Метод касательных решения нелинейных уравнений
Определение корней нелинейного уравнения методом касательных решения нелинейных уравнений. Составление программы на языке программирования Турбо-Паскаль 7.0. Описание сущности метода касательных (метода секущих Ньютона). Результаты выполнения программы.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Программирование |
Вид | контрольная работа |
Язык | русский |
Прислал(а) | Ляпин Р.Н. |
Дата добавления | 16.01.2013 |
Размер файла | 825,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Математический алгоритм вычисления корней нелинейного уравнения и его решение методом касательных. Особенности программной реализации решения таких уравнений. Процедура подготовки и решения задачи на ЭВМ, характеристика алгоритма и структуры программы.
курсовая работа [96,6 K], добавлен 02.06.2012Анализ метода касательных (метода секущих Ньютона), аналитическое решение нелинейного уравнения. Описание алгоритма решения задачи, пользовательских идентификаторов, блок-схем, программного обеспечения. Тестирование программы на контрольном примере.
курсовая работа [97,1 K], добавлен 10.01.2014Этапы численного решения нелинейных уравнений заданного вида: отделение (изоляция, локализация) корней уравнения аналитическим или графическим способами, уточнение конкретного выделенного корня методом касательных (Ньютона). Решение в системе MathCad.
курсовая работа [271,6 K], добавлен 22.08.2012Описание методов дихотомии (половинного деления) и касательных. Их применение для решения нелинейных уравнений. Графическое отделение корней. Блок-схемы алгоритмов. Тексты (листинги) программ на языке Delphi. Тестовый пример решения задачи с помощью ЭВМ.
курсовая работа [944,6 K], добавлен 15.06.2013Изучение численных методов решения нелинейных уравнений, используемых в прикладных задачах. Нахождение корня уравнения методом простой итерации и методом касательных (на примере уравнения). Отделение корней графически. Программная реализация, алгоритм.
курсовая работа [1,7 M], добавлен 15.06.2013Изучение методов решения нелинейных уравнений таких как: метод Ньютона, модифицированный метод Ньютона, метод Хорд, метод простых Итераций. Реализация программы для персонального компьютера, которая находит решение нелинейного уравнения разными способами.
практическая работа [321,9 K], добавлен 24.06.2012Разработка с использованием приложения Mathcad алгоритма и программы решения нелинейного уравнения методами касательных, половинного деления и хорд. Решение с помощью ее заданных нелинейных уравнений. Создание графической иллюстрации полученных решений.
курсовая работа [665,7 K], добавлен 22.08.2013Применение методов касательных (Ньютона) и комбинированного (хорд и касательных) для определения корня уравнения. Разработка алгоритма решения и его описание его в виде блок-схем. Тексты программ на языке Delphi. тестовый пример и результат его решения.
курсовая работа [923,7 K], добавлен 15.06.2013Решение нелинейных уравнений методом простых итераций и аналитическим, простым и модифицированным методом Ньютона. Программы на языке программирования Паскаль и С для вычислений по вариантам в порядке указанных методов. Изменение параметров задачи.
лабораторная работа [191,0 K], добавлен 24.06.2008Разработка программы для нахождения корней нелинейных уравнений несколькими методами: методом хорд, касательных, половинного деления, итераций. Реализации программы с помощью системы программирования Delphi 7. Методика работы пользователя с программой.
курсовая работа [1,3 M], добавлен 11.02.2013Разработка проекта по вычислению корней нелинейных уравнений методом итераций, в среде программирования Delphi. Интерфейс программы и ее программный код, визуализация метода. Сравнение результатов решения, полученных в Mathcad 14 и методом итераций.
контрольная работа [1,9 M], добавлен 10.12.2010Сравнительный анализ итерационных методов решения нелинейных алгебраических и трансцендентных уравнений. Простейший алгоритм отделения корней нелинейных уравнений. Метод половинного деления. Геометрический смысл метода Ньютона. Метод простой итерации.
реферат [95,0 K], добавлен 06.03.2011Суть основных идей и методов, особенностей и областей применения программирования для численных методов и решения нелинейных уравнений. Методы итераций, дихотомии и хорд и их использование. Алгоритм метода Ньютона, создание программы и ее тестирование.
курсовая работа [423,0 K], добавлен 17.02.2010Особенности точных и итерационных методов решения нелинейных уравнений. Последовательность процесса нахождения корня уравнения. Разработка программы для проверки решения нелинейных функций с помощью метода дихотомии (половинного деления) и метода хорд.
курсовая работа [539,2 K], добавлен 15.06.2013Обзор существующих методов по решению нелинейных уравнений. Решение нелинейных уравнений комбинированным методом и методом хорд на конкретных примерах. Разработка программы для решения нелинейных уравнений, блок-схемы алгоритма и листинг программы.
курсовая работа [435,8 K], добавлен 15.06.2013Программный продукт, способный решать уравнения с одной переменной методом Ньютона (касательных). Он прост в эксплуатации, имеет интуитивно понятный интерфейс, выстраивает график уравнения, что очень важно для пользователя. Реализация решений в программе.
курсовая работа [169,3 K], добавлен 29.01.2009Особенности решения уравнений с одной переменной методом половинного деления. Оценка погрешности метода простой итерации. Суть решения уравнений в пакете Mathcad. Векторная запись нелинейных систем. Метод Ньютона решения систем нелинейных уравнений.
курсовая работа [2,1 M], добавлен 12.12.2013Решение нелинейного уравнения шаговым методом, методом половинного деления, методом Ньютона и простой итерации с помощью программы Mathcad. Разбиение промежутка на число n интервалов. Условия сходимости корня. Составление программы для решения на С++.
лабораторная работа [207,5 K], добавлен 10.05.2012Методика реализации решения нелинейного уравнения в виде процедуры-подпрограммы следующими методами: хорд, касательных (Ньютона), простой итерации, половинного деления. Основные методы уточнения корней уравнения. Программное решение задачи, алгоритм.
курсовая работа [4,0 M], добавлен 27.03.2011Метод половинного деления как один из методов решения нелинейных уравнений, его основа на последовательном сужении интервала, содержащего единственный корень уравнения. Алгоритм решения задачи. Описание программы, структура входных и выходных данных.
лабораторная работа [454,1 K], добавлен 09.11.2012