Метод касательных. Решения нелинейных уравнений
Основные этапы процедуры подготовки и решения задачи на ЭВМ. Понятие и свойства алгоритма. Краткое описание сущности метода касательных (метода секущих Ньютона). Разработка программы на языке Паскаль 7.0 для решения нелинейного уравнения данным методом.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 26.03.2013 |
Размер файла | 20,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Метод касательных. Решения нелинейных уравнений
Введение
Процедура подготовки и решения задачи на ЭВМ достаточно сложный и трудоемкий процесс, состоящий из следующих этапов:
Постановка задачи (задача, которую предстоит решать на ЭВМ, формулируется пользователем или получается им в виде задания).
Математическая формулировка задачи.
Разработка алгоритма решения задачи.
Написание программы на языке программирования.
Подготовка исходных данных.
Ввод программы и исходных данных в ЭВМ.
Отладка программы.
Тестирование программы.
Решение задачи на ЭВМ и обработка результатов.
В настоящей курсовой работе условие задачи дано в математической формулировке, поэтому необходимость в выполнении этапов 1 и 2 отпадает и сразу можно приступить к разработке алгоритма решения задачи на ЭВМ.
Под алгоритмом понимается последовательность арифметических и логических действий над числовыми значениями переменных, приводящих к вычислению результата решения задачи при изменении исходных данных в достаточно широких пределах.
Таким образом, при разработке алгоритма решения задачи математическая формулировка преобразуется в процедуру решения, представляющую собой последовательность арифметических действий и логических связей между ними. При этом алгоритм обладает следующими свойствами:
детерминированностью, означающей, что применение алгоритма к одним и тем же исходным данным должно приводить к одному и том уже результату;
массовостью, позволяющей получать результат при различных исходных данных;
результативностью, обеспечивающей получение результата через конечное число шагов.
Наиболее наглядным способом описания алгоритмов является описание его в виде схем. При этом алгоритм представляется последовательность блоков, выполняющих определенные функции, и связей между ними. Внутри блоков указывается информация, характеризующая выполняемые ими функции. Блоки схемы имеют сквозную нумерацию.
Конфигурация и размеры блоков, а также порядок построения схем определяются ГОСТ 19.002-80 и ГОСТ 19.003-80.
На этапе 4 составляется программа на языке Турбо-Паскаль. При описании программы необходимо использовать характерные приемы программирования и учитывать специфику языка. В качестве языка программирования выбран язык Паскаль ввиду его наглядности и облегченного понимания для начинающих программистов, а также возможности в дальнейшем использовать для решения более трудных задач.
Этапы алгоритмизации и программирования являются наиболее трудоемкими, поэтому им уделяется большое внимание.
В процессе выполнения курсовой работы студент готовит исходные данные, вводит программу и исходные данные. При работе ввод программы и исходных данных осуществляется с клавиатуры дисплея.
Отладка программы состоит в обнаружении и исправлении ошибок, допущенных на всех этапах подготовки задач к решению на ПЭВМ. Синтаксис ошибки обнаруживается компилятором, который выдает сообщение, указывающее место и тип ошибки. Обнаружение семантических ошибок осуществляется на этапе тестирования программы, в котором проверяется правильность выполнения программы на упрощенном варианте исходных данных или с помощью контрольных точек или в режиме пошагового исполнения.
Задание при обработке на ЭВМ проходит ряд шагов: компиляцию, редактирование (компоновку) и выполнение.
Обработка результатов решения задачи осуществляется с помощью ЭВМ. Выводимые результаты оформлены в виде, удобном для восприятия.
Краткое описание сущности метода касательных (метода секущих Ньютона)
Пусть на отрезке [a; b] отделен корень с уравнения f (x) = 0 и f -- функция непрерывна на отрезке [a; b], а на интервале ]a; b[ существуют отличные от нуля производные f' и f”.
Так как f'(x) № 0, то запишем уравнение f (x) = 0 в виде:
x = x - (f (x) / f'(x)) (1).
Решая его методом итераций, можем записать:
xn+1 = xn - (f (xn) / f'(xn)) (2).
Если на отрезке [a;b] f'(x) * f“(x) > 0, то нулевое приближение выбираем x0 = a. Рассмотрим геометрический смысл метода. Рассмотрим график функции y = f (x).
Пусть для определенности f`(x) > 0 и f“(x) > 0. Проведем касательную к графику функции в точке B (b, f (b)).
Ее уравнение будет иметь вид:
y = f (b) + f'(b) * (x - b).
Полагая в уравнении y = 0 и учитывая, что f' (x) № 0, решаем его относительно x. Получим:
x = b - (f (b) / f`(b)).
Нашли абсциссу x1 точки c1 пересечения касательной с осью ox:
x1 = b - (f (b) - f' (b)).
Проведем касательную к графику функции в точке b1 (x1; f (x1)).
Найдем абсциссу x2 точки с2 пересечения касательной с осью оx:
x2 = x1 - (f (x1) / (f' (x1)).
Вообще:
xk+1 = xk - (f (xk) / f'(xk)) (3).
Таким образом, формула (3) дает последовательные приближения (xk) корня, получаемые из уравнения касательной, проведенной к графику функции в точке bk (xk; f (xk0). Метод уточнения корня c [a;b] уравнения f (x) = 0 с помощью формулы (3) называется методом касательной или методом Ньютона.
Геометрический смысл метода касательных состоит в замене дуги y = f (x) касательной, одной к одной из крайних точек. Начальное приближение x0 = a или x0 = b брать таким, чтобы вся последовательность приближения хk принадлежала интервалу ]a;b[.
В случае существования производных f', f”, сохраняющих свои знаки в интервале, за х0 берется тот конец отрезка [a;b], для которого выполняется условие f'(х0) * f (х0) > 0.
Для оценки приближения используется общая формула:
|c-xk-1| Ј |f (xk+1) / m|, где m = min f'(x) на отрезке [a;b].
На практике проще пользоваться другим правилом. Если на отрезке [a;b] выполняется условие 0 < m < |f (x)| и e -- заданная точность решения, то неравенство |xk+1 - xk| Јe влечет выполнение неравенства |c-xk-1| Јe.
В этом случае процесс последовательного приближения продолжают до тех пор, пока не выполнится неравенство:
|c-xk-1| Јe.
программа паскаль метод касательная
Решение нелинейного уравнения аналитически
Определим корни уравнения х3 + 0,1х2 + 0,4х - 1,2 = 0 аналитически. Находим:
f (x) = х3 + 0,1х2 + 0,4х - 1,2.
f` (x) = 3х2 + 0,1х + 0,4.
f (-1) = -2,5 < 0 f (0) = -1,2 < 0 f (+1) = 0,3 > 0.
x |
- Ґ |
-1 |
0 |
+1 |
+ Ґ |
|
sign f (x) |
- |
- |
- |
+ |
+ |
Следовательно, уравнение имеет действительный корень, лежащий в промежутке [0; +1].
Приведем уравнение к виду x = j (x) так, чтобы |j` (x) | <1 при 0 Ј x Ј +1.
Так как
max |f' (x)| = f'(+1) = 3 + 0,1 + 0,4 = 3,5, то можно взять R = 2.
Тогда
j (x) = x - (f (x) / R) = x - 0,5 х3 - 0,05 х2 - 0,2 х + 0,6 = -0,5 х3 - 0,05 х2 + 0,8 х + 0,6.
Пусть х0 = 0, тогда хn+1 = j (хn).
Вычисления расположим в таблице
n |
х n |
х 2 n |
х 3 n |
j (х n) |
f (x) |
|
1 |
1 |
1 |
1 |
0,85 |
-0,17363 |
|
2 |
0,85 |
0,7225 |
0,614125 |
0,9368125 |
0,08465 |
|
3 |
0,9368125 |
0,87761766 |
0,822163194 |
0,89448752 |
-0,04651 |
|
4 |
0,89448752 |
0,800107923 |
0,715686552 |
0,917741344 |
0,024288 |
|
5 |
0,917741344 |
0,842249174 |
0,772966889 |
0,905597172 |
-0,01306 |
|
6 |
0,905597172 |
0,820106238 |
0,74268589 |
0,912129481 |
0,006923 |
|
7 |
0,912129481 |
0,83198019 |
0,758873659 |
0,908667746 |
-0,0037 |
|
8 |
0,908667746 |
0,825677072 |
0,750266124 |
0,910517281 |
0,001968 |
|
9 |
0,910517281 |
0,829041719 |
0,754856812 |
0,909533333 |
-0,00105 |
|
10 |
0,909533333 |
0,827250884 |
0,752412253 |
0,910057995 |
0,000559 |
|
11 |
0,910057995 |
0,828205555 |
0,753715087 |
0,909778575 |
-0,0003 |
|
12 |
0,909778575 |
0,827697055 |
0,753021048 |
0,909927483 |
0,000159 |
|
13 |
0,909927483 |
0,827968025 |
0,753390861 |
0,909848155 |
-8,5E-05 |
|
14 |
0,909848155 |
0,827823665 |
0,753193834 |
0,909890424 |
4,5E-05 |
|
15 |
0,909890424 |
0,827900583 |
0,753298812 |
0,909867904 |
-2,4E-05 |
|
16 |
0,909867904 |
0,827859602 |
0,753242881 |
0,909879902 |
1,28E-05 |
|
17 |
0,909879902 |
0,827881437 |
0,753272681 |
0,90987351 |
-6,8E-06 |
|
18 |
0,90987351 |
0,827869803 |
0,753256804 |
0,909876916 |
3,63E-06 |
|
19 |
0,909876916 |
0,827876002 |
0,753265263 |
0,909875101 |
-1,9E-06 |
|
20 |
0,909875101 |
0,827872699 |
0,753260756 |
0,909876068 |
1,03E-06 |
График функции
y = х3 + 0,1х2 + 0,4х - 1,2
.
Блок схема программы
Программа на языке PASCAL 7.0
program metod_kasatel;{Название программы}
uses Crt; {Модуль дисплейных функций}
var {Блок описаний переменных}
xn,xn1,a,b,c,mx,y0,x0: real;
function f1(x1: Real): Real; {Основная функция}
begin
f1:= x1*x1*x1*(-0.5)-0.05*x1*x1+0.8*x1+0.6;
end;
function f2(x4:Real): Real; {Производная от основной функции}
begin
f2:= x4*x4*x4+0.5*x4*x4+0.1*x4*x4+0.4*x4-1.2;
end;
begin {Начало основного тела программы}
Clrscr; {Очистка экрана перед выполнением программы}
a:=0;b:=1;c:=0.00000001;
Writeln (' От A=',a,' до B=',b); {Вывод на экран}
Writeln (' Погрешность с=',c);
Readln; {Ожидание нажатия клавиши Enter}
xn:=b;
xn1:= f1(xn);
y0:=f2(b);
while ABS (y0)>c do {Проверка по точности вычисления корня}
begin {Тело цикла}
xn:=xn1;
xn1:=f1(xn);
y0:= f2(xn1);
{Печать промежуточного результата}
Writeln ('xn=',xn,' xn+1=',xn1,' f(xn+1)=',y0);
Readln; {Ожидание нажатия клавиши Enter}
end; {Конец тела цикла}
Writeln ('Конечные значения'); {Печать полученного результата}
Writeln (' xn+1=',xn1,' f(xn+1)=',y0);
Readln; {Ожидание нажатия клавиши Enter}
end. {Конец основного тела программы}
Результаты выполнения программы
От A= 0.0000000000E+00 до B= 1.0000000000E+00
Погрешность с= 1.0000000000E-08
От A= 0.0000000000E+00 до B= 1.0000000000E+00
Погрешность с= 1.0000000000E-08
xn= 8.5000000000E-01 xn+1= 9.3681250000E-01 f(xn+1)= 8.4649960270E-02
xn= 9.3681250000E-01 xn+1= 8.9448751986E-01 f(xn+1)=-4.6507647892E-02
xn= 8.9448751986E-01 xn+1= 9.1774134381E-01 f(xn+1)= 2.4288343840E-02
xn= 9.1774134381E-01 xn+1= 9.0559717189E-01 f(xn+1)=-1.3064617920E-02
xn= 9.0559717189E-01 xn+1= 9.1212948085E-01 f(xn+1)= 6.9234699658E-03
xn= 9.1212948085E-01 xn+1= 9.0866774587E-01 f(xn+1)=-3.6990702320E-03
xn= 9.0866774587E-01 xn+1= 9.1051728099E-01 f(xn+1)= 1.9678960780E-03
xn= 9.1051728099E-01 xn+1= 9.0953333295E-01 f(xn+1)=-1.0493249720E-03
xn= 9.0953333295E-01 xn+1= 9.1005799543E-01 f(xn+1)= 5.5884091853E-04
xn= 9.1005799543E-01 xn+1= 9.0977857497E-01 f(xn+1)=-2.9781681224E-04
xn= 9.0977857497E-01 xn+1= 9.0992748338E-01 f(xn+1)= 1.5865717614E-04
xn= 9.0992748338E-01 xn+1= 9.0984815480E-01 f(xn+1)=-8.4537703515E-05
xn= 9.0984815480E-01 xn+1= 9.0989042365E-01 f(xn+1)= 4.5040009354E-05
xn= 9.0989042365E-01 xn+1= 9.0986790364E-01 f(xn+1)=-2.3997676180E-05
xn= 9.0986790364E-01 xn+1= 9.0987990248E-01 f(xn+1)= 1.2785800209E-05
xn= 9.0987990248E-01 xn+1= 9.0987350958E-01 f(xn+1)=-6.8122881203E-06
xn= 9.0987350958E-01 xn+1= 9.0987691573E-01 f(xn+1)= 3.6295678001E-06
xn= 9.0987691573E-01 xn+1= 9.0987510095E-01 f(xn+1)=-1.9338276616E-06
xn= 9.0987510095E-01 xn+1= 9.0987606786E-01 f(xn+1)= 1.0303429008E-06
xn= 9.0987606786E-01 xn+1= 9.0987555269E-01 f(xn+1)=-5.4896190704E-07
xn= 9.0987555269E-01 xn+1= 9.0987582717E-01 f(xn+1)= 2.9248803912E-07
xn= 9.0987582717E-01 xn+1= 9.0987568093E-01 f(xn+1)=-1.5583464119E-07
xn= 9.0987568093E-01 xn+1= 9.0987575885E-01 f(xn+1)= 8.3031409304E-08
xn= 9.0987575885E-01 xn+1= 9.0987571733E-01 f(xn+1)=-4.4236003305E-08
xn= 9.0987571733E-01 xn+1= 9.0987573945E-01 f(xn+1)= 2.3572283681E-08
xn= 9.0987573945E-01 xn+1= 9.0987572766E-01 f(xn+1)=-1.2558302842E-08
xn= 9.0987572766E-01 xn+1= 9.0987573394E-01 f(xn+1)= 6.6920620156E-09
Конечные значения
xn+1= 9.0987573394E-01 f(xn+1)= 6.6920620156E-09
Список литературы
Алексеев В. Е., Ваулин А. С., Петрова Г. Б. Вычислительная техника и программирование. Практикум по программированию/ Практ. Пособие. -- М.: Высшая школа, 1991.
Абрамов С. А., Зима Е. В. Начала программирования на языке Паскаль. -- М.: Наука, 1987.
Вычислительная техника и программирование: Учеб. для техн. вузов. - М.: Высшая школа, 1990.
Гусев В. А., Мордкович А. Г. Математика: Справ. материалы: Кн. для учащихся. -- М.: Просвещение, 1990.
Марченко А. И., Марченко Л. А. Программирование в среде Turbo Pascal 7.0 - К.: ВЕК+. -- М.: Бином Универсал, 1998.
Для подготовки данной работы были использованы материалы с сайта http://www.matematika-r.info/
Размещено на Allbest.ru
...Подобные документы
Математический алгоритм вычисления корней нелинейного уравнения и его решение методом касательных. Особенности программной реализации решения таких уравнений. Процедура подготовки и решения задачи на ЭВМ, характеристика алгоритма и структуры программы.
курсовая работа [96,6 K], добавлен 02.06.2012Анализ метода касательных (метода секущих Ньютона), аналитическое решение нелинейного уравнения. Описание алгоритма решения задачи, пользовательских идентификаторов, блок-схем, программного обеспечения. Тестирование программы на контрольном примере.
курсовая работа [97,1 K], добавлен 10.01.2014Применение методов касательных (Ньютона) и комбинированного (хорд и касательных) для определения корня уравнения. Разработка алгоритма решения и его описание его в виде блок-схем. Тексты программ на языке Delphi. тестовый пример и результат его решения.
курсовая работа [923,7 K], добавлен 15.06.2013Этапы численного решения нелинейных уравнений заданного вида: отделение (изоляция, локализация) корней уравнения аналитическим или графическим способами, уточнение конкретного выделенного корня методом касательных (Ньютона). Решение в системе MathCad.
курсовая работа [271,6 K], добавлен 22.08.2012Описание методов дихотомии (половинного деления) и касательных. Их применение для решения нелинейных уравнений. Графическое отделение корней. Блок-схемы алгоритмов. Тексты (листинги) программ на языке Delphi. Тестовый пример решения задачи с помощью ЭВМ.
курсовая работа [944,6 K], добавлен 15.06.2013Изучение методов решения нелинейных уравнений таких как: метод Ньютона, модифицированный метод Ньютона, метод Хорд, метод простых Итераций. Реализация программы для персонального компьютера, которая находит решение нелинейного уравнения разными способами.
практическая работа [321,9 K], добавлен 24.06.2012Программный продукт, способный решать уравнения с одной переменной методом Ньютона (касательных). Он прост в эксплуатации, имеет интуитивно понятный интерфейс, выстраивает график уравнения, что очень важно для пользователя. Реализация решений в программе.
курсовая работа [169,3 K], добавлен 29.01.2009Разработка с использованием приложения Mathcad алгоритма и программы решения нелинейного уравнения методами касательных, половинного деления и хорд. Решение с помощью ее заданных нелинейных уравнений. Создание графической иллюстрации полученных решений.
курсовая работа [665,7 K], добавлен 22.08.2013Особенности точных и итерационных методов решения нелинейных уравнений. Последовательность процесса нахождения корня уравнения. Разработка программы для проверки решения нелинейных функций с помощью метода дихотомии (половинного деления) и метода хорд.
курсовая работа [539,2 K], добавлен 15.06.2013Изучение численных методов решения нелинейных уравнений, используемых в прикладных задачах. Нахождение корня уравнения методом простой итерации и методом касательных (на примере уравнения). Отделение корней графически. Программная реализация, алгоритм.
курсовая работа [1,7 M], добавлен 15.06.2013Обзор существующих методов по решению нелинейных уравнений. Решение нелинейных уравнений комбинированным методом и методом хорд на конкретных примерах. Разработка программы для решения нелинейных уравнений, блок-схемы алгоритма и листинг программы.
курсовая работа [435,8 K], добавлен 15.06.2013Структура языка Паскаль, встроенные процедуры и функции. Составление алгоритма решения уравнения, описывающего работу кривошипно-шатунного механизма, с помошью метода итерации, метода Гаусса и метода Зейделя. Блок-схемы алгоритмов и текст программы.
курсовая работа [64,6 K], добавлен 07.05.2011Особенности решения уравнений с одной переменной методом половинного деления. Оценка погрешности метода простой итерации. Суть решения уравнений в пакете Mathcad. Векторная запись нелинейных систем. Метод Ньютона решения систем нелинейных уравнений.
курсовая работа [2,1 M], добавлен 12.12.2013Методика реализации решения нелинейного уравнения в виде процедуры-подпрограммы следующими методами: хорд, касательных (Ньютона), простой итерации, половинного деления. Основные методы уточнения корней уравнения. Программное решение задачи, алгоритм.
курсовая работа [4,0 M], добавлен 27.03.2011Решение нелинейных уравнений методом простых итераций и аналитическим, простым и модифицированным методом Ньютона. Программы на языке программирования Паскаль и С для вычислений по вариантам в порядке указанных методов. Изменение параметров задачи.
лабораторная работа [191,0 K], добавлен 24.06.2008Суть основных идей и методов, особенностей и областей применения программирования для численных методов и решения нелинейных уравнений. Методы итераций, дихотомии и хорд и их использование. Алгоритм метода Ньютона, создание программы и ее тестирование.
курсовая работа [423,0 K], добавлен 17.02.2010Описание алгоритма создания программы для решения алгебраических или трансцендентных уравнений с помощью численного метода Бернулли. Нахождение значений корней алгебраического уравнения с заданными параметрами точности. Листинг программы на языке java.
контрольная работа [206,0 K], добавлен 19.06.2015Метод половинного деления как один из методов решения нелинейных уравнений, его основа на последовательном сужении интервала, содержащего единственный корень уравнения. Алгоритм решения задачи. Описание программы, структура входных и выходных данных.
лабораторная работа [454,1 K], добавлен 09.11.2012Автоматизация решения системы уравнения методом Гаусса (классического метода решения системы линейных алгебраических уравнений, остоящего в постепенном понижении порядка системы и исключении неизвестных) и решения уравнения методами хорд и Ньютона.
курсовая работа [578,2 K], добавлен 10.02.2011Разработка проекта по вычислению корней нелинейных уравнений методом итераций, в среде программирования Delphi. Интерфейс программы и ее программный код, визуализация метода. Сравнение результатов решения, полученных в Mathcad 14 и методом итераций.
контрольная работа [1,9 M], добавлен 10.12.2010