Венгерский метод
Анализ основных идей венгерского метода на примере решения задачи выбора (задачи о назначениях), которая является частным случаем Т-задачи. Алгоритм венгерского метода, оценка последовательно проводимых итераций. Венгерский метод для транспортной задачи.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 18.02.2013 |
Размер файла | 194,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Венгерский метод
Венгерский метод является одним из интереснейших и наиболее распространенных методов решения транспортных задач.
Рассмотрим сначала основные идеи венгерского метода на примере решения задачи выбора (задачи о назначениях), которая является частным случаем Т-задачи, а затем обобщим этот метод для произвольной Т-задачи.
Венгерский метод для задачи о назначениях
Постановка задачи. Предположим, что имеется различных работ и механизмов , каждый из которых может выполнять любую работу, но с неодинаковой эффективностью. Производительность механизма при выполнении работы обозначим , и = 1,...,n; j = 1,...,n. Требуется так распределить механизмы по работам, чтобы суммарный эффект от их использования был максимален. Такая задача называется задачей выбора или задачей о назначениях.
Формально она записывается так. Необходимо выбрать такую последовательность элементов из матрицы
чтобы сумма была максимальна и при этом из каждой строки и столбца С был выбран только один элемент.
Введем следующие понятия.
Нулевые элементы матрицы С называются независимыми нулями, если для любого строка и столбец, на пересечении которых расположен элемент , не содержат другие такие элементы .
Две прямоугольные матрицы С и D называются эквивалентными (C ~ D), если для всех i,j . Задачи о назначениях, определяемые эквивалентными матрицами, являются эквивалентными (т.е. оптимальные решенияодной из них будут оптимальными и для второй, и наоборот).
Описание алгоритма венгерского метода
Алгоритм состоит из предварительного этапа и не более чем (n-2) последовательно проводимых итераций. Каждая итерация связана с эквивалентными преобразованиями матрицы, полученной в результате проведения предыдущей итерации, и с выбором максимального числа независимых нулей. Окончательным результатом итерации является увеличение числа независимых нулей на единицу. Как только количество независимых нулей станет равным n, проблему выбора оказывается решенной, а оптимальный вариант назначений определяется позициями независимых нулей в последней матрице.
Предварительный этап. Разыскивают максимальный элемент в j - м столбце и все элементы этого столбца последовательно вычитают из максимального. Эту операцию проделывают над всеми столбцами матрицы С. В результате образуется матрица с неотрицательными элементами, в каждом столбце которой имеется, по крайней мере, один нуль.
Далее рассматривают i - ю строку полученной матрицы, разыскивают ее минимальный элемент ?i и из каждого элемента этой строки вычитают минимальный. Эту процедуру повторяют со всеми строками. В результате получим матрицу С0 (С0 ~ C), в каждой строке и столбце которой имеется, по крайней мере, один нуль. Описанный процесс преобразования С в С0 называется приведением матрицы.
Находим произвольный нуль в первом столбце и отмечаем его звездочкой. Затем просматриваем второй столбец, и если в нем есть нуль, расположенный в строке, где нет нуля со звездочкой, то отмечаем его звездочкой. Аналогично просматриваем один за другим все столбцы матрицы С0 и отмечаем, если возможно, следующие нули знаком “*”. Очевидно, что нули матрицы С0, отмеченные звездочкой, являются независимыми. На этом предварительный этап заканчивается.
(k+1)-ая итерация. Допустим, что k-я итерация уже проведена и в результате получена матрица Сk. Если в ней имеется ровно n нулей со звездочкой, то процесс решения заканчивается. В противном случае переходим к (k+1) - й итерации.
Каждая итерация начинается первым и заканчивается вторым этапом. Между ними может несколько раз проводиться пара этапов: третий - первый. Перед началом итерации знаком “+” выделяют столбцы матрицы Сk, которые содержат нули со звездочками.
Первый этап. Просматривают невыделенные столбцы Сk. Если среди них не окажется нулевых элементов, то переходят к третьему этапу. Если же невыделенный нуль матрицы Сk обнаружен, то возможен один из двух случаев: 1) строка, содержащая невыделенный нуль, содержит также и нуль со звездочкой; 2) эта строка не содержит нуля со звездочкой.
Во втором случае переходим сразу ко второму этапу, отметив этот нуль штрихом.
В первом случае этот невыделенный нуль отмечают штрихом и выделяют строку, в которой он содержится (знаком “+” справа от строки). Просматривают эту строку, находят нуль со звездочкой и уничтожают знак “+” выделения столбца, в котором содержится данный нуль.
Далее просматривают этот столбец (который уже стал невыделенным) и отыскивают в нем невыделенный нуль (или нули), в котором он находится. Этот нуль отмечают штрихом и выделяют строку, содержащую такой нуль (или нули). Затем просматривают эту строку, отыскивая в ней нуль со звездочкой.
Этот процесс за конечное число шагов заканчивается одним из следующих исходов:
1) все нули матрицы Сk выделены, т.е. находятся в выделенных строках или столбцах. При этом переходят к третьему этапу;
2) имеется такой невыделенный нуль в строке, где нет нуля со звездочкой. Тогда переходят ко второму этапу, отметив этот нуль штрихом.
Второй этап. На этом этапе строят следующую цепочку из нулей матрицы Сk: исходный нуль со штрихом, нуль со звездочкой, расположенный в одном столбце с первым нулем со штрихом в одной строке с предшествующим нулем со звездочкой и т.д. Итак, цепочка образуется передвижением от 0' к 0* по столбцу, от 0* к 0' по строке и т.д.
Можно доказать, что описанный алгоритм построения цепочки однозначен и конечен, при этом цепочка всегда начинается и заканчивается нулем со штрихом.
Далее над элементами цепочки, стоящими на нечетных местах ( 0' ) -, ставим звездочки, уничтожая их над четными элементами ( 0* ). Затем уничтожаем все штрихи над элементами Сk и знаки выделения “+”. Количество независимых нулей будет увеличено на единицу. На этом (k+1) -я итерация закончена.
Третий этап. К этому этапу переходят после первого, если все нули матрицы Сk выделены. В таком случае среди невыделенных элементов Сk выбирают минимальный и обозначают его h (h>0). Далее вычитают h из всех элементов матрицы Сk, расположенных в невыделенных строках и прибавляют ко всем элементам, расположенным в выделенных столбцах. В результате получают новую матрицу С'k, эквивалентную Сk. Заметим, что при таком преобразовании, все нули со звездочкой матрицы Сk остаются нулями и в С'k, кроме того, в ней появляются новые невыделенные нули. Поэтому переходят вновь к первому этапу. Завершив первый этап, в зависимости от его результата либо переходят ко второму этапу, либо вновь возвращаются к третьему этапу.
После конечного числа повторений очередной первый этап обязательно закончится переходом на второй этап. После его выполнения количество независимых нулей увеличится на единицу и (k+1) - я итерация будет закончена.
Пример 3.4. Решить задачу о назначениях с матрицей
При решении задачи используем следующие обозначения:
Знак выделения “+”, подлежащий уничтожению, обводим кружком; цепочку, как и ранее, указываем стрелками.
Предварительный этап. Отыскиваем максимальный элемент первого столбца - 4. Вычитаем из него все элементы этого столбца. Аналогично для получения второго, третьего, четвертого и пятого столбцов новой матрицы вычитаем все элементы этих столбцов от п'яти, трех, двух и трех соответственно. Получим матрицу С'(C'~C). Так как в каждой строке С' есть нуль, то С' = С0 и процесс приведения матрицы заканчивается. Далее ищем и отмечаем знаком “*” независимые нули в С0, начиная с первой строки.
Первая итерация. Первый этап. Выделяем знаком “+” первый, второй, и четвертый столбцы матрицы С0, которые содержат 0*.
Просматриваем невыделенный третий столбец, находим в нем невыделенный нуль С23 = 0, отмечаем его штрихом и выделяем знаком “+” вторую строку. Просматриваем эту строку, находим в ней элемент С22 = 0* и уничтожаем знак выделения второго столбца, содержащего 0*. Затем просматриваем второй столбец - в нем нет невыделенных элементов. Переходим к последнему невыделенному столбцу (пятому), ищем в нем невыделенные нули. Поскольку невыделенных нулей нет, то переходим к третьему этапу.
Третий этап. Находим минимальный элемент в невыделенной части матрицы С0 (т.е. элементы, которые лежат в столбцах и строках, не отмеченных знаком “+”). Он равен h = 1.
Вычтем h = 1 из всех элементов невыделенных строк (т.е. всех, кроме второго) и прибавим ко всем элементам выделенных столбцов (первого и четвертого). Получим матрицу С'1 и перейдем к первому этапу.
Первый этап. Перед его началом вновь выделяем знаком “+” первый, второй и четвертый столбцы. Просматриваем невыделенный третий столбец, находим в нем невыделенный нуль С23 = 0, отмечаем его знаком штрих. Поскольку во второй строке есть 0* (элемент С22), то выделяем знаком “+” вторую строку, далее уничтожаем знак выделения второго столбца, где лежит 0*. Потом просмотрим второй столбец, находим в нем невыделенный нульС12 = 0, отмечаем его знаком штрих. Поскольку в первой строке есть нуль со звездочкой С14 = 0*, то выделяем его знаком “+”, и уничтожаем знак выделения четвертого столбца, где находился этот знак 0*. Затем пересматриваем четвертый столбец и находим в нем невыделенный нуль С54 = 0. Так как в строке, где он находится, нет нуля со звездочкой, то отметив этот 0 штрихом, переходим ко второму этапу.
Второй этап. Начиная с элемента с54 = 0', строим цепочку, двигаясь от него по столбцу. Находим нуль со звездочкой с14 = 0*, далее от него движемся вдоль первой строки и находим 0'(с12), от этого элемента движемся вдоль первого столбца к с22 = 0*, в конечном итоге, двигаясь от с22 = 0* вдоль второй строки приходим к исходному с23 = 0'. Таким образом, цепочка построена: 0'54-0*14-0'12-0*22-0'23. Заменяем штрих на звездочку и уничтожаем звездочки над четными элементами цепочки, а также все знаки выделения столбцов и строк. На этом первая итерация заканчивается. В результате число независимых нулей увеличилось на единицу. Поскольку следующие итерации выполняются аналогично, то приведем результаты их выполнения без дополнительных пояснений. После второй итерации количество независимых нулей (0*) стало равно 5 (размерности матрицы С) и поэтому алгоритм заканчивает работу. Искомые элементы назначения соответствуют позициям независимых нулей матрицы С3 (т.е. 0*).
Соответствующее значение целевой функции
Первая итерация. Первый этап Третий этап
h=1
Первая итерация. Первый этап. Второй этап.
Вторая итерация.
Первый этап Второй этап
Венгерский метод для транспортной задачи
Рассмотренная выше задача о назначениях представляет собой частный случай Т-задачи, когда . Поэтому венгерский метод, применимый для решения транспортной задачи специального вида, можно распространить на общий случай Т-задачи. [18; 59].
Пусть требуется решить Т-задачу следующего вида
минимизировать
при условиях
Алгоритм решения Т-задачи, основанный на венгерском методе, состоит из предварительного этапа и конечного числа однотипных итераций.
В результате предварительного этапа вычисляют матрицу , элементы которой удовлетворяют следующим условиям:
, (3.3.1)
. (3.3.2)
Если в условиях (3.3.1), (3.3.2) строгие равенства, то матрица Х0 является решением Т-задачи.
Матрицу, построенную в результате k-й итерации, обозначим .
Величина называется суммарной невязкой для матрицы . Она характеризует близость к искомому плану Т-задачи. Итерации проводятся до тех пор, пока величина не станет равна нулю.
Описание алгоритма Венгерского метода
Предварительный этап. В каждом из столбцов матрицы транспортных издержек отыскивают минимальный элемент, который вычитают из всех элементов этого столбца. Получают матрицу С'. Далее в каждой строке матрицы С' выбирают минимальный элемент и вычитают его из всех элементов рассматриваемой строки. Приходят к матрице С0 (С0 ~ C), все элементы которой неотрицательны, причем в каждой строке и столбце С0имеем по крайней мере, один нуль. Строят матрицу Х0 так, чтобы ее ненулевые элементы были расположены в позициях нулей матрицы С0.
Пусть -- номер строки, в которой расположен k-й нуль j-го столбца матрицы С0.
Т.е. все элементы первого столбца , которым соответствуют ненулевые элементы в матрицы С0, заполняют нулями, а остальные элементы этого столбца заполняют по методу северо-западного угла.
Допустим, что столбцы Х0 от первого до (j-1) - го включительно уже заполнены.
Если , то Х0 - оптимальный план Т-задачи. Если , то переходим к первой итерации.
(k+1)-я итерация. Каждая итерация состоит из двух или трех этапов. Итерация начинается первым этапом, а заканчивается вторым. Между первым и вторым этапами в общем случае несколько раз могут быть проведены третий и первый этапы.
Допустим, что уже проведено k итераций, причем . В этом случае необходимо, используя матрицы Сk и Хk, провести следующую (k+1)-ю итерацию. Перед началом итерации выделяют знаком “+” те столбцы матрицы Сk, для которых невязки по столбцам равны
Первый этап. Если все ненулевые элементы матрицы Сk окажутся в выделенных столбцах, то переходят к третьему этапу. В противном случае пусть некоторый невыделенный нуль находится в -й строке и в -м столбце. Тогда вычисляют значения невязки -й строки:
Возможен один из двух случаев: 1) , 2) . В первом случае -ю строку Сk отмечают знаком “+” справа от нее, а сам невыделенный нуль отмечают штрихом. Далее просматривают элементы -й строки, которые лежат в выделенных столбцах и ищут среди них существенные нули (напомним, что существенным нулем Сk называется такой элемент , для которого ). Если таким существенным нулем оказался элемент , а сам столбец ? -- выделен, то знак выделения “+” над столбцом ? уничтожают, а сам этот нуль отмечают звездочкой.
Затем просматривают ?-й столбец и отыскивают в нем нуль (нули), расположенные в отличных от -й строках. Если такой нуль имеется, то отмечают его штрихом и анализируют невязку его строки.
Далее процесс поиска нулей и выделение их (штрихами или звездочками) продолжается аналогично, и за несколько шагов он заканчивается одним из следующих исходов:
1) найдем очередной невыделенный нуль матрицы Сk, для которого невязкая в строке . Тогда отметив его штрихом, переходим ко второму этапу;
2) все нули матрицы Сk оказались выделенными, причем для каждого из нулей, выделяемых штрихом, невязка . Тогда переходим к третьему этапу.
Во втором случае, отметив этот нуль штрихом, сразу переходим к третьему этапу.
Второй этап. Состоит в построении цепочки из нулей матрицы Сk, отмеченных штрихами и звездочками, и в последующем переходе к новой матрице Хk+1
Пусть для некоторого нуля со штрихом матрицы Сk, расположенного, например, в позиции ( ), невязка строки . Начиная с этого элемента , строят цепочку из отмеченных нулей матрицы Сk: двигаясь по столбцу , выбирают нуль со звездочкой , далее двигаясь от него по строке , находят нуль со штрихом . Потом движутся от него по столбцу ?2 к следующему нулю со звездочкой и т.д.. Такой последовательный переход от 0' к 0* по столбцу и от 0* к 0' по строке осуществляют до тех пор, пока это возможно.
Можно доказать, что процесс построения цепочки однозначный и законченный, цепочка не имеет циклов, начинается и заканчивается нулем со штрихом.
После того как цепочка вида
построена, осуществляют переход к матрице от матрицы
Таким образом, -минимальный элемент среди совокупности четных элементов цепочки, невязки строки, где начинается цепочка, и столбца, где она заканчивается.
Вычисляем невязку для
На этом (k+1)-я итерация заканчивается.
Третий этап. Итак, допустим, что все нули выделены. Третий этап заключается в переходе от матрицы Сk к эквивалентной матрице С?k, в которой появляется новый невыделенный нуль (или нули). Пусть , где минимум выбирают из всех невыделенных элементов матрицы Сk. Тогда из всех элементов невыделенных строк матрицы Сk вычитают h, а ко всем элементам выделенных столбцов прибавляют h. В результате получают матрицу С'k(С'k ~ Ck), в которой все существенные нули матрицы Сk остаются нулями, и кроме того, появляются новые невыделенные нули.
Далее переходят к первому этапу, и в зависимости от его результата либо переходят ко второму этапу, либо снова возвращаются к третьему этапу. За конечное число повторов пары этапов третий - первый обязательно перейдем ко второму этапу.
Если после выполнения второго этапа то Хk+1 - оптимальный план. В противном случае переходим к (k+2) итерации.
Отметим некоторые важные особенности венгерского метода.
Поскольку данный метод в отличие от метода потенциалов не использует опорных планов, то явление вырожденности плана для него отсутствует. Это устраняет возможность зацикливания, связанного с вырожденностьюпланов Т-задачи, которая облегчает программирование метода и его реализацию на ЭВМ.
Метод позволяет на каждой итерации по величине невязки оценить близость Хk к оптимальному плану, а также верхнюю границу необходимого числа оставшихся итераций Nост
Эта формула справедлива для целочисленных значений всех переменных и .
Обоснование венгерского метода
Прежде всего введем справедливость признака оптимальности, т.е. если , то план Хk - оптимален.
Действительно, в силу построения Хk, если , то (эти нули называют существенными). Поэтому план Хk оказывается оптимальным для задачи с матрицей Сk
Но матрица Сk получена эквивалентными преобразованиями из исходной матрицы С. Докажем, что Хk - оптимален и для задачи с матрицей С. Матрицы С и Сk как эквивалентные связаны соотношениями
Но и не зависит от плана Хk, поэтому план Хk оптимален и для исходной задачи с матрицей С.
Перейдем теперь к обоснованию алгоритма.
Предварительный этап. На предварительном этапе строят матрицу Хk элементы которой удовлетворяют условиям
, (3.3.15)
. (3.3.16)
Если все условия (3.3.15), (3.3.16) выполняются как строгие равенства, то план Х0 - оптимален, согласно только что доказанному.
Первый этап. Цель первого этапа состоит в отыскании такого невыделенного нуля , для которого . Предположим, что такой нуль найден, и мы перешли ко второму этапу.
Второй этап. Он состоит в построении цепочки из нулей со штрихами и звездочками и переходе к Хk+1.
Элементы матрицы Хk+1 вычисляют по рекуррентным формулами
Так как в каждой строке и столбце имеется как 0', так и 0*, либо они оба отсутствуют, за исключением строки и столбца , где имеется лишь 0
)
Поэтому, если матрица Хk удовлетворяла ограничениям (3.3.15), (3.3.16), то и матрица Хk+1 будет им также удовлетворять.
Третий этап. В соответствии с правилами перехода от Сk к С'k при выборе элемента h > 0 элементы невыделенных строк Сk уменьшаются на величину h, появляются новые нули, и можно снова перейти к первому этапу. При этом по правилу выделения строк и столбцов все существенные нули Сk останутся нулями и в матрице C'k.
Пример 3.5. Найти решение транспортной задачи со следующими условиями:
Проверим условие баланса
Предварительный этап. Вычитаем из элементов первого столбца 2, из второго - 3, из третьего -1, из четвертого -2. Приходим к матрице С1. Далее, вычитая минимальный элемент из элементов каждой строки, получаем матрицу С0:
Строим начальную матрицу перевозок
Невязки для столбцов ?j = 0, 1, 9, 0, для строк ?j = 4; 6; 0. Суммарная невязка
Первая итерация. Первый этап. Отмечаем знаком “+” сверху первый и четвертый столбцы, которым соответствуют нулевые невязки, а знаком “х” слева первую и вторую строки, которым отвечают ненулевые невязки, черточкой сверху - существенные нули.
Просматриваем невыделенный второй столбец матрицы С0, находим в нем невыделенный нуль С32 = 0 и отмечаем его штрихом. Так как ?3 = 0, то выделяем третью строку знаком “+”. Просматриваем третью строку относительно выделенных столбцов. Там существенных нулей нет. Поскольку в С0 больше не осталось невыделенных нулей (все нули расположены в выделенных строках или столбцах), то переходим к третьему этапу.
Третий этап. Среди элементов невыделенных строк и столбцов матрицы С0 находим минимальный элемент h = 1, прибавляем его ко всем элементам выделенных столбцов и вычитаем из всех элементов невыделенных строк. Получим матрицу С1.
Переходим к первому этапу.
Первый этап. Среди невыделенных столбцов находим нулевой элемент С22, который расположен в строке с ненулевой невязкой, а потому переходим ко второму этапу.
Второй этап. Цепочка состоит из одного элемента С22 = 0. Находим и прибавим1 = 1 к элементу х1. Получим матрицу Х1.
Вторая итерация. Первый этап. В матрице С1 отмечаем знаком “+” первый, второй и четвертый столбцы, которым отвечают нулевые невязки. Находим в третьем столбце нуль С33 = 0 и отмечаем его штрихом.
Так как невязка в третьей строке равна нулю, то выделяем ее знаком “+”. Просматриваем эту строку, находим в ней существенный нуль С32, расположенный в выделенном столбце. Отмечаем его звездочкой и уничтожаем знак выделения второго столбца.
Далее просматриваем второй столбец и отыскиваем в нем невыделенный нуль С22. Так как невязка по строке ?2 > 0, то отметив этот нуль штрихом, переходим ко второму этапу.
Второй этап. Строим цепочку в матрице С1 вида , а затем аналогичную цепочку в матрице Х1.
В результате получаем матрицу Х2: ?2 = min {5, 8, 9} = 5
Третья итерация. Первый этап. В матрице С2 отмечаем знаком “+” первый, второй и четвертый столбцы, которым соответствуют нулевые невязки. Находим нулевой элемент С33 в третьем столбце. Так как ему соответствует нулевая невязка в третьей строке, то отмечаем этот нуль штрихом. Далее, просматриваем третью строку, отыскиваем в ней существенный нуль С32 = 0, расположенный в выделенном втором столбце, отмечаем звездочкой этот нуль и уничтожаем знак выделения над вторым столбцом. Просматриваем второй столбец, находим в нем нулевой элемент С22 = 0 и отмечаем его штрихом, а вторую строку, где он лежит, знаком “+” (так как ?2 = 0).
Далее, просмотрев вторую строку, находим в ней существенный нуль С21 = 0 в выделенном первом столбце. Поэтому выделяем этот нуль звездочкой и уничтожаем знак “+” над первым столбцом.
h = min {4, 3, 2} = 2
На этом процесс выделения нулей заканчиваем. Так как больше выделенных нулей не имеется, то переходим к третьему этапу.
Третий этап. Находим минимальный невыделенный элемент в матрице С2 h = 2, вычитаем h из всех элементов невыделенных строк и прибавляем ко всем элементам выделенных столбцов (т.е. прибавляем к четвертому столбцу и вычитаем из первой строки). В результате получим матрицу С3, в которой появился новый невыделенный нуль (С- 13). Переходим к первому этапу.
Первый этап. В матрице С3 находим невыделенный нуль С13. Так как ?1 > 0, то переходим ко второму этапу.
Второй этап. Вся цепочка состоит из одного элемента . Поэтому ?3 = min {?1 = 4, ?2 = 4} = 4. Прибавим ?3 к , получим матрицу X3.
Так как ?3 = 0, то Х3 - оптимальный план. Соответствующее значение целевой функции Lорт = (сравните с результатами решения этой задачи методом потенциалов, см. пример 3.3).
Транспортная задача с ограниченными пропускными способностями
Рассмотрим Тd - задачу:
Минимизировать
при условиях
Введем следующие определения.
1. Элемент сij = 0 матрицы С называется Х - неполным нулем, если в плане Х Тd-задачи элемент хij < dij. Если же хij = dij, то элемент сij называется Х - полным нулем.
2. Х - существенным нулем матрицы С называется такой ее элемент сij = 0, для которого хij > 0, в противном случае этот элемент называется несущественным нулем.
Описание алгоритма венгерского метода. Алгоритм решения Тd-задачи, основанный на венгерском методе, состоит из предварительного этапа и ряда однотипных итераций [18; 59].
Предварительный этап. Его цель - приведение матрицы С и построение начального приближения к решению Х0.
В каждом столбце матрицы С разыскивают минимальный элемент и вычитают из всех элементов данного столбца. В результате получают матрицу С'. Далее, из всех элементов каждой строки С' вычитают минимальный элемент этой строки и получают в результате матрицу С0(С0?С), в каждой строке и столбце которой имеется хотя бы один нуль.
После этого формируют матрицу Х0=|| xij0 ||, процесс построения которой ведут по столбцам. Пусть уже заполнены первые (j-1) столбцы матрицы Х0. Перенумеруем нули j-го столбца матрицы С0 сверху вниз и через ikj (k=1,2,…,r) обозначим номер строки, содержащей k-й нуль j-го столбца. Тогда элементы j-го столбца определяются в соответствии с формулой
если k=1,2.. (3.3.21)
Если для матрицы Х0 суммарная невязка
венгерский метод транспортная задача
то Х0 - оптимальной план Тd-задачи.
Если же ?0>0, то переходят к первой итерации.
Каждая итерация алгоритма в общем случае включает 3 этапа: начинается первым этапом, затем несколько раз могут повторяться первый и третий этапы, а заканчивается итерация вторым этапом либо установлениемнеразрешимости данной задачи.
(k+1)-я итерация. Предположим, что уже осуществлено k итераций алгоритма, в результате которых получены матрицы Хk и Сk.
Пусть и еще не установлена неразрешимость Т?-задачи.
Целью (k+1)-й итерации является построение матрицы Хk+1 и проверка ее на оптимальность или на установление неразрешимости Тd-задачи. Перед началом итерации знаком “+” выделяют те столбцы матрицы Сk, для которых невязк
Первый этап. Выбирают произвольный невыделенный Хk- неполный нуль матрицы Сk, если это элемент Сijk , то вычисляют невязку строки i
Тогда возможен один из двух случаев:
Во втором случае, отметив этот невыделенный нуль cijk =0 знаком штрих, сразу переходим ко второму этапу.
В первом случае знаком “+” выделяют i -ю строку матрицы Сk , а элемент сijk отмечают штрихом. Если на пересечении м-го выделенного столбца i-й строки матрицы Сk расположен Хk-существенный нуль матрицы Сk , то знак выделения этого столбца уничтожают, а сам элемент ciмk =0 отмечают звездочкой. Далее просматривают столбец ?, отыскивают в нем невыделенный неполный нуль (нули). Если такой нуль имеется, то отмечают его штрихом и анализируют строку, содержащую его. За конечное число шагов процесс выделения Хk-неполных нулей матрицы Сk заканчивается одним из трех исходов:
1) найден Хk-неполный нуль в строке і, где > 0, тогда переходим ко второму этапу, отметив этот нуль штрихом;
2) все Хk-неполные нули выделены, для каждого из них , а среди невыделенных элементов матрицы Сk имеются либо положительные, либо среди дважды выделенных элементов Сk (т.е. элементов, расположенных на пересечении выделенных строк и столбцов), отрицательные элементы. В этом случае переходим к третьему этапу;
3) все Хk-неполные нули выделены (для кажого из них ?и(k) = 0), все невыделенные элементы Сk - отрицательны, а дважды выделенные -положительны. Это означает неразрешимость Тd - задачи.
Второй этап. Он состоит в построении цепочки из нулей матрицы Сk, отмеченных штрихами и звездочками. С помощью этой цепочки осуществляют переход от Хk к Хk+1. Итак, пусть первый этап завершился таким образом, что для некоторого невыделенного неполного нуля, расположенного, например, на пересечении строки ?1 и столбца ?1, невязка . Этот элемент принимают за начало цепочки из отмеченных нулей матрицы Сk. Цепочку строят так.
Движутся по столбцу ?1 матрицы С0 и находят в нем нуль со звездочкой , далее движутся от него по строке ?1 и находят и т.д. Процесс построения цепочки, складывающийся из последовательных переходов от нуля со штрихом к нулю со звездочкой по столбцу и от нуля со звездочкой к нулю со штрихом по строке, всегда начинается и заканчивается на нуле со штрихом.
Элементы хij(k+1) матрицы Хk+1 вычисляют по рекуррентной формуле
если - не входят в цепочку;
если - нечетный элемент цепочки;
если - четный элемент цепочки.
(3.3.23)
Если суммарная невязка
то матрица Хk+1 является решением Тd-задачі, в противном случае переходят к следующей итерации.
Третий этап. На этом этапе производят преобразование матрицы Сk в эквивалентную матрицу Сk'.
Пусть первый этап закончился вторым исходом.
где h' - минимальный среди невыделенных положительных элементов матрицы Сk ; h'' - минимальный среди дважды выделенных отрицательных элементов матрицы Сk , взятых с обратным знаком. Вычитаем h из элементов матрицы Сk , расположенных в невыделенных строках, и прибавляем h к элементам Сk , расположенным в выделенных столбцах. Получим матрицу Сk' . Если дважды выделенный отрицательный элемент Сk становится нулем вСk' , то знак выделения над столбцом уничтожают, а сам элемент отмечают звездочкой. Остальные знаки выделения, а также все отметки нулей переносят из матрицы Сk в матрицу Сk'.
Далее, снова переходят к первому этапу, заменив Сk на Сk'. Если первый этап снова завершится вторым исходом, то опять возвращаются к третьему этапу. Циклы, состоящие из первого и третьего этапов, проводят до тех пор, пока последний из них не закончится первым или третьим исходом. При первом исходе переходят ко второму этапу, а при третьем - делают вывод о неразрешимости Тd-задачи из-за несовместимости ее условий.
Пример 3.6. Решить венгерским методом Тd-задачу со следующими условиями
-- матрица пропускных способностей коммуникаций.
Предварительный этап. Составляем матрицу С:
.
Затем строим матрицу Х0 с учетом матрицы D:
Будем отмечать одной точкой сверху неполные нули матрицы Сk , а двумя точками Хk -полные нули этих матриц. Строки матрицы Сk , которым отвечают ненулевые невязки, будем отмечать знаком “?”.
Первая итерация Третий этап
Первый этап Второй этап
Первая итерация. Первый этап. Знаком “+” выделяем четвертый столбец. Так как матрица С0 не содержит ни одного Х0 - неполного нуля, то сразу переходим к третьему состоянию, отыскиваем неполный невыделенный нуль, c23 и, отметив его штрихом, переходим ко второму этапу. Цепочка, построенная на втором этапе, состоит из одного элемента x320 . Поэтому
Вторая итерация
Третья итерация Первый этап Третий этап
Второй этап
?3 = 2
Третья итерация состоит из первого и третьего этапов при h = 1, а также из первого и второго этапов, причем цепочка второго этапов, причем цепочка второго этапа содержит лишь один элемент x312.
Четвертая итерация
Первый и третий этапы
Третий этап Первый этап
Второй этап
Поскольку суммарная невязка ?4=0, то Х4-оптимальный план. Соответствующее значение целевой функции Lmin=3·I + 1·4 + 2·2 + 1·4 + 2·1 + 1·3 + 1·2 + 1·1 = 23.
Размещено на www.allbest.
...Подобные документы
Постановка задачи о коммивояжере. Нахождение оптимального решения с применением метода ветвей и границ. Основной принцип этого метода, порядок его применения. Использование метода верхних оценок в процедуре построения дерева возможных вариантов.
курсовая работа [167,8 K], добавлен 01.10.2009Основные этапы решения транспортной задачи, использование метода потенциалов. Алгоритм решения методом аппроксимации Фогеля. Процедура построения цикла. Планирование перевозок из конечного числа пунктов отправления в конечное число пунктов назначения.
контрольная работа [32,6 K], добавлен 26.04.2011Краткий обзор решения транспортных задач. Экономическая интерпретация поставленной задачи. Разработка и описание алгоритма решения задачи. Построение математической модели. Решение задачи вручную и с помощью ЭВМ. Анализ модели на чувствительность.
курсовая работа [844,3 K], добавлен 16.06.2011Сущность и назначение основных алгоритмов оптимизации. Линейное программирование. Постановка и аналитический метод решения параметрической транспортной задачи, математическая модель. Метод решения задачи об оптимальных перевозках средствами MS Excel.
курсовая работа [465,6 K], добавлен 24.04.2009Определение наиболее выгодного соотношения сортов сырой нефти, используемой для производства бензина. Математическая постановка задачи. Выбор метода решения задачи. Описание алгоритма решения задачи (симплекс-метода) и вычислительного эксперимента.
курсовая работа [1,1 M], добавлен 08.12.2010Особенности решения транспортной задачи распределительным методом и анализ результатов. Построение математической модели, алгоритма. Создание программы для решения транспортной задачи распределительным методом в программной среде Borland Delphi 7.
курсовая работа [1000,7 K], добавлен 23.06.2012Оптимизация решения задачи с помощью алгоритма отжига. Анализ теории оптимизации как целевой функции. Метод градиентного спуска. Переменные и описание алгоритма отжига. Представление задачи коммивояжера через граф. Сведение задачи к переменным и решение.
курсовая работа [784,0 K], добавлен 21.05.2015Постановка линейной целочисленной задачи. Метод отсекающих плоскостей. Дробный алгоритм решения полностью целочисленных задач. Эффективность отсечения Гомори. Сравнение вычислительных возможностей метода отсекающих плоскостей и метода ветвей и границ.
курсовая работа [178,2 K], добавлен 25.11.2011Сущность симплекс-метода. Общая характеристика задачи о смесях. Разработка основных алгоритмов решения задачи. Решение задачи в среде визуального программирования Delphi. Проектирование интерфейса пользователя. Разработка форм ввода-вывода информации.
курсовая работа [476,6 K], добавлен 22.05.2012Составление программы для расчета начального базиса сбалансированной транспортной задачи, где суммарные запасы поставщиков равны суммарным запросам потребителей. Алгоритм метода потенциалов. Пример решения транспортной задачи методом наименьшей стоимости.
отчет по практике [991,3 K], добавлен 06.12.2013Описание алгоритма решения транспортной задачи по планированию перевозки зерна. Ход решения задачи вручную, в программе TORA методом наименьшего элемента, с помощью MS Excel. Разработка программы для решения задачи в общем виде средствами Delphi.
курсовая работа [2,5 M], добавлен 22.11.2012Особенности метода неопределенных множителей Лагранжа, градиентного метода и метода перебора и динамического программирования. Конструирование алгоритма решения задачи. Структурная схема алгоритма сценария диалога и описание его программной реализации.
курсовая работа [1010,4 K], добавлен 10.08.2014Общие задачи линейного программирования. Описание алгоритма симплекс-метода, записанного в канонической форме с односторонними ограничениями. Алгоритм построения начального опорного плана для решения задачи. Расширенный алгоритм искусственного базиса.
курсовая работа [142,9 K], добавлен 24.10.2012Анализ метода касательных (метода секущих Ньютона), аналитическое решение нелинейного уравнения. Описание алгоритма решения задачи, пользовательских идентификаторов, блок-схем, программного обеспечения. Тестирование программы на контрольном примере.
курсовая работа [97,1 K], добавлен 10.01.2014Решение задачи линейного программирования графическим методом, его проверка в MS Excel. Анализ внутренней структуры решения задачи в программе. Оптимизация плана производства. Решение задачи симплекс-методом. Многоканальная система массового обслуживания.
контрольная работа [2,0 M], добавлен 02.05.2012Теоретические сведения, касающиеся метода. Алгоритм решения задачи. Обоснование выбора структур данных. Программа. Тестирование программы. Создание программного продукта, находящего решения головоломки "Y-пентамино".
курсовая работа [55,9 K], добавлен 08.06.2006Создание и реализация алгоритма решения транспортной задачи методом наименьших стоимостей. Схема алгоритма основной программы. Основные шаги алгоритма решения транспортной задачи. Инструкция по эксплуатации программы и обзор результатов ее выполнения.
курсовая работа [2,0 M], добавлен 12.02.2013Фурье и Данцига как основоположники методов математического программирования. Знакомство с теорией решения транспортных задач. Анализ способов применения симплекс-метода. Рассмотрение примера решения транспортной задачи в области электроэнергетики.
презентация [981,0 K], добавлен 28.04.2014Описание симплекс метода решения задачи линейного программирования. Решение задачи методом Литла на нахождение кратчайшего пути в графе, заданном графически в виде чертежа. Из чертежа записываем матрицу расстояний и поэтапно находим кратчайший путь.
задача [390,4 K], добавлен 10.11.2010Программа для решения транспортной задачи. Метод потенциалов, его математический смысл и порядок действий по его применению. Математические методы решения транспортных задач. Вычисление стоимости перевозок, расхода топлива, общей прибыли и окупаемости.
курсовая работа [33,7 K], добавлен 20.11.2008