Оптимизация предобработки данных: константа Липшица обучающей выборки и свойства обученных нейронных сетей

Задача целенаправленной предобработки обучающей выборки для ускорения обучения нейросети. Значение константы Липшица выборки, как индикатор сложности выборки. Показатели зависимости свойств обученных нейронных сетей от величины константы Липшица выборки.

Рубрика Программирование, компьютеры и кибернетика
Предмет Нейроинформатика
Вид статья
Язык русский
Прислал(а) В.Г. Царегородцев
Дата добавления 08.02.2013
Размер файла 249,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Исследование эффективности применения нейронных сетей в рамках отношений между людьми. Принцип работы с нейросимулятором. Составление обучающей выборки и проектирование персептронов. Анализ выбора супружеской пары с использованием нейросетевых технологий.

    презентация [150,8 K], добавлен 19.08.2013

  • Анализ вероятности входа в систему злоумышленником с одной и трех попыток. Вероятности входа в систему при фиксированной и случайной длине выборки. Исследование и расчет защищенности (надёжности) метода при подглядываниях. Оптимизация длины выборки.

    курсовая работа [42,9 K], добавлен 24.01.2009

  • Описание мониторинга выбросов случайных процессов контролируемых параметров. Основные принципы обработки статистических данных в базисе аддитивной аппроксимации стандартными распределениями. Разработка методов аппроксимирующих вкладов значений выборки.

    контрольная работа [308,2 K], добавлен 19.08.2015

  • График функции плотности распределения Парето. Алгоритм обработки выборки. Построение гистограммы относительных частот. Программа для автоматизации обработки, в которую заложены алгоритмы обработки выборки и возможность быстрого получения результата.

    курсовая работа [1,3 M], добавлен 19.03.2012

  • Анализ применения нейронных сетей для прогнозирования ситуации и принятия решений на фондовом рынке с помощью программного пакета моделирования нейронных сетей Trajan 3.0. Преобразование первичных данных, таблиц. Эргономическая оценка программы.

    дипломная работа [3,8 M], добавлен 27.06.2011

  • Рост активности в области теории и технической реализации искусственных нейронных сетей. Основные архитектуры нейронных сетей, их общие и функциональные свойства и наиболее распространенные алгоритмы обучения. Решение проблемы мертвых нейронов.

    реферат [347,6 K], добавлен 17.12.2011

  • Описание технологического процесса напуска бумаги. Конструкция бумагоделательной машины. Обоснование применения нейронных сетей в управлении формованием бумажного полотна. Математическая модель нейрона. Моделирование двух структур нейронных сетей.

    курсовая работа [1,5 M], добавлен 15.10.2012

  • Понятие и свойства искусственных нейронных сетей, их функциональное сходство с человеческим мозгом, принцип их работы, области использования. Экспертная система и надежность нейронных сетей. Модель искусственного нейрона с активационной функцией.

    реферат [158,2 K], добавлен 16.03.2011

  • Способы применения технологий нейронных сетей в системах обнаружения вторжений. Экспертные системы обнаружения сетевых атак. Искусственные сети, генетические алгоритмы. Преимущества и недостатки систем обнаружения вторжений на основе нейронных сетей.

    контрольная работа [135,5 K], добавлен 30.11.2015

  • Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.

    курсовая работа [249,3 K], добавлен 22.06.2011

  • Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.

    дипломная работа [814,6 K], добавлен 29.09.2014

  • Планирование характеристик случайной величины; оценка параметров распределения. Расчет объема выборки с заданной погрешностью. Компьютерный эксперимент по выяснению регрессионной зависимости между факторами и выходом продукта в химическом процессе.

    курсовая работа [268,7 K], добавлен 29.04.2012

  • Свойства объектов и проверка расчетной зависимости на основании экспериментальной выборки. Построение графической зависимости экспериментальных и расчетных значений от x для их сравнения. Выполнение работы в среде Visual Basic, Excel и MathCAD.

    курсовая работа [261,9 K], добавлен 20.05.2011

  • Простейшая сеть, состоящая из группы нейронов, образующих слой. Свойства нейрокомпьютеров (компьютеров на основе нейронных сетей), привлекательных с точки зрения их практического использования. Модели нейронных сетей. Персептрон и сеть Кохонена.

    реферат [162,9 K], добавлен 30.09.2013

  • Особенности нейронных сетей как параллельных вычислительных структур, ассоциируемых с работой человеческого мозга. История искусственных нейронных сетей как универсального инструмента для решения широкого класса задач. Программное обеспечение их работы.

    презентация [582,1 K], добавлен 25.06.2013

  • Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.

    лабораторная работа [1,1 M], добавлен 05.10.2010

  • Нейронные сети как средство анализа процесса продаж мобильных телефонов. Автоматизированные решения на основе технологии нейронных сетей. Разработка программы прогнозирования оптово-розничных продаж мобильных телефонов на основе нейронных сетей.

    дипломная работа [4,6 M], добавлен 22.09.2011

  • Способы применения нейронных сетей для решения различных математических и логических задач. Принципы архитектуры их построения и цели работы программных комплексов. Основные достоинства и недостатки каждой из них. Пример рекуррентной сети Элмана.

    курсовая работа [377,4 K], добавлен 26.02.2015

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа [1,8 M], добавлен 08.02.2017

  • Задачи линейного программирования. Многоугольник решений системы. Вычисление значения целевой функции. Интервальная группировка данных. Среднее квадратическое отклонение выборки. Вычисление коэффициента корреляции. Закон распределения случайной величины.

    контрольная работа [389,6 K], добавлен 11.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.