Динамическое программирование

Динамическое программирование в математике и теории вычислительных систем как метод решения сложных задач. Анализ классических задач динамического программирования о выборе траектории, использовании основной рабочей силы, порядке перемножения матриц.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 14.03.2013
Размер файла 22,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Динамическое программирование

динамический программирование вычислительный задача

Введение

Динамическое программирование в математике и теории вычислительных систем -- метод решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой (англ.), выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.

Ключевая идея в динамическом программировании достаточно проста. Как правило, чтобы решить поставленную задачу, требуется решить отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Часто многие из этих подзадач одинаковы. Подход динамического программирования состоит в том, чтобы решить каждую подзадачу только один раз, сократив тем самым количество вычислений. Это особенно полезно в случаях, когда число повторяющихся подзадач экспоненциально велико.

Метод динамического программирования сверху -- это простое запоминание результатов решения тех подзадач, которые могут повторно встретиться в дальнейшем. Динамическое программирование снизу включает в себя переформулирование сложной задачи в виде рекурсивной последовательности более простых подзадач.

История

Словосочетание «динамическое программирование» впервые было использовано в 1940-х годах Р. Беллманом для описания процесса нахождения решения задачи, где ответ на одну задачу может быть получен только после решения задачи, «предшествующей» ей. В 1953 г. он уточнил это определение до современного. Первоначально эта область была основана, как системный анализ и инжиниринг, которая была признана IEEE. Вклад Беллмана в динамическое программирование был увековечен в названии уравнения Беллмана, центрального результата теории динамического программирования, который переформулирует оптимизационную задачу в рекурсивной форме. Слово «программирование» в словосочетании «динамическое программирование» в действительности к "традиционному" программированию (написанию кода) почти никакого отношения не имеет и имеет смысл как в словосочетании «математическое программирование», которое является синонимом слова «оптимизация». Поэтому слово «программа» в данном контексте скорее означает оптимальную последовательность действий для получения решения задачи. К примеру, определенное расписание событий на выставке иногда называют программой. Программа в данном случае понимается как допустимая последовательность событий.

Идея динамического программирования

Нахождение кратчайшего пути в графе из одной вершины в другую, используя оптимальную подструктуру; прямая линия обозначает простое ребро; волнистая линия обозначает кратчайший путь между вершинами, которые она соединяет (промежуточные вершины пути не показаны); жирной линией обозначен итоговый кратчайший путь.

Рис.

Граф подзадач (ребро означает, что одна задача зависит от решения другой) для чисел Фибоначчи (граф -- ациклический).

Оптимальная подструктура в динамическом программировании означает, что оптимальное решение подзадач меньшего размера может быть использовано для решения исходной задачи. К примеру, кратчайший путь в графе из одной вершины (обозначим s) в другую (обозначим t) может быть найден так: сначала считаем кратчайший путь из всех вершин, смежных с s, до t, а затем, учитывая веса ребер, которыми s соединена со смежными вершинами, выбираем лучший путь до t (через какую вершину лучше всего пойти). В общем случае мы можем решить задачу, в которой присутствует оптимальная подструктура, проделывая следующие три шага.

1. Разбиение задачи на подзадачи меньшего размера.

2. Нахождение оптимального решения подзадач рекурсивно, проделывая такой же трехшаговый алгоритм.

3. Использование полученного решения подзадач для конструирования решения исходной задачи.

Подзадачи решаются делением их на подзадачи ещё меньшего размера и т. д., пока не приходят к тривиальному случаю задачи, решаемой за константное время (ответ можно сказать сразу). К примеру, если нам нужно найти n!, то тривиальной задачей будет 1! = 1 (или 0! = 1).

Перекрывающиеся подзадачи в динамическом программировании означают подзадачи, которые используются для решения некоторого количества задач (не одной) большего размера (то есть мы несколько раз проделываем одно и то же). Ярким примером является вычисление последовательности Фибоначчи, F3 = F2 + F1 и F4 = F3 + F2 -- даже в таком тривиальном случае вычисления всего двух чисел Фибоначчи мы уже посчитали F2 дважды. Если продолжать дальше и посчитать F5, то F2 посчитается ещё два раза, так как для вычисления F5 будут нужны опять F3 и F4. Получается следующее: простой рекурсивный подход будет расходовать время на вычисление решение для задач, которые он уже решал.

Чтобы избежать такого хода событий мы будем сохранять решения подзадач, которые мы уже решали, и когда нам снова потребуется решение подзадачи, мы вместо того, чтобы вычислять его заново, просто достанем его из памяти. Этот подход называется кэширование. Можно проделывать и дальнейшие оптимизации -- например, если мы точно уверены, что решение подзадачи нам больше не потребуется, можно выкинуть его из памяти, освободив её для других нужд, или если процессор простаивает и мы знаем, что решение некоторых, ещё не посчитанных подзадач, нам понадобится в дальнейшем, мы можем решить их заранее.

Подводя итоги вышесказанного можно сказать, что динамическое программирование пользуется следующими свойствами задачи:

· перекрывающиеся подзадачи;

· оптимальная подструктура;

· возможность запоминания решения часто встречающихся подзадач.

Динамическое программирование обычно придерживается двух подходов к решению задач:

· нисходящее динамическое программирование: задача разбивается на подзадачи меньшего размера, они решаются и затем комбинируются для решения исходной задачи. Используется запоминание для решений часто встречающихся подзадач.

· восходящее динамическое программирование: все подзадачи, которые впоследствии понадобятся для решения исходной задачи просчитываются заранее и затем используются для построения решения исходной задачи. Этот способ лучше нисходящего программирования в смысле размера необходимого стека и количества вызова функций, но иногда бывает нелегко заранее выяснить, решение каких подзадач нам потребуется в дальнейшем.

Языки программирования могут запоминать результат вызова функции с определенным набором аргументов (мемоизация), чтобы ускорить «вычисление по имени». В некоторых языках такая возможность встроена (например, Scheme, Common Lisp, Perl), а в некоторых требует дополнительных расширений (C++).

Известны сериальное динамическое программирование, включённое во все учебники по исследованию операций, и несериальное динамическое программирование (НСДП), которое в настоящее время слабо известно, хотя было открыто в 1960-х годах.

Обычное динамическое программирование является частным случаем несериального динамического программирования, когда граф взаимосвязей переменных -- просто путь. НСДП, являясь естественным и общим методом для учета структуры задачи оптимизации, рассматривает множество ограничений и/или целевую функцию как рекурсивно вычислимую функцию. Это позволяет находить решение поэтапно, на каждом из этапов используя информацию, полученную на предыдущих этапах, причём эффективность этого алгоритма прямо зависит от структуры графа взаимосвязей переменных. Если этот граф достаточно разрежен, то объём вычислений на каждом этапе может сохраняться в разумных пределах.

Одним из основных свойств задач, решаемых с помощью динамического программирования, является аддитивность. Неаддитивные задачи решаются другими методами. Например, многие задачи по оптимизации инвестиций компании являются неаддитивными и решаются с помощью сравнения стоимости компании при проведении инвестиций и без них.

Классические задачи динамического программирования

· Задача о наибольшей общей подпоследовательности: даны две последовательности, требуется найти самую длинную общую подпоследовательность.

· Задача поиска наибольшей увеличивающейся подпоследовательности: дана последовательность, требуется найти самую длинную возрастающую подпоследовательность.

· Задача о редакционном расстоянии (Расстояние Левенштейна) : даны две строки, требуется найти минимальное количество стираний, замен и добавлений символов, преобразующих одну строку в другую.

· Задача о Вычислении чисел Фибоначчи

· Задача о порядке перемножения матриц : даны матрицы A1, ..., An, требуется минимизировать количество скалярных операций для их перемножения.

· Задача о выборе траектории

· Задача последовательного принятия решения

· Задача об использовании рабочей силы

· Задача управления запасами

· Задача о ранце : из неограниченного множества предметов со свойствами «стоимость» и «вес», требуется отобрать некое число предметов таким образом, чтобы получить максимальную суммарную стоимость при ограниченном суммарном весе.

· Алгоритм Флойда-Уоршелла: найти кратчайшие расстояния между всеми вершинами взвешенного ориентированного графа.

· Алгоритм Беллмана -- Форда: найти кратчайший путь во взвешенном графе между двумя заданными вершинами.

· Максимальное независимое множество вершин в дереве: дано дерево, найти максимальное множество вершин, никакие две из которых не связаны ребром.

Литература

1.Беллман Р. Динамическое программирование. -- М.: Изд-во иностранной литературы, 1960.

2.Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Глава 15. Динамическое программирование // Алгоритмы: построение и анализ = Introduction to Algorithms / Под ред. И. В. Красикова. -- 2-е изд. -- М.: Вильямс, 2005. -- 1296 с. -- ISBN 5-8459-0857-4

3.Sanjoy Dasgupta , Christos H. Papadimitriou, Umesh Vazirani Algorithms = Algorithms. -- 1-е изд. -- McGraw-Hill Science/Engineering/Math, 2006. -- С. 336. -- ISBN 0073523402

4.Акулич И.Л. Глава 4. Задачи динамического программирования // Математическое программирование в примерах и задачах. -- М.: Высшая школа, 1986. -- 319 с. -- ISBN 5-06-002663-9.

5.Bertele U., Brioshi F. Nonserial dynamic programming. -- N.Y.: Academic Press, 1972. -- 235 pp.

6.Щербина О. А. О несериальной модификации локального алгоритма декомпозиции задач дискретной оптимизации // Динамические системы, 2005, вып. 19.

7.Щербина О. А. Методологические аспекты динамического программирования // Динамические системы, 2007, вып. 22. -- c.21-36.

8.Габасов Р., Кириллова Ф. М. Основы динамического программирования. -- Мн.: Изд-во БГУ, 1975. -- 262 с.

Размещено на Allbest.ru

...

Подобные документы

  • Общая характеристика динамического программирования: задачи о коммивояжере, о назначении, о теории расписаний. Численные методы ветвей и границ, методы отсечения. Задачи целостного программирования с булевыми переменными. Аддиктивный метод Балаша.

    учебное пособие [534,1 K], добавлен 11.07.2010

  • Постановка задачи динамического программирования. Поведение динамической системы как функция начального состояния. Математическая формулировка задачи оптимального управления. Метод динамического программирования. Дискретная форма вариационной задачи.

    реферат [59,9 K], добавлен 29.09.2008

  • Определение совокупности шаговых управлений. Решение задач динамического программирования двухэтапным способом. Решение последовательности задач условной оптимизации. Оптимальное распределение памяти, политика замены оборудования, замена форвардера.

    презентация [674,9 K], добавлен 30.10.2013

  • Достижения математики в теории полумарковских процессов. Связь управляемых полумарковских процессов и динамического программирования. Разработка программы модели управляемого полумарковского процесса, реализованной на языке программирования СИ++.

    курсовая работа [356,7 K], добавлен 10.09.2017

  • Обзор задач, решаемых методом динамического программирования. Составление маршрута оптимальной длины. Перемножение цепочки матриц. Задача "Лестницы". Анализ необходимости использования специальных методов вероятностного динамического программирования.

    курсовая работа [503,3 K], добавлен 28.06.2015

  • Особенности решения задач нелинейного программирования различными методами для проведения анализа поведения этих методов на выбранных математических моделях нелинейного программирования. Общая характеристика классических и числовых методов решения.

    дипломная работа [2,4 M], добавлен 20.01.2013

  • Си - стандартизированный процедурный язык программирования. Алгоритм и программа на языке Си для формирования двух матриц с определенной размерностью и значением элементов. Применение матриц в математике. Исходный текст программы и результаты выполнения.

    реферат [1,4 M], добавлен 23.12.2010

  • Анализ метода линейного программирования для решения оптимизационных управленческих задач. Графический метод решения задачи линейного программирования. Проверка оптимального решения в среде MS Excel с использованием программной надстройки "Поиск решения".

    курсовая работа [2,2 M], добавлен 29.05.2015

  • Алгоритмы, использующие решение дополнительных подзадач. Основные определения теории графов. Поиск пути между парой вершин невзвешенного графа. Пути минимальной длины во взвешенном графе. Понятие кратчайшего пути для графов с помощью алгоритма Флойда.

    реферат [39,6 K], добавлен 06.03.2010

  • Особенности задач линейного программирования. Симплексный метод решения задач линейного программирования. Обоснование выбора языка, инструментария программирования, перечень идентификаторов и блок-схема алгоритма. Логическая схема работы программы.

    дипломная работа [2,4 M], добавлен 13.08.2011

  • Цели и стратегии теории игр, понятие минимаксного выигрыша и седловой точки. Графический метод решения игровых задач с нулевой суммой. Сведение задач теории игр к задачам линейного программирования. Критерии оценки результатов игровой модели с природой.

    курсовая работа [127,1 K], добавлен 15.06.2010

  • Характеристика этапов решения задач на электронных вычислительных системах. Разработка алгоритма и основы программирования. Язык Ассемблера, предназначенный для представления в удобочитаемой символической форме программ, записанных на машинном языке.

    контрольная работа [60,5 K], добавлен 06.02.2011

  • Расчет производства необходимого количества продукции для получения максимальной прибыли предприятия. Математическая модель для решения задач линейного программирования. Построение ограничений и целевых функций. Исследование чувствительности модели.

    задача [74,7 K], добавлен 21.08.2010

  • Графические обозначения символов, применяемые при составлении схем алгоритмов. Оформление текстовых документов. Описание вычислительных методов алгоритмизации и программирования задач. Ручной просчет отладочного варианта. Машинное тестирование программы.

    курсовая работа [178,2 K], добавлен 01.06.2014

  • Постановка задачи динамического программирования. Составление основного функционального управления динамического программирования, определяющего условный оптимальный выигрыш для данного состояния. Выбор оптимальной стратегии замены оборудования.

    курсовая работа [873,9 K], добавлен 02.07.2014

  • Постановка задачи линейного программирования и формы ее записи. Понятие и методика нахождения оптимального решения. Порядок приведения задач к каноническому виду. Механизмы решения задач линейного программирования аналитическим и графическим способами.

    методичка [366,8 K], добавлен 16.01.2010

  • Методы ветвей и границ первого и второго порядка. Оптимальный и пассивный поиск. Недостатки метода Ньютона. Метод золотого сечения. Примеры унимодальных функций. Динамическое и линейное программирование. Метод Жордана-Гаусса. Решение задачи коммивояжера.

    курсовая работа [1,1 M], добавлен 20.07.2012

  • Классификация задач математического программирования. Сущность графического метода решения задач линейного программирования, алгоритм табличного симплекс-метода. Описание логической структуры и текст программы по решению задачи графическим методом.

    курсовая работа [263,5 K], добавлен 27.03.2011

  • Класс задач, к которым применяются методы динамического программирования. Решения задачи распределения капитальных вложений между предприятиями путем построения математической модели. Программа "Максимизации капиталовложений" на базе Microsoft Excel.

    курсовая работа [1,4 M], добавлен 28.10.2014

  • Широкое применение вычислительной техники как в общей математике, так и в одном из её разделов – математических методах. Ознакомление с решением задач линейного программирования симплекс-методом и графически. Составлена программа на языке Delphi.

    курсовая работа [57,1 K], добавлен 04.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.