Основные цели использования ЭВМ в различных поколениях
Характеристика основных поколений ЭВМ, черты каждого этапа. Описание главного элемента - электронной лампы, ее промышленный выпуск. Возникновение транзисторов и использование печатного монтажа. Использование ЭВМ для управления промышленными процессами.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 09.04.2013 |
Размер файла | 19,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Министерство образования и науки РФ
Филиал ГОУ ОмГПУ в г. Таре
Математический факультет
Кафедра ИКТО
Основные цели использования ЭВМ в различных поколениях
Выполнил: студент 1 курса
математического факультета
профиль «Информатика»
Иванов Р.
Проверила: доцент,
к.п.н. Федосеева А.П.
Тара-2011
Содержание
Введение
1. Элементная база ЭВМ различных поколений
2. Использование ЭВМ в различных поколениях
Заключение
Литература
эвм транзистор промышленный
Введение
За относительно небольшой период своего развития ЭВМ прошли путь нескольких поколений.
Под поколением ЭВМ понимают все типы и модели ЭВМ, разработанные различными конструкторскими коллективами, но построенные на одних и тех же научных и технических принципах. Каждое следующее поколение отличалось новыми электронными элементами, технология изготовления которых была принципиально другой. Временные рамки этих поколений несколько размыты, так как каждое следующее поколение зарождалось внутри предыдущего [2].
Каждое поколение ЭВМ характеризуется определенной совокупностью логической организации (архитектуры) и используемой конструктивно-технологической (главным образом элементной) базы [3].
Вместе со сменой поколений ЭВМ менялся и характер их использования. Если первоначально они создавались и использовались в основном для решения вычислительных задач, то в дальнейшем сфера их применения значительно расширилась, включая в себя задачи статистической обработки информации, планово-экономические, научно-технические, а также автоматизации управления производственно-технологическими процессами [2].
1. Элементная база ЭВМ различных поколений
Основным элементом ЭВМ первого поколения была электронная лампа. Промышленный выпуск и эксплуатация таких ЭВМ начались в 50-х годах. К первому поколению относятся отечественные ЭВМ БЭСМ-1, БЭСМ-2, «Урал-1», «Урал-2», «Стрела», М-2, М-3, «Минск-1», М-20 и другие, ориентированные в основном на решение научно-технических задач.
Машины первого поколения были весьма громоздки, потребляли большое количество энергии и имели невысокую надежность. Их производительность не превышала 10--20 тыс. оп/с, а емкость основной памяти -- 4 К машинных слов (где К = 210 = 1024). В ЭВМ первого поколения, по существу, не было системы программного обеспечения. Программирование было детализировано до уровня машинных команд и выполнялось пользователями на машинном языке данной ЭВМ. Пользователь также осуществлял ввод и отладку программ, обеспечивал управление вычислительным процессом при возникновении непредвиденных или недопустимых ситуаций [4].
В конце 50-х годов появились отечественные ЭВМ второго поколения. Их элементной базой стали полупроводниковые приборы -- транзисторы, что позволило существенно повысить производительность и надежность ЭВМ при одновременном уменьшении ее габаритных размеров, массы и потребляемой мощности.
В ЭВМ второго поколения широко использовался печатный монтаж, при котором необходимые электрические соединения между элементами создавались вытравливанием фольги, нанесенной на изоляционный материал.
В СССР были созданы различные по назначению и возможностям полупроводниковые ЭВМ второго поколения, в том числе БЭСМ-4, «Урал-14», «Урал-16», Минск-22», «Минск-32», М-220, М-222, «Мир», «Раздан», «Наири» и многие другие. Производительность этих ЭВМ не превышала 50--100 тыс. оп/с, а емкость основной памяти -- 32 К машинных слов. Среди машин второго поколения особо выделяется БЭСМ-6 с производительностью около 1 млн. оп/с и емкостью основной памяти до 128 К машинных слов.
В машинах второго поколения получило также развитие программное обеспечение, в частности зародилось так называемое системное программирование, позволившее установить определенное взаимодействие между разрозненными наборами различных программ в процессе их выполнения. Комплексы таких системных программ были первоначально названы операционными системами [5].
Последующее интенсивное развитие радиоэлектроники привело в 60-х годах к созданию интегральных схем (ИС), а на их основе -- к разработке ЭВМ третьего поколения. Интегральная схема является функционально законченным блоком, эквивалентным по своим логическим возможностям достаточно сложной транзисторной схеме. Она представляет собой пластину полупроводникового материала (обычно кремния), в поверхностном слое которой методами микроэлектронной технологии формируются области, выполняющие функции транзисторов, диодов, резисторов и других компонентов схемы.
ЭВМ третьего поколения характеризуются значительным увеличением производительности и емкости памяти, существенным повышением надежности и вместе с тем уменьшением потребляемой мощности, массы и занимаемой площади. Конструктивно машины третьего поколения состоят из типовых элементов и узлов, обеспечивающих высокую плотность компоновки, необходимую помехозащищенность, а, также устойчивость к механическим и климатическим воздействиям [4]
Значительное внимание в машинах третьего поколения было уделено совершенствованию средств программного обеспечения с точки зрения наиболее эффективного использования технических возможностей ЭВМ, максимальной автоматизации вычислительного процесса, уменьшения трудоемкости подготовки и отладки программ пользователей. В результате этого, начиная с ЭВМ третьего поколения разрозненные средства программного обеспечения, превратились в целостную систему.
В ЭВМ третьего поколения были достигнуты производительность в несколько миллионов операций в секунду, емкость основной памяти -- в несколько сотен Кбайт.
Начиная с ЭВМ третьего поколения в широких масштабах начала проводиться работа по стандартизации технических и программных средств. В это же время создаются семейства (ряды) ЭВМ, представляющие собой единую систему. Для этой цели в 1969 г. Советским Союзом было заключено соглашение о сотрудничестве с рядом европейских стран в области вычислительной техники, которое обеспечило разработку и производство Единой системы ЭВМ (ЕС ЭВМ) и системы малых ЭВМ (СМ ЭВМ).
ЭВМ четвертого поколения стали развиваться в 70-е годы. Конструктивно-технологической основой таких ЭВМ стали большие и сверхбольшие интегральные схемы (БИС и СБИС). Высокая степень интеграции способствовала дальнейшему увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, увеличению быстродействия и снижению стоимости. Производительность ЭВМ четвертого поколения достигла десятков и сотен миллионов операций в секунду, а объем основной памяти -- десятков мегабайт. ЭВМ третьего и четвертого поколений представлены в основном вычислительными машинами серии ЕС ЭВМ.
Для ЕС ЭВМ характерен высокий уровень стандартизации и унификации, который обеспечивался типовой элементной базой, основанной на использовании интегральной микроэлектроники, единой базовой структурой всех моделей ЭВМ, стандартным набором команд и форматов представления данных, единой номенклатурой периферийных устройств, подключаемых через стандартную систему сопряжения (интерфейс ввода-вывода), единством принципов конструирования, производства и эксплуатации [4].
Современные вычислительные машины и персональные компьютеры можно отнести к пятому поколению ЭВМ. Развитие элементной базы ЭВМ пятого поколения происходит на наших глазах - каждые 3-5 лет в несколько раз возрастает степень интеграции электронных схем, улучшается технология их производства, что ведет к снижению стоимости компонентов компьютера. Сетевые технологии позволяют связывать компьютеры в локальные и глобальные сети, которые, взаимодействуя и объединяясь, образуют глобальную Сеть - Интернет. ЭВМ пятого поколения используют многозадачные операционные системы с дружественным графическим интерфейсом, а большое количество прикладных программ делает их незаменимыми при решении практически любых задач. Типичный объем оперативной памяти современных персональных компьютеров - сотни мегабайт, дисковой памяти - десятки или сотни гигабайт, тактовая частота - единицы гигагерц [5].
2. Использование ЭВМ в различных поколениях
Первые ЭВМ, изготовленные с использованием электронных ламп, были созданы исключительно для выполнения объемных научно-технических расчетов.
Первые отечественные ламповые вычислительные машины МЭСМ и БЭСМ были созданы под руководством академика С.А. Лебедева. МЭСМ (малая электронная счетная машина), созданная в 1951 г., сыграла важную роль в подготовке первых в стране программистов, инженеров и конструкторов ЭВМ, интенсифицировала разработку электронных элементов специально для применения в ЭВМ. БЭСМ (большая электронная счетная машина), являясь в то время самой быстродействующей ЭВМ в мире (8000 опер/с), открыла серию машин, получивших широкое распространение в СССР. В первой половине 50-х гг. в России появились ЭВМ серий «Стрела» и «Урал», а в 60-х гг.-- «Проминь», «Мир», «Минск», «Раздан». Эти машины могли справиться с широким кругом математических и логических задач, встречающихся при решении научных и сложных инженерных проблем [1].
На втором этапе развития ЭВМ были предприняты попытки использовать вычислительную машину для управления промышленными технологическими процессами, породившие управляющие вычислительные машины (УВМ). Такие ЭВМ в первую очередь наблюдали за измеряемыми показателями процессов, рассчитывали и вырабатывали управляющие воздействия либо помогали оператору вести управление. При этом возникла новая для ЭВМ ситуация: результаты расчетов могли быть использованы лишь тогда, когда они не только верны, но и своевременно подготовлены для использования. Такой режим работы ЭВМ специалисты называют работой в реальном масштабе времени [1].
Для машин 3-го поколения характерно не только улучшение габаритно-стоимостных показателей, но и модульный принцип организации технических и программных средств, обеспечивший возможность составлять приспособленную для соответствующего конкретного назначения конфигурацию ЭВМ. Машины 3-го поколения обрабатывают не только числа, но и слова, тексты, т. е. оперируют буквенно-цифровой информацией. Изменилась и форма общения человека с машиной. Пользователи получили доступ к ЭВМ. Машина через выносной терминал «сама пришла» к человеку в его служебное помещение. Спираль развития вычислительной техники и ее использования человеком завершила очередной виток [1].
Начало создания универсальных машин третьего поколения положила фирма IBM (США), приступившая в 1966 г. к выпуску машин серии IBM-360. Выпуск машин данного класса, совместимых с IBM, в рамках единой системы ЭВМ (ЕС ЭВМ) в странах -- членах СЭВ начался в 1972 г.
Четвертое поколение ЭВМ служит еще одним примером перехода количества в качество. Интеграция электронных схем повысилась настолько, что стало технически возможным сосредоточить значительное число функциональных устройств в одной большой интегральной схеме (БИС) и, таким образом, изготовить по этой технологии большие (по функциональным возможностям) блоки или всю ЭВМ в целом.
Но появление БИС -- это не только создание более совершенной элементной базы ЭВМ. Оно создало предпосылки для качественного изменения вычислительной техники. Применение БИС привело к новым представлениям о функциональных возможностях элементов и узлов ЭВМ. Разработка (1969 г., Intel, США) и промышленное освоение микропроцессоров обеспечили широкие возможности для децентрализации вычислительной мощности и встраивания вычислительных средств в оборудование и приборы [1].
С середины 70-х активно прорабатываются основы для построения машин 5-го поколения. В настоящее время еще рано говорить о завершении этих работ, хотя уже подготовлен теоретический и технический базис, позволяющий создавать новую архитектуру и обеспечивать реализацию новых функций, направленных на интеллектуализацию ЭВМ.
Этот базис -- развивающаяся технология сверхбольших интегральных схем, создание памяти повышенного объема, возрастающие возможности высокоскоростных элементов, расширение исследований в области искусственного интеллекта и распознавания образов, а также совместное развитие коммуникационных систем и систем обработки информации [1].
Заключение
По этапам создания и используемой элементной базе ЭВМ условно делятся на поколения:
Первое поколение, 50-е годы; ЭВМ на электронных вакуумных лампах.
Второе поколение, 60-е годы; ЭВМ на дискретных полупроводниковых приборах (транзисторах).
Третье поколение, 70-е годы; ЭВМ на полупроводниковых интегральных схемах с малой и средней степенью интеграции (сотни - тысячи транзисторов в одном корпусе).
Четвертое поколение, 80-е годы; ЭВМ на больших и сверхбольших интегральных схемах - микропроцессорах (десятки тысяч - миллионы транзисторов в одном
Пятое поколение, 90-е годы; ЭВМ с многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы;
Каждое следующее поколение ЭВМ имеет по сравнению с предыдущими существенно лучшие характеристики. Так, производительность ЭВМ и емкость всех запоминающих устройств увеличивается, как правило, больше чем на порядок.
Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер применения ЭВМ и, как следствие, переход от отдельных машин к их системам - вычислительным системам и комплексам разнообразных конфигураций и широким диапазоном функциональных возможностей и характеристик.
Литература
эвм транзистор печатный электронный
1. История создания ЭВМ [электронный ресурс]. - режим доступа: http://chernykh.net/content/view/249/265
2. Поколения ЭВМ [электронный ресурс]. - режим доступа: http://kspu.ptz.ru/~kafinfor/istk/toppage2.htm
3. Семененко В.А. и др. Электронные вычислительные машины. - М.: Высш. шк., 1991. - 288 с.
4. Уоссермен Ф. Нейрокомпьютерная техника: Теория и практика
Размещено на Allbest.ru
...Подобные документы
Теоретические аспекты управления бизнес-процессами. Разница функции и бизнес-процесса. История развития процессного управления. Основные и вспомогательные процессы, их автоматизация. Примеры нотации бизнес-процессов 1С и описание технологии Workflow.
презентация [1,6 M], добавлен 13.05.2017Пользовательский интерфейс MS Outlook, основные компоненты программы и их использование. Возможности при работе с электронной почтой. Архивация и удаление элементов с помощью средства автоархивации. Заявление о конфиденциальности, использование шаблонов.
курсовая работа [494,3 K], добавлен 25.06.2009Основные проблемы технологии управления документооборотом и ведение регистрационно-контрольных форм. Автоматизация делопроизводства компании путем внедрения информационной системы документационного обеспечения. Использование электронной цифровой подписи.
курсовая работа [492,6 K], добавлен 20.10.2010PLC-контроллеры как компьютерные, твердотельные устройства, контролирующие промышленные процессы и оборудование. Знакомство с наиболее распространенными промышленными системами управления. Характеристика главных компонентов управления ICS-систем.
реферат [1,0 M], добавлен 21.01.2016Основные принципы создания системы управления обучением Moodle. Рассмотрение категорий, структуры курсов и возможностей преподавателя. Ознакомление с работой деятельностного элемента "Лекция". Использование тестовых технологий и анализ его результатов.
дипломная работа [3,0 M], добавлен 01.04.2011Краткая характеристика четырех основных поколений ЭВМ. Появление и сущность термина "компьютер". Описание основных представителей компьютеров разных поколений. Интенсивные разработки ЭВМ V поколения. Сущность современного персонального компьютера.
презентация [149,6 K], добавлен 18.10.2010Общая характеристика электронной подписи, ее признаки и составляющие, основные принципы и преимущества применения. Использование электронной цифровой подписи в России и за рубежом. Правовое признание ее действительности. Сертификат ключа проверки ЭЦП.
курсовая работа [27,2 K], добавлен 11.12.2014Проектирование макета сайта магазина детской одежды: функции каждого элемента страницы, меню, каталог, авторизация, поиск. Классы и модули, их использование в созданном WEB-приложении. Структура базы данных и описание таблиц с существующими полями.
курсовая работа [3,8 M], добавлен 11.05.2015Сущность компьютера как своеобразного вычислителя. Характеристика микропроцессора – главного элемента компьютера, его электронной схемы, выполняющей все вычисления и обработку информации. История компьютерной техники. Работа звуковой карты, клавиатуры.
контрольная работа [75,7 K], добавлен 01.03.2011Создание элемента управления для отображения карт, представляющих собой векторные изображений в формате Encapsulated PostScript. Поддержка использования программных интерфейсов. Разработка элемента управления, вписывание изображения в область компонента.
дипломная работа [1,1 M], добавлен 11.11.2010Рассмотрение двух способов решения систем линейных алгебраических уравнений: точечные и приближенные. Использование при программировании метода Гаусса с выбором главного элемента в матрице и принципа Зейделя. Применение простой итерации решения уравнения.
курсовая работа [879,8 K], добавлен 05.06.2012Структура сети Internet и ее использование в образовании. Описание функционирования электронной почты, телеконференции, поисковых систем, общеобразовательных каталогов и порталов, электронных библиотек и других ссылок. Плюсы и минусы использования сети.
реферат [437,2 K], добавлен 16.11.2011Назначение, принципиальное устройство и основные кинематические характеристики промышленных роботов. Разработка адаптивных систем управления. Принцип действия схемы сопряжения манипулятора с LPT-портом ПК. Разработка и изготовление печатного основания.
курсовая работа [1,4 M], добавлен 04.03.2013Схемотехнический синтез системы автоматического управления. Анализ заданной системы автоматического управления, оценка ее эффективности и функциональности, описание устройства и работы каждого элемента. Расчет характеристик системы путем моделирования.
курсовая работа [3,4 M], добавлен 21.11.2012Структура ядра операционной системы. Основные компоненты подсистемы управления процессами и памятью. Характеристика системных и прикладных процессов в Unix. Идентификация процесса Linux, его атрибуты и вызовы. Средства межпроцессного взаимодействия.
лекция [170,1 K], добавлен 29.07.2012Сущность понятия электронной почты, ее возможности в современной сети Интернет. Основные угрозы, мешающие работе этой формы электронной коммуникации. Особенности способов информационной защиты, принципы корректного использования электронной почты.
контрольная работа [20,0 K], добавлен 28.12.2012Технология совершения коммерческих операций и управления процессами в коммуникационной среде с использованием информационных технологий. Типы электронной коммерции. Каналы распространения товаров через электронный магазин или корпоративный сайт.
презентация [520,3 K], добавлен 14.08.2013Информационные технологии и системы. Связь организаций и информационных систем. Интегрированная система управления промышленными предприятиями. Возможности информационных технологий в бизнесе, их влияние на организацию и роль менеджеров в этом процессе.
курсовая работа [147,7 K], добавлен 07.05.2012Особенности использования электронной таблицы Microsoft Excel для решения оптимизационных задач. Выполнение команды "Поиск решения" в меню "Сервис". Запись ограничений через использование кнопки "Добавить". Сообщение о найденном решении на экране.
лабораторная работа [4,5 M], добавлен 03.08.2011Знакомство с особенностями разработки элементов автоматизации управления процессами текущего ремонта автотранспортных средств. Рассмотрение этапов создания запроса и таблицы в Microsoft Visual FoxPro. Способы разработки электронной формы документа.
контрольная работа [306,6 K], добавлен 04.05.2015