Базы данных

Хранение и обработка больших объемов информации. Понятие информационной системы. Виды структур данных. Виды баз данных. Состав и функции систем управления базами данных. Справочные ограничения целостности. Сетевая структура и организация данных.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 13.03.2013
Размер файла 98,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Понятие информационной системы

Базы данных - важнейшая составная часть информационных систем. Здесь мы ограничимся лишь кратчайшими общими сведениями об информационных системах, сосредоточив внимание на базах данных как таковых.

Информационные системы предназначены для хранения и обработки больших объемов информации. Изначально такие системы существовали в письменном виде. Для этого использовались различные картотеки, папки, журналы, библиотечные каталоги и т.д. Любая информационная система должна выполнять три основные функции: ввод данных, запросы по данным, составление отчетов.

Ввод данных. Система должна предоставлять возможность накапливания и упорядочивания данных. Необходимо обеспечить просмотр этих данных, внесение в них изменений и дополнений с тем, чтобы поддерживать актуальность информации.

Запросы по данным. В системе должна существовать возможность находить и просматривать отдельные части накопленной информации.

Составление отчетов. Время от времени возникает необходимость обобщать и анализировать большую группу данных (или даже все данные) информационной системы, представляя ее в виде документа.

Обслуживание информационных систем, реализованных в письменном (бумажном) виде, сопряжено со многими трудностями: чем больше информационная система, тем больше бумаги (карточек) и места требуется для их хранения (в этом можно убедиться на примере библиотеки); много времени тратится на поиск нужной информации. Сложности возникают при обновлении, анализе и обработке данных.

Предположим мы хотим собрать информацию про альбомы музыкальных групп. Пусть имеется информация о некоторых альбомах: 1965, Led Zeppelin 4, Lp, Help!, Atlantic, 1971. Lp(England), EMI. 1970, Flash Gordon, Parlophone, 1980, Led Zeppelin 3, Soundtrack, Lp, Atlantic. Этот список мало о чем говорит. Извлечь какую-либо информацию из этого набора данных практически невозможно.

Представив эти данные в виде таблицы информацию воспринимать и использовать стало гораздо удобнее. Представленная таблица является информационной моделью. Объектами, отраженными в этой модели, являются музыкальные альбомы (групп), причем все данные взаимосвязаны.

2. Виды структур данных

В информатике совокупность взаимосвязанных данных называется информационной структурой, или структурой данных. В нашем примере объектами модели являются музыкальные альбомы. Свойства же этих объектов находятся в столбцах таблицы (“Название альбома”, “Год выпуска”, “Тип альбома”, “Фирма”), их называют атрибутами объектов. Таким образом, каждая строка таблицы - есть совокупность атрибутов объекта. Такую строку называют записью, а столбец - полем записи.

Помимо сведений, указанных в атрибутах, табличная организация данных позволяет получить дополнительную информацию. К примеру, нетрудно узнать (в предположении, что наша табл. 2.2 заполнена данными):

* какая группа выпустила больше альбомов за определенный период;

* число альбомов данной группы;

* сколько имеется альбомов типа Soundtrack (музыка к фильму);

* какая фирма выпустила наибольшее число альбомов данной группы.

Табличная организация данных называется также реляционной. Кроме табличной структуры данных существуют другие виды структурной организации данных.

Для иерархических структур (рис. 1) характерна подчиненность объектов нижнего уровня объектам верхнего уровня. Важно отметить, что в дереве, между верхними и нижними объектами, задано отношение “один ко многим” (т.е. одной группе соответствует много альбомов, одному альбому соответствует много песен).

Несмотря на то, что в атрибутах, описывающих песню, нет названия альбома, глядя на дерево по линиям связи можно сказать, какая песня принадлежит альбому. Благодаря линиям связи можно определить принадлежность альбома группе. Из данной иерархической структуры можно узнать:

* в каком альбоме больше песен;

* число альбомов выпущенных группой;

* есть ли в альбомах одинаковые песни и т.д.

Сетевую структуру данных можно представить в виде схемы

Рис. 2. Пример сетевой организации данных

Глядя на рис. 2, можно определить, какими инструментами владеет музыкант, является ли он вокалистом. В этом случае есть два уровня взаимосвязанных объектов, но отношение между ними “многие ко многим”.

Пусть в этой сетевой структуре данные о музыкантах и “инструментах” состоят из следующих атрибутов: музыкант - ФИО, рост, цвет волос, время рождения; инструмент- название инструмента, какой фирмой изготовлен инструмент.

Тогда схема позволяет ответить на следующие вопросы:

* гитары какой фирмы предпочитает большинство музыкантов;

* какой музыкант владеет наибольшим количеством инструментов и др.

Построение структуры данных происходит в следующем порядке:

* определяются объекты описания;

* определяются структуры этих объектов;

* выбирается тип структуры, отображающий отношения между объектами (табличная, иерархическая, сети);

* строится конкретная информационная структура.

3. Виды баз данных

информация база данные управление

Дадим основное определение. База данных - это реализованная с помощью компьютера информационная структура (модель), отражающая состояние объектов и их отношения.

Следует учесть, что это определение не является единственно возможным. Информатика в отношении определений чаще всего не похожа на математику с ее полной однозначностью. Если подойти к понятию “база данных” с чисто пользовательской точки зрения, то возникает другое определение: база данных - совокупность хранимых операционных данных некоторого предприятия. Все дело в том, какой аспект доминирует в рассмотрении; в данной главе первое из определений более уместно.

Поскольку основу любой базы данных составляет информационная структура, базы данных делят на три рассмотренные выше типа: табличные (реляционные), сетевые, иерархические.

Опыт использования баз данных позволяет выделить общий набор их рабочих характеристик:

* полнота - чем полнее база данных, тем вероятнее, что она содержит нужную информацию (однако, не должно быть избыточной информации);

* правильная организация - чем лучше структурирована база данных, тем легче в ней найти необходимые сведения;

* актуальность - любая база данных может быть точной и полной, если она постоянно обновляется, т.е. необходимо, чтобы база данных в каждый момент времени полностью соответствовала состоянию отображаемого ею объекта;

* удобство для использования - база данных должна быть проста и удобна в использовании и иметь развитые методы доступа к любой части информации.

Соответственно возможностям организации реляционных, иерархических и сетевых информационых структур, существуют и аналогичные виды баз данных. В них данные представлены в формах, адекватных соответствующим структурам. Однако иерархические и сетевые базы данных являются гораздо менее распространенными, чем реляционные и не могут быть реализованы с помощью наиболее популярных СУБД, входящих в состав программного обеспечения ЭВМ, поэтому на них далее останавливаться не будем.

3.1. Реляционные базы данных

Наиболее распространенными в практике являются реляционные базы данных. Название “реляционная” (в переводе с английского relation - отношение) связано с тем, что каждая запись в таблице содержит информацию, относящуюся только к одному конкретному объекту.Всякое отношение должно иметь свое имя. Пусть есть отношение с названием “Альбомы группы”. В этом случае структура базы данных, состоящая из одной таблицы, запишется так: Альбомы группы (название альбома, год выпуска, тип альбома, фирма). Однако чаще база данных строится на основе нескольких таблиц, связанных между собой через общие атрибуты. Пусть, например, в базе данных “Рок-энциклопедия” содержатся две таблицы - 2, а и 2, б.

Таблица 2, а Музыкальные альбомы групп

Код альбома

Код группы

Название альбома

Год выпуска

Тип альбома

Фирма

Таблица 2, б Рок группы

Код группы

Название группы

Страна

Дата создания

Дата распада

Эти две таблицы связаны между собой общим полем “Код группы”. Поле “Код альбома” в таблице 2, а создается для того, чтобы отличать альбомы друг от друга. Это очень важно, так как в таблице могут находиться альбомы с одинаковыми названиями.

Необходимость использования больше одной таблицы станет заметной, если объединить эти таблицы в одну (табл. 2.4).

Таблица 3. Объединение таблиц 2

Название группы

Страна

Дата создания

Дата распада

Название альбома

Год выпуска

Тип альбома

Фирма

Из таблицы 3 видно, что при внесении в нее данных об альбомах определенной группы каждый раз приходится дублировать информацию первых четырех полей таблицы. Многократное сохранение в БД одних и тех же данных (название группы, страна, дата создания, дата распада) приведет к неэффективному использованию памяти, к тому же существенно возрастет вероятность ошибок при вводе данных. Разбив же данные по таблицам, можно в значительной степени избежать этих трудностей.

Через связь, определенную между этими таблицами, можно узнать

сколько альбомов выпустила группа;

* выпускались ли альбомы у фирмы EMI;

* в каком году было выпущено максимальное количество альбомов и т.п.

Реляционные базы данных удобны еще и тем, что для получения ответов на различные запросы существует разработанный математический аппарат, который называется исчислением отношений или реляционной алгеброй. Ответы на запросы получаются путем “разрезания” и “склеивания” таблиц по строкам и столбцам. При этом ясно, что ответы также будут иметь форму таблиц.

Надо отметить, что база данных - это, собственно, хранилище информации и не более того. Однако, работа с базами данных трудоемкая и утомительная. Для создания, ведения и осуществления возможности коллективного пользования базами данных используются программные средства, называемые системами управления базами данных (СУБД).

4. Состав и функции систем управления базами данных

База данных предполагает наличие комплекса программных средств, обслуживающих эту базу данных и позволяющих использовать содержащуюся в ней информацию. Такие комплексы программ называют СУБД. СУБД - это программная система, поддерживающая наполнение и манипулирование данными, представляющими интерес для пользователей при решении прикладных задач. Иными словами, СУБД является интерфейсом между базой данных и прикладными задачами.

Ниже перечислены основные функции СУБД.

1. Определение данных - определить, какая именно информация будет храниться в базе данных, задать свойства данных, их тип (например, число цифр или символов), а также указать, как эти данные связаны между собой. В некоторых случаях есть возможность задавать форматы и критерии проверки данных.

2. Обработка данных - данные могут обрабатываться самыми различными способами. Можно выбирать любые поля, фильтровать и сортировать данные. Можно объединять данные с другой, связанной с ними, информацией и вычислять итоговые значения.

3. Управление данными - можно указать, кому разрешено знакомиться с данными, корректировать их или добавлять новую информацию. Можно также определять правила коллективного доступа.

Входящие в состав современных СУБД средства совместно выполняют следующие функции:

* описание данных, их структуры (обычно описание данных и их структуры происходит при инициировании новой базы данных или добавлении к существующей базе новых разделов (отношений); описание данных необходимо для контроля корректности использования данных, для поддержания целостности базы данных);

* первичный ввод, пополнение информации в базе данных;

* удаление устаревшей информации из базы данных;

* корректировку данных для поддержания их актуальности;

* упорядочение (сортировку) данных по некоторым признакам;

* поиск информации по некоторым признакам (для описания запросов имеется специальный язык запросов, он обеспечивает также интерфейс между базой данных и прикладными программами пользователей, позволяет этим программам использовать базы данных);

* подготовку и генерацию отчетов (средства подготовки отчетов позволяют создавать и распечатывать сводки по заданным формам на основе информации базы данных);

* защиту информации и разграничение доступа пользователей к ней (некоторые разделы базы данных могут быть закрыты для пользователя совсем, открыты только для чтения или открыты для изменения; кроме того, при многопользовательском режиме работы с базой данных необходимо, чтобы изменения вносились корректно; для сохранения целостности данных служит механизм трансакций при манипулировании данными - выполнение манипуляций небольшими пакетами, результаты каждого из которых в случае возникновения некорректности операций “откатываются” и данные возвращаются к исходному состоянию);

* резервное сохранение и восстановление базы данных, которое позволяет восстановить утраченную при сбоях и авариях аппаратуры информацию базы данных, а также накопить статистику работы пользователей с базой данных;

* поддержку интерфейса с пользователями, который обеспечивается средствами ведения диалога (по мере развития и совершенствования СУБД этот интерфейс становится все более дружественным; дружественность существующих средств интерфейса предполагает

* наличие развитой системы помощи (подсказки), к которой в любой момент может обратиться пользователь, не прерывая сеанса работы с компьютером и базой данных;

* защиту от необдуманных действий, предупреждающую пользователя и предотвращающую потерю информации в случае поспешных или ошибочных команд;

* наличие нескольких вариантов выполнения одних и тех же действий, из которых пользователь может выбрать наиболее удобные для себя, соответствующие его подготовке, квалификации, привычкам;

* тщательно продуманную систему ведения человеко-машинного диалога, отображение информации на дисплее, использование клавиш клавиатуры). В настоящее время выделяют пять уровней проблематики систем управления базами данных:

* реляционные базы данных, 1970 - 90 гг.;

* объектно-ориентированные базы данных, 1980 - 90 гг.;

* интеллектуальные базы данных, 1985 - 90 гг.;

* распределенные базы данных, начало 1990 гг.;

* базы данных мультимедиа и виртуальной реальности настоящего времени.

Архитектурно СУБД состоит из двух основных компонентов; языка описания данных (ЯОД), позволяющего создать схему описания данных в базе, и языка манипулирования данными (ЯМД), выполняющего операции с базой данных (наполнение, обновление, удаление, выборку информации). Данные языки могут быть реализованы в виде тренажеров или интерпретаторов. Помимо ЯОД и ЯМД к СУБД следует отнести средства (или языки) подготовки отчетов (СПО), позволяющие подготовить сводки (отчеты) на основе информации, найденной в базе данных, по заданным формам.

Язык описания данных (ЯОД) - это язык высокого уровня декларативного (непроцедурного) типа, предназначенный для формализованного описания типов данных, их структур и взаимосвязей. Исходные тексты описания данных на этом языке после трансляции отображаются в управляющие таблицы, задающие размещение в памяти ЭВМ и связи между собой рассматриваемых данных. В соответствии с этими описаниями СУБД находит в базе требуемые данные, правильно преобразует их и передает, например, в прикладную программу пользователя, которой они потребовались. При записи данных в базу СУБД по этим описаниям определяет место в памяти ЭВМ, куда их требуется поместить, преобразует к заданному виду и устанавливает необходимые связи.

Язык манипулирования данными (или язык запросов) представляет собой систему команд, например, следующего типа:

* произвести выборку данного, значение которого удовлетворяет заданным условиям;

* произвести выборку всех данных определенного типа, значения которых удовлетворяют заданным условиям;

* найти в базе позицию данного и поместить туда новое значение (или удалить данное) и т.д.

Широкое распространение имеют СУБД для персональных компьютеров типа DBASE (DBASE III, IV, FoxPro, Paradox), Clipper, Clarion. Эти СУБД ориентированы на однопользовательский режим работы с базой данных и имеют очень ограниченные возможности. Языки подобных СУБД представляют собой сочетание команд выборки, организации диалога, генерации отчетов. В связи с развитием компьютерных сетей, в которых персональные компьютеры выступают в качестве развитых (интеллектуальных) терминалов, новые версии СУБД все в большей степени включают в себя возможности описанного ниже языка манипулирования данными SQL.

В последнее время стали среди СУБД популярными ACCESS (входит в состав MS Office), Lotus, Oracle.

6. СУБД Microsoft Access

Access - в переводе с английского означает “доступ”. MS Access - это функционально полная реляционная СУБД. Кроме того, MS Access одна из самых мощных, гибких и простых в использовании СУБД. В ней можно создавать большинство приложений, не написав ни единой строки программы, но если нужно создать нечто очень сложное, то на этот случай MS Access предоставляет мощный язык программирования - Visual Basic Application.

Популярность СУБД Microsoft Access обусловлена следующими причинами:

* Access является одной из самых легкодоступных и понятных систем как для профессионалов, так и для начинающих пользователей, позволяющая быстро освоить основные принципы работы с базами данных;

* система имеет полностью русифицированную версию;

* полная интегрированность с пакетами Microsoft Office: Word, Excel, Power Point, Mail;

* идеология Windows позволяет представлять информацию красочно и наглядно;

* возможность использования OLE технологии, что позволяет установить связь с объектами другого приложения или внедрить какие-либо объекты в базу данных Access;

* технология WYSIWIG позволяет пользователю постоянно видеть все результаты своих действий;

* широко и наглядно представлена справочная система;

* существует набор “мастеров” по разработке объектов, облегчающий создание таблиц, форм и отчетов.

Объекты и концепции базы данных

База данных состоит из различных объектов, таких как таблицы, виды, домены, сохраненные процедуры, триггеры. Объекты базы данных содержат всю информацию о ее структуре и данных. Объекты базы данных так же упоминаются, как метаданные.

Следующие разделы содержат краткую информацию об объектах и концепциях базы данных InterBase:

Таблицы (Tables)

Столбцы (Columns)

Типы данных (Data types)

Домены (Domains)

Справочные ограничения целостности (Referential integrity constraints)

Индексы (Indexes)

Виды (Views)

Сохраненные процедуры (Stored procedures)

Триггеры (Triggers)

Генераторы (Generators)

Защита (Security)

Таблицы (Tables)

Реляционные базы данных хранят все данные в таблицах. Таблица это структура, состоящая из множества неупорядоченных горизонтальных строк (rows), каждая из которых содержит одинаковое количество вертикальных столбцов (colums). Пересечение отдельной строки и столбца называеися полем (field), которое содержит специфическую информацию. Многие принципы работы реляционной базы данных взяты из определений отношений (relations) между таблицами.

InterBase хранит информацию о метаданных в специальных таблицах, которые называются системными таблицами (system tables). Системные таблицы имеют специальные столбцы, которые содержат информацию о типе метаданных в этой таблице. Имена всех системных таблиц начинаются с "RDB$". Пример системной таблицы - RDB$RELATIONS, которая содержит информацию о каждой таблице в базе данных.

Системные таблицы имеют такую же структуру, как и определенные пользователем таблицы и расположенны в той же самой базе. Так как метаданные, пользовательские таблицы, и данные все вместе расположены в одном и том же файле базы данных, каждая база данных является законченным модулем и может быть легко перенесена между различными машинами.

Системные таблицы могут быть изменены подобно любой другой таблице базы данных. Если вы не понимаете всех взаимосвязей между системными таблицами, то непосредственное изменение их может иметь негативный эффект на другие системные таблицы и разрушить вашу базу данных.

Столбцы (Columns)

Создание таблицы главным образом подразумевает определение столбцов таблицы. Главные атрибуты столбца включают:

Имя столбца;

Тип данных столбца или домен на котором он базируется;

Может или нет поле столбца принимать значение NULL;

Факультативно справочные ограничения целостности (referential integrity constraints).

Типы данных (Data types)

Данные сохранены в определенном формате, который называется типом данных (data type). Типы данных могут быть классифицированы по четырем категориям: числовые (numeric), символьные (character), даты (date) и BLOB. Числовые данные включают в себя все числа, начиная с целых вплоть до чисел двойной точности с плавающей точкой. Символьные данные содержат строки текста. Даты используются для хранения дат и времени.

В то время как числовые, символьные и даты являются стандартными типами данных, BLOB-тип заслуживает специального внимания.

Тип данных BLOB

InterBase поддерживает такой тип данных, как большие бинарные объекты (binary large object - BLOB), которые могут хранить данные неограниченного размера. Тип BLOB это расширение стандартной реляционной модели, которая обычно обеспечивает только типы данных фиксированной длины.

Тип данных BLOB аналогичен последовательному файлу (flat file), BLOB данные могут быть сохранены в любом формате (к примеру, бинарном или ASCII). BLOB, однако, это не отдельный файл. BLOB данные хранятся в базе данных наряду со всеми другими данными. Так как BLOB столбцы часто содержат большие и переменные объемы данных, BLOB столбцы хранятся в отдельных сегментах.

InterBase не поддерживает непосредственно преобразование BLOB данных в другие форматы, но на некоторых платформах, BLOB фильтры могут транслировать BLOB данные из одного формата в другой.

Домены (Domains)

В добавление к явному определению типа данных столбцов, InterBase обеспечивает глобальные определения столбцов или домены (domains), на которых могут базироваться определения столбцов. Домен содержит информацию о тип данных, устанавливает атрибуты и ограничения целостности столбцов. В последующем при создании таблиц возможно использовать домены для определения столбцов.

Справочные ограничения целостности (Referential integrity constraints)

InterBase позволяет вам определять правила обеспечивающие целостность информации хранящейся в столбцах, эти првавила названы справочными ограничениями целостности (referential integrity constraints). Ограничения целостности управляют связями типа столбец-таблица (column-to-table) и таблица-таблица (table-to-table) а также проверкой ввода данных. Они выпонены через первичные ключи (primary keys), внешние ключи (foreign keys) и проверочные ограничения (check constraints). Обычно первичный ключ это столбец (или группа столбцов), которые используются, чтобы уникально идентифицировать строку таблицы. Внешний ключ это столбец, чьи значения должны соответствовать значениям столбца в другой таблице. Проверочные ограничения - ограничивают ввод данных определенным диапазоном или набором значений.

Например, таблица EMPLOYEE могла бы быть определена имеющей внешний ключ столбец DEPT_NO. Который определен в соответствии со столбцом номера отдела в таблице DEPARTMENT. Это гарантировало бы, что каждый служащий из таблицы EMPLOYEE связан с существующим отделом в таблице DEPARTMENT.

Индексы (Indexes)

Индексы это механизм для улучшения быстродействия поиска данных. Индекс определяет столбцы которые могут быть использованы для эффективного поиска и сортировки в таблице.

InterBase автоматически определят уникальные индексы для первичных и внешних ключей таблицы.

Виды (Views)

Вид (view) это виртуальная таблица, которая не сохранена физически в базе данных, но ведет себя точно также как "реальная" таблица. Вид может содержать данные из одной или более таблиц или других видов и используется для хранения часто используемых запросов (queries) или множества запросов в базе данных.

Виды могут также обеспечивать ограниченные средства защиты, так как они могут обеспечивать доступ пользователей к подмножеству доступных данных при скрытии других связанных и чувствительных данных.

Сохраненные процедуры (Stored procedures)

Сохраненные процедуры (stored procedure) это отдельные программы, написанные на языке процедур и триггеров InterBase, который является расширением SQL. Сохраненные процедуры являются частью метаданных базы данных. Сохраненные процедуры могут получать входные параметры, возвращать значения приложению и могут быть вызваны явно из приложения или подстановкой вместо имени таблицы в инструкции SELECT.

Сохраненные процедуры обеспечивают следующие возможности:

Модульный проект: сохраненные процедуры могут быть общими для приложений, которые обращаются к той же самой базе данных, что позволяет избегать повторяющегося кода, и уменьшает размер приложений.

Упрощают сопровождение приложений: при обновлении процедур, изменения автоматически отражаются во всех приложениях, которые используют их без необходимости их повторной компиляции и сборки.

Улучшают эффективность работы: Особенно для удаленных клиентов. Сохраненные процедуры выполняются сервером, а не клиентом, что снижает сетевой трафик.

Триггеры (Triggers)

Триггеры это отдельная программа, ассоциированная с таблицей или видом, которая автоматически выполняет действия, при добавлений, изменений или удалений строки в таблице или виде.

Триггеры могут обеспечивать следующие возможности:

Автоматическое ограничение ввода данных, что бы гарантировать, что пользователь ввел только допустимые значения в поля столбцов.

Упрощение сопровождения приложений, так как изменение в триггере автоматически отражается во всех приложения, которые используют таблицы со связанными с ними триггерами.

Автоматическое документирование изменений таблицы. Приложение может упровлять логом изменений с помощью триггиров, которые выполняются всякий раз, когда происходит изменение таблицы.

Когда триггер вызван, он имеет непосредвенный доступ к добавлению, изменению или уничтожению данных. Триггеру могут быть так же доступны данные из других таблиц. Вы можете разрабатывать триггеры для:

Завершения операции, возможно с сообщением об ошибке.

Установки значений в записи к торой вы обращаетесь.

Добавления, изменения или удаления строк в других таблицах.

Генераторы (Generators)

Генератор (generator) это механизм который создает последовательный уникальный номер, который автоматически вставляется в столбец базой данных, когда выполняются операции INSERT или UPDATE. Генератор обычно применяется для создания уникальных значений, вставляемых в столбец, который используется как PRIMARY KEY. Для базы данных может быть определено любое число генераторов, каждый генератор должен имеет уникальное имя.

Защита (Security)

SQL защита (securite) управляется на уровне таблицы привилегий доступа - списка операций, которые разрешены пользователю над данной таблицей или видом. Инструкция GRANT назначает привилегии доступа к таблице или виду конкретным пользователям или процедурам. Инструкция REVOKE удаляет предварительно предоставленные привилегии доступа.

Размещено на Allbest.ru

...

Подобные документы

  • Хранение и обработка данных. Компоненты системы баз данных. Физическая структура данных. Создание таблиц в MS Access. Загрузка данных, запросы к базе данных. Разработка информационной системы с применением системы управления базами данных MS Access.

    курсовая работа [694,0 K], добавлен 17.12.2016

  • Системы автоматизированной обработки информации. Хранение большого объема информации. Понятие базы данных (БД). Обеспечение секретности данных. Уровни представления данных в БД. Логическая структура данных. Ограничения, накладываемые на данные.

    реферат [65,2 K], добавлен 26.11.2011

  • Основные виды баз данных. Система управления базами данных. Анализ деятельности и информации, обрабатываемой в поликлинике. Состав таблиц в базе данных и их взаимосвязи. Методика наполнения базы данных информацией. Алгоритм создания базы данных.

    курсовая работа [3,1 M], добавлен 17.12.2014

  • Формы представляемой информации. Основные типы используемой модели данных. Уровни информационных процессов. Поиск информации и поиск данных. Сетевое хранилище данных. Проблемы разработки и сопровождения хранилищ данных. Технологии обработки данных.

    лекция [15,5 K], добавлен 19.08.2013

  • Системы управления базами данных в медицине. Основные идеи, которые лежат в основе концепции базы данных. Требования, предъявляемые к базам данных и системе управления базами данных. Архитектура информационной системы, организованной с помощью базы данных

    реферат [122,5 K], добавлен 11.01.2010

  • Организация хранения мультимедийных данных, основные виды систем управления базами данных и их характеристика. Магнитные и оптические запоминающие устройства. Файловые системы для оптических носителей. Иерархическое управление запоминающими устройствами.

    презентация [93,4 K], добавлен 11.10.2013

  • Виды и функции системы управления базами данных Microsoft Access. Иерархическая, сетевая, реляционная модель описания баз данных. Основные понятия таблицы базы данных. Особенности создания объектов базы данных, основные формы. Доступ к Internet в Access.

    контрольная работа [19,8 K], добавлен 08.01.2011

  • Базы данных (БД) и системы управления базами данных (СУБД) как основы современной информационной технологии, их роль в хранении и обработке информации. Этапы реализации БД, средств ее защиты и поддержки целостности. Протоколы фиксации и отката изменений.

    презентация [364,2 K], добавлен 22.10.2013

  • Файловая организация баз данных. Взаимодействие администратора баз данных с пользователями. Иерархическая и сетевая даталогические модели системы управления базами данных. Принципиальная организация системы обработки информации на основе БД-технологии.

    реферат [762,0 K], добавлен 23.12.2015

  • Структура и функции системы управления базами данных (СУБД). Управление хранением данных и доступом к ним. Защита и поддержка целостности данных. Надежность хранения данных во внешней памяти. Классификация СУБД по способу доступа к базе данных.

    презентация [3,7 M], добавлен 05.06.2014

  • Понятие, состав информационной системы. Управление целостностью БД. Обеспечение системы безопасности. Блокировка неверных действий приложений-клиентов. Тенденции в мире систем управления базами данных. Основные функции, классификация и механизмы доступа.

    курсовая работа [205,0 K], добавлен 11.12.2014

  • Сущность и функциональные особенности баз данных, их классификация и типы, внутренняя структура и элементы. Модели данных, хранящихся в базах: иерархическая, сетевая, реляционная, многомерная, объектно-ориентированная. Виды запросов и типы таблиц.

    дипломная работа [66,7 K], добавлен 06.01.2014

  • Проектирование базы данных Access. Система управления базами данных. Создание и обслуживание базы данных, обеспечение доступа к данным и их обработка. Постановка задач и целей, основных функций, выполняемых базой данных. Основные виды баз данных.

    лабораторная работа [14,4 K], добавлен 16.11.2008

  • Основные понятия базы данных и систем управления базами данных. Типы данных, с которыми работают базы Microsoft Access. Классификация СУБД и их основные характеристики. Постреляционные базы данных. Тенденции в мире современных информационных систем.

    курсовая работа [46,7 K], добавлен 28.01.2014

  • Понятие базы данных, модели данных. Классификация баз данных. Системы управления базами данных. Этапы, подходы к проектированию базы данных. Разработка базы данных, которая позволит автоматизировать ведение документации, необходимой для деятельности ДЮСШ.

    курсовая работа [1,7 M], добавлен 04.06.2015

  • Система управления базами данных как составная часть автоматизированного банка данных. Структура и функции системы управления базами данных. Классификация СУБД по способу доступа к базе данных. Язык SQL в системах управления базами данных, СУБД Microsoft.

    реферат [46,4 K], добавлен 01.11.2009

  • Особенности управления информацией в экономике. Понятие и функции системы управления базами данных, использование стандартного реляционного языка запросов. Средства организации баз данных и работа с ними. Системы управления базами данных в экономике.

    контрольная работа [19,9 K], добавлен 16.11.2010

  • Управление базами данных. Система управления базой данных MS Access. Виды логической связи. Макросы и модули. Обеспечение целостности данных. Создание запросов и форм. Свойства полей базы данных Access. Взаимосвязь между сущностями в предметной области.

    курсовая работа [943,4 K], добавлен 13.03.2014

  • Виды связей между объектами в системе управления базами данных MS Access. Ввод и редактирование данных в таблицах, обработка информации базы данных. Архитектура БД по принципу файл-сервер. Создания формы в окне базы данных, использование отчетов.

    презентация [511,9 K], добавлен 20.01.2014

  • Понятие базы данных, её структура. Общие принципы хранения информации. Краткая характеристика особенностей иерархической, сетевой и реляционной модели организации данных. Structured Query Language: понятие, состав. Составление таблиц в Microsoft Access.

    лекция [202,8 K], добавлен 25.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.