствия времени. Если хотя бы одна из проверок не проходит, то клиенту отправляется сообщение об ошибке, и он не аутентифицируется.

В случае удачной проверки СА генерирует случайный сеансовый ключ, который будет совместно использоваться клиентом и TGS (данный ключ защищает дальнейшие запросы билетов у TGS на другие сервисы). ЦРК создает 2 копии сессионного ключа: одну для клиента и одну для TGS.

Затем ЦРК отвечает клиенту сообщением сервера аутентификации (AS_REP) зашифрованным долгосрочным ключом клиента. Которое включает TGT зашифрованный TGS ключом (TGT содержит: копию сессионного ключа для TGS, идентификатор клиента, время жизни билета, метку времени ЦРК, IP адрес клиента), копию сессионного ключа для клиента, время жизни билета и идентификатор TGS.

Этап авторизации клиента на TGS

Когда пользователь захочет получить доступ к сервису, он подготовит сообщение для TGS (TGS_REQ) содержащее 3 части: идентификатор сервиса, копию TGT полученную ранее и аутентификатор (Аутентификатор состоит из метки времени зашифрованной сессионным ключом полученным от СА и служит для защиты от повторов).

При получении запроса билета от клиента, ЦРК формирует новый сессионный ключ для взаимодействия клиент/сервис. Затем отправляет ответное сообщение (TGS_REP) зашифрованное сессионным ключом полученным от СА. Это сообщение содержит новый сеансовый ключ, билет сервиса (Service ticket содержит: копию нового сессионного ключа, идентификатор клиента, время жизни билета, локальное время ЦРК, IP клиента) зашифрованный долговременным ключом сервиса, идентификатор сервиса и время жизни билета.

Детали последнего шага -- отправки билета службы серверу приложений не стандартизировались Kerberos 4, поэтому его реализация полностью зависит от приложения.

4.3 Kerberos 5

Kerberos 5 является развитием четвертой версии, включает всю предыдущую функциональность и содержит множество расширений. Однако, с точки зрения реализации, Kerberos 5 является абсолютно новым протоколом.

Основной причиной появления пятой версии являлась невозможность расширения. Со временем, атака полным перебором на DES используемом в Kerberos 4 стала актуальна, но используемые поля в сообщениях имели фиксированный размер и использовать более стойкий алгоритм шифрования не представлялось возможным.

Для решения данной проблемы было решено создать расширяемый протокол с возможностью использования на различных платформах на основе технологии ASN.1. Это позволило использовать в транзакциях различные типы шифрования. Благодаря этому была реализована совместимость с предыдущей версией. Кроме того у ЦРК появляется возможность выбирать наиболее безопасный протокол шифрования поддерживаемый участвующими сторонами.

Кроме того оригинальный протокол Kerberos 4 подвержен перебору по словарю. Данная уязвимость связана с тем, что ЦРК выдает по требованию зашифрованный TGT любому клиенту. Важность данной проблемы так же подчеркивает то, что пользователи обычно выбирают простые пароли.

Чтобы усложнить проведение данной атаки, в Kerberos 5 было введено предварительное установление подлинности. На данном этапе ЦРК требует, чтобы пользователь удостоверил свою личность прежде, чем ему будет выдан билет.

За предварительную аутентификацию отвечает политика ЦРК, если она требуется, то пользователь при первом запросе к СА получит сообщение KRB_ERROR. Это сообщение скажет клиенту, что необходимо отправлять AS_REQ запрос со своими данными для установления подлинности. Если ЦРК не опознает их, то пользователь получит другое сообщение KRB_ERROR, сообщающее об ошибке и TGT не будет выдан.

4.4 Использование и распространение

Распространение реализации Kerberos происходит в рамках авторского права аналогичного правам для BSD.

В настоящее время множество ОС поддерживают данный протокол, в число которых входят:

Windows 2000 и более поздние версии, которые используют Kerberos как метод аутентификации в домене между участниками. Некоторые дополнения к этому протоколу отражены в RFC 3244 «Microsoft Windows 2000 Kerberos Change Password and Set Password Protocols». Документ RFC 4757 описывает использование RC4 Kerberos в Windows

Различные UNIX и UNIX подобные ОС (Apple Mac OS X, Red Hat Enterprise Linux 4, FreeBSD, Solaris, AIX, OpenVMS)

5. ЗАКЛЮЧЕНИЕ

В данной курсовой работе были рассмотрены известные схемы обмена ключами, это: протокол Диффи-Хеллмана, протокол Kerberos и другие методы аутентификации с помощью центра распространения ключей.

Изобретённая в 1976 году схема обмена ключами Диффи -- Хеллмана стала первым практическим методом для получения общего секретного ключа при общении через незащищенный канал связи. Для обеспечения устойчивости, по совету Джона Гилла, была использована проблема дискретного логарифмирования.

Криптографическая стойкость алгоритма Диффи -- Хеллмана основана на предполагаемой сложности проблемы дискретного логарифмирования. Однако хотя умение решать проблему дискретного логарифмирования позволит взломать алгоритм Диффи -- Хеллмана, обратное утверждение до сих пор является открытым вопросом.

Но существует проблема: чтобы общаться с большим числом людей, вам понадобится хранить большое число ключей. Для решения этой проблемы существует другой подход. Он состоит в организации доверительного центра распространения ключей (KDC, key distribution center). При такой схеме у каждого пользователя всего один ключ, общий с KDC-центром. Операции с ключами аутентификации и сеансовыми ключами проходят через KDC-центр.

Несмотря на всю кажущуюся солидность этого подхода, в нем, тем не менее, имеется небольшое слабое место. Если злоумышленнику удастся каким-либо способом раздобыть старый ключ сеанса, он сможет инициировать новый сеанс, повторно воспроизведя сообщение с использованием скомпрометированного ключа. Позднее Нидхэм и Шредер опубликовали протокол, решающий эту проблему. В том же выпуске того же журнала Отуэй и Рис также опубликовали протокол, решающий эту проблему более коротким путем.

Также мы рассмотрели основные концепции протокола сетевой аутентификации Kerberos. Следует отметить, что этот протокол отличается гибкостью и эффективностью использования, а также обеспечивает повышенный уровень безопасности. С бурным развитием Интернета, локальных сетей, виртуальных частных сетей, электронной коммерции, этот протокол, похоже, является одним из тех, которые удовлетворяют всем требованиям безопасности.

6. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Таненбаум, Э. Компьютерные сети 4-е изд.; СПб.: Питер, 2003. - 992 с.

2. Сипсер, Р. Связь в распределенных системах; М.: Мир, 1981. - 744 c.

3. Олифер, В. Компьютерные сети 3-е изд.; СПб.: Питер, 2006. - 958 с.

4. Боренков, А. Microsoft TCP/IP. Учебный курс; М.: Microsoft Press. Русская Редакция; Издание 3-е, испр., 2001. - 400 c.

5. Блэк, У. Интернет: протоколы безопасности. Учебный курс; СПб: Питер, 2001. - 288 c.

6. Вейцман, К. Распределенные системы мини- и микро-ЭВМ; М.: Финансы и статистика, 2012. - 384 c.

7. Комер, Д. Принципы функционирования Интернета; СПб: Питер, 2002. - 384 c.

8. Ларионов, А.М.; Майоров, С.А.; Новиков, Г.И. Вычислительные комплексы, системы и сети; Л.: Энергоатомиздат, 2007. - 288 c.

9. Левин, Я.М.; Левин, Д.Р. Ответы на актуальные вопросы по Internet; Киев: DiaSoft, 1996. - 384 c.

10. Мартин, Дж. Видеотекс и информационное обслуживание общества; М.: Радио и связь, 2000. - 184 c.

11. Минаев, И.Я. Локальная сеть своими руками; М.: Технолоджи-3000, 2004. - 368 c.

12. Нанс, Бэрри Компьютерные сети; М.: Бином, 1995. - 400 c.

13. Нэф, М.; Штройле, П.; Хартман, В. Опасности в Интернете: Способы защиты для пользователей; М.: ТВП, 2006. - 160 c.

14. Ослон, А.А. и др. Россия сетевая. Атлас Интернета; М.: Европа, 2006. - 192 c.

15. Розенфельд, Л.; Морвиль, П. Информационная архитектура в Интернете; СПб: Символ-Плюс; Издание 2-е, 2005. - 544 c.

16. Таненбаум, Э.; Ван Стеен, М. Распределенные системы Принципы и парадигмы; СПб: Питер, 2003. - 300 c.

17. Паркер, Тим; Сиян, К. TCP/IP. Для профессионалов; СПб: Питер; Издание 3-е, 2004. - 458 c.

18. Хант, К. TCP/IP. Сетевое администрирование; СПб: Символ-Плюс; Издание 3-е, 2004. - 491 c.

19. Ли, К. и др. Dns и bind; Символ, 2008. - 495 c.

20. Касперски, Крис Техника сетевых атак. Приемы противодействия; М.: Солон-Р, 2001. - 400 c.

Размещено на www.allbest.

...

Подобные документы

  • История, предпосылки развития, необходимость применения криптографии в жизни общества. Описание протоколов, цифровых подписей, алгоритмов, ключей. Криптоанализ, формальный анализ протоколов проверки подлинности и обмена ключами. Практическая криптография.

    дипломная работа [767,2 K], добавлен 23.12.2011

  • Исследование криптографического протокола, способного обеспечить надежную взаимную аутентификацию и обмен ключами, оставаясь наименее уязвимым к DDoS атакам. Анализ существующих аналогичных протоколов. Программная реализация схемы, платформа разработки.

    дипломная работа [850,3 K], добавлен 11.07.2012

  • Аутентификация в Windows 2000. Преимущества аутентификации по протоколу Kerberos. Стандарты аутентификации по протоколу Kerberos. Расширения протокола и его обзор. Управление ключами, сеансовые билеты. Аутентификация за пределами домена, подпротоколы.

    курсовая работа [369,2 K], добавлен 17.12.2010

  • Классы сложности задач в теории алгоритмов. Общие сведения о симметричной и ассиметрично-ключевой криптографии. "Лазейка" в односторонней функции. Криптографическая система RSA. Криптографическая система Эль-Гамаля. Алгоритм обмена ключами Диффи-Хеллмана.

    курсовая работа [706,6 K], добавлен 06.06.2010

  • Общая характеристика протокола ICMP, его назначение и формат сообщений. Анализ применимости протокола ICMP при переходе с набора протоколов IP v4 на набор IP v6. Свойства и принцип работы, сферы применения протоколов обмена маршрутной информацией.

    курсовая работа [210,8 K], добавлен 24.08.2009

  • Теоретические основы организации локальных сетей. Общие сведения о сетях. Топология сетей. Основные протоколы обмена в компьютерных сетях. Обзор программных средств. Аутентификация и авторизация. Система Kerberos. Установка и настройка протоколов сети.

    курсовая работа [46,3 K], добавлен 15.05.2007

  • Использование электронных ключей как средства аутентификации пользователей. Анализ методов идентификации и аутентификации с точки зрения применяемых в них технологий. Установка и настройка средств аутентификации "Rutoken", управление драйверами.

    курсовая работа [4,6 M], добавлен 11.01.2013

  • Обмен информации, защищенной от фальсификаций и незаконных пользователей. Распределение секретных ключей с помощью системы с открытым ключом. Разработка модулей системы генерации ключей и обмена конфиденциальной информацией для группы пользователей.

    курсовая работа [2,0 M], добавлен 17.11.2011

  • Описание принципов функционирования протоколов, используемых во всемирной сети. Характеристика структуры и особенностей работы Интернета. Преимущества использования электронной почты, IP-телефонии, средств мгновенного обмена сообщениями (ICQ, Skype).

    реферат [1,2 M], добавлен 23.04.2011

  • Протокол как набор соглашений и правил, определяющих порядок обмена информацией в компьютерной сети. Краткое описание и характеристика некоторых протоколов используемых в работе Интернет: TCP/IP, POP3, IMAP4, SMTP, FTP, HTTP, WAIS, TELNET, WAP.

    презентация [2,9 M], добавлен 27.04.2011

  • Способы коммутации компьютеров. Классификация, структура, типы и принцип построения локальных компьютерных сетей. Выбор кабельной системы. Особенности интернета и других глобальных сетей. Описание основных протоколов обмена данными и их характеристика.

    дипломная работа [417,7 K], добавлен 16.06.2015

  • Механизм создания и обмена пакетами в сети передачи информации на основе стека протоколов ZigBee. Принцип действия, особенности работы и коммутации с другими протоколами, определение основных методов и способов защиты информации, передаваемой в сети.

    курсовая работа [2,6 M], добавлен 12.09.2012

  • Изучение ведущих технологий шифрования и обмена данными. Выбор и разработка архитектуры сетевой технологии управления ключами пользователей. Разработка логической модели базы данных, основных форм и интерфейсов, основных алгоритмов обработки информации.

    курсовая работа [586,6 K], добавлен 18.12.2011

  • Стеки протоколов общемировой сетевой базе. Формат кадра сообщения NetBIOS. Использование в сети стеков коммуникационных протоколов: IPX/SPX, TCP/IP, OSI и DECnet. Дистанционное управление освещением. Особенности использования коммуникационных протоколов.

    презентация [3,1 M], добавлен 21.02.2015

  • Процесс и основные этапы реализации алгоритма формирования ключей в процессе функционирования DES с помощью языка программирования C++. Особенности работы программного алгоритма и его пошаговая реализация. Листинг получившейся программы, пример ее работы.

    лабораторная работа [383,9 K], добавлен 26.08.2009

  • Модели и протоколы передачи данных. Эталонная модель OSI. Стандартизация в области телекоммуникаций. Стеки протоколов и стандартизация локальных сетей. Понятие открытой системы. Internet и стек протоколов TCP/IP. Взаимодействие открытых систем.

    дипломная работа [98,9 K], добавлен 23.06.2012

  • Работы по созданию сети ARPANET, протоколы сетевого взаимодействия TCP/IP. Характеристика программного обеспечения для TCP/IP. Краткое описание протоколов семейства TCP/IP с расшифровкой аббревиатур. Архитектура, уровни сетей и протоколы TCP/IP.

    реферат [15,7 K], добавлен 03.05.2010

  • Перехват передаваемой по сети информации. Подделка источника. Асимметричные алгоритмы шифрования. Механизмы безопасности. Защита от повторений. Контроль доступа. Пример последовательности обмена открытыми ключами. Фильтрация пакетов на сетевом уровне.

    презентация [81,2 K], добавлен 25.10.2013

  • Моделирование регламента Центра сертификации ключей ЗАО "Инфраструктура открытых ключей" с учётом требований безопасности. Основные определения и понятия моделирования процессов. Функции программно-технического комплекса центра. Атрибуты безопасности.

    дипломная работа [563,4 K], добавлен 20.03.2012

  • Описание компонентов сети конфиденциальной связи. Система распределения ключей на основе линейных преобразований. Описание разработанных программ. Криптостойкость алгоритма распределения ключей. Алгоритм шифрования данных в режиме обратной связи.

    курсовая работа [98,3 K], добавлен 26.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.