Использование микропроцессоров в робототехнике

Понятие робота как программируемой, управляемой компьютером машины, имитирующей поведение мыслящих существ. История их изобретения и начало практического применения. Характеристика элементов манипуляторов и эффекторов. Создание искусственного интеллекта.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 21.05.2013
Размер файла 18,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

Использование микропроцессоров в робототехнике

робот манипулятор эффектор

С каждым днём роботы становятся всё более сложными, эффективными и умными. Впрочем, мы можем чувствовать себя в безопасности: машины, лишённые способности мыслить, не могут выйти из-под контроля, хотя, по мнению некоторых инженеров, время искусственного интеллекта не за горами.

Не существует общепринятого точного определения робота, однако считается, что это программируемая, управляемая компьютером машина, имитирующая поведение мыслящих существ, чаще всего - человека. История практического применения роботов началась во второй половине XX века. Благодаря изобретению транзисторов, а позже и микропроцессоров появилась возможность создания машин, управляемых компьютерами. На заводах и фабриках появились так называемые стационарные промышленные манипуляторы - металлические «руки», выполняющие запрограммированные последовательности движений.

Элементы манипуляторов соединялись наподобие суставов человеческой руки, а оканчивалось устройство исполнительным инструментом - эффектором. Манипуляторы отличались огромной силой и точностью движений, которые требуются, например, при сварке кузовов автомобилей или сборки микропроцессоров. Эти так называемые роботы первого поколения, лишённые способности перемещаться в пространстве, программируемые на выполнение цикличных движений, сегодня широко используются в различных отраслях промышленности: автомобильной, металлургической, электронной индустрии, в точном машиностроении. Около 90 процентов существующих роботов - это заводские манипуляторы, из них более половины применяются в автомобилестроении. Появились роботы второго поколения, оснащённые сенсорами - датчиками касания, движения, звука - и видеокамерами. Эти устройства сохранили силу и точность своих предшественников, а также получили возможность проникать в места, недоступные человеку, например, в сердце атомного реактора.

В качестве примера такого устройства можно назвать механического «паука» под названием «Робаг-3», оснащённого восемью ногами и камерами, которые передают изображение на значительное расстояние от места его работы. Большинство роботов передвигается с помощью колёс или гусениц, однако учёные работают над усовершенствованием шагающих машин, более эффективных при преодолении сложных препятствий. Перед инженерами стоят непростые задачи: не только воспроизвести сложную конструкцию наших конечностей, но и разработать систему поддержания равновесия устройства в движении. Первой компанией, добившейся успехов на этом поприще, была японская «Хонда». Её робот имел рост 180 сантиметров, весил 210 килограммов и напоминал внешним видом человека, одетого в космический скафандр. Устройство было оснащено автоматической системой контроля, могло передвигаться по лестнице и наклонным плоскостям без дополнительных инструкций оператора, поворачиваться и изменять направление движения. Робота можно было даже толкнуть, после чего он самостоятельно восстанавливал равновесие. С того времени появилось немало других человекоподобных роботов. Человекоподобная машина - это первый шаг на пути создания робота с интеллектуальными способностями человека.

В настоящее время ведутся работы по созданию роботов третьего поколения, оснащённых элементами так называемого искусственного интеллекта и способных разрешать проблемы, формулировка и решение которых ранее считались исключительной привилегией человека. Такие машины смогут учиться на своих ошибках и, в определённом смысле, принимать самостоятельные решения, зависящие от изменения окружающих условий. Универсальный робот, не требующий программирования каждого действия, - это давняя мечта человека. Впрочем, создание таких машин может обернуться и во вред человеку. Подобные опасения высказывают люди, предполагающие, что машины могут обрести сознание в результате достижения некоторой скорости обработки данных. Они считают, что психика человека может быть описана математическими уравнениями, которые могут быть применены для создания искусственного разума.

Им оппонируют учёные, убеждённые в том, что человеческий интеллект - это плод опыта, переживаний и эмоций, накапливаемых в течение всей жизни, а также специфического устройства нервной системы, искусственное воспроизведение которых невозможно. Тем временем роботы проникают во всё новые сферы нашей жизни. Машины занимают прочное место среди наиболее популярных детских игрушек. Так, например, механический щенок «АИБО» компании «Сони» способен чувствовать касание, видеть, слышать, ходить, удерживая равновесие, а также выполнять голосовые команды. Другие роботы облегчают наш быт. Например, робот-пылесос «Эврика» оснащён микропроцессорным «мозгом» и сонарами, облегчающими перемещение по заставленным мебелью комнатам, а «умные» газонокосилки способны задерживаться и огибать препятствия. Роботы всё чаще выезжают на дороги - в Калифорнийском университете сконструированы автоматы для ремонта поверхности шоссе. Роботы выполняют вместо человека сложные хирургические операции, как, например, «Рободок», имплантирующий искусственные бедренные суставы. Роботы летают на другие планеты, покоряют морские глубины, проникают в жерла действующих вулканов.

Теперь немного о микропроцессорах,без которых строение управляемых машин,стало бы невозможным.

Первые микропроцессоры появились в 1970-х годах и применялись в электронных калькуляторах, в них использовалась двоично-десятичная арифметика 4-битных слов. Вскоре их стали встраивать и в другие устройства, например терминалы, принтеры и различную автоматику. Доступные 8-битные микропроцессоры с 16-битной адресацией позволили в середине 1970-х годах создать первые бытовые микрокомпьютеры.

Микропроцессор - это устройство, выполняющее обработку информации на персо-нальных компьютерах, управляет вычислительным процессом, арифметическими и логическими операциями.

Модели процессоров включают следующие совместно работающие устройства:

Устройство управления (УУ). Осуществляет координацию работы всех остальных устройств, выполняет функции управления устройствами, управляет вычислениями в компьютере.

Арифметико-логическое устройство (АЛУ). Так называется устройство для цело-численных операций. Арифметические операции, такие как сложение, умножение и деление, а также логические операции обрабатываются при помощи АЛУ. Эти опе-рации составляют подавляющее большинство программного кода в большинстве программ. Все операции в АЛУ производятся в регистрах - специально отведенных ячейках АЛУ. В процессоре может быть несколько АЛУ. Каждое способно испол-нять арифметические или логические операции независимо от других, что позволяет выполнять несколько операций одновременно. Арифметико-логическое устройство выполняет арифметические и логические действия. Логические операции делятся на две простые операции: "Да" и "Нет" ("1" и "0"). Обычно эти два устройства выделяются чисто условно, конструктивно они не разделены.

AGU (Address Generation Unit) - устройство генерации адресов. Это устройство не менее важное, чем АЛУ, т.к. оно отвечает за корректную адресацию при загрузке или сохранении данных. Абсолютная адресация в программах используется только в редких исключениях. Как только берутся массивы данных, в программном коде используется косвенная адресация, заставляющая работать AGU.

Математический сопроцессор. Процессор может содержать несколько математи-ческих сопроцессоров. Каждый из них способен выполнять, по меньшей мере, одну операцию с плавающей точкой независимо от того, что делают другие АЛУ. Метод конвейерной обработки данных позволяет одному математическому сопроцессору выполнять несколько операций одновременно. Сопроцессор поддерживает высоко-точные вычисления как целочисленные, так и с плавающей точкой и, кроме того, содержит набор полезных констант, ускоряющих вычисления.

Сопроцессор работает параллельно с центральным процессором, обеспечивая, таким образом, высокую производительность. Система выполняет команды сопроцессора в том порядке, в котором они появляются в потоке. Математический сопроцессор персонального компьютера IBM PC позволяет ему выполнять скоростные арифметические и логарифмические операции, а также тригонометрические функции с высокой точностью.

Дешифратор инструкций (команд). Анализирует инструкции в целях выделения операндов и адресов, по которым размещаются результаты. Затем следует сообще-ние другому независимому устройству о том, что необходимо сделать для выполнения инструкции. Дешифратор допускает выполнение нескольких инструкций одновременно для загрузки всех исполняющих устройств.

Кэш-память. Особая высокоскоростная память процессора. Кэш используется в качестве буфера для ускорения обмена данными между процессором и оперативной памятью, а также для хранения копий инструкций и данных, которые недавно использовались процессором. Значения из кэш-памяти извлекаются напрямую, без обращения к основной памяти. При изучении особенностей работы программ было обнаружено, что они обращаются к тем или иным областям памяти с различной частотой, а именно: ячейки памяти, к которым программа обращалась недавно, скорее всего, будут использованы вновь. Предположим, что микропроцессор способен хранить копии этих инструкций в своей локальной памяти. В этом случае процессор сможет каждый раз использовать копию этих инструкций на протяжении всего цикла. Доступ к памяти понадобиться в самом начале. Для хранения этих инструкций необходим совсем небольшой объём памяти. Если инструкции в процессор поступают достаточно быстро, то микропроцессор не будет тратить время на ожидание. Таким образом экономиться время на выполнение инструкций. Но для самых быстродействующих микропроцессоров этого недостаточно. Решение данной проблемы заключается в улучшении организации памяти. Память внутри микропроцессора может работать со скоростью самого процессора.

Кэш первого уровня (L1 cache). Кэш-память, находящаяся внутри процессора. Она быстрее всех остальных типов памяти, но меньше по объёму. Хранит совсем недавно использованную информацию, которая может быть использована при выполнении коротких программных циклов.

Кэш второго уровня (L2 cache). Также находится внутри процессора. Информация, хранящаяся в ней, используется реже, чем информация, хранящаяся в кэш-памяти первого уровня, но зато по объёму памяти он больше. Также в настоящее время в процессорах используется кэш третьего уровня.

Основная память. Намного больше по объёму, чем кэш-память, и значительно ме-нее быстродействующая.

Многоуровневая кэш-память позволяет снизить требования наиболее производи-тельных микропроцессоров к быстродействию основной динамической памяти. Так, если сократить время доступа к основной памяти на 30%, то производительность хорошо сконструированной кэш-памяти повыситься только на 10-15%. Кэш-память, как известно, может достаточно сильно влиять на производительность процессора в зависимости от типа исполняемых операций, однако ее увеличение вовсе не обяза-тельно принесет увеличение общей производительности работы процессора. Все зависит от того, насколько приложение оптимизировано под данную структуру и использует кэш, а также от того, помещаются ли различные сегменты программы в кэш целиком или кусками.

Кэш-память не только повышает быстродействие микропроцессора при операции чтения из памяти, но в ней также могут храниться значения, записываемые процес-сором в основную память; записать эти значения можно будет позже, когда основная память будет не занята. Такая кэш-память называется КЭШем с обратной записью (write back cache). Её возможности и принципы работы заметно отличаются от характеристик кэша со сквозной записью (write through cache), который участвует только в операции чтения из памяти.

Шина - это канал пересылки данных, используемый совместно различными блоками системы. Шина может представлять собой набор проводящих линий в печатной плате, провода, припаянные к выводам разъемов, в которые вставляются печатные платы, либо плоский кабель. Информация передается по шине в виде групп битов. В состав шины для каждого бита слова может быть предусмотрена отдельная линия (параллельная шина), или все биты слова могут последовательно во времени использовать одну линию (последовательная шина). К шине может быть подключено много приемных устройств - получателей. Обычно данные на шине предназначаются только для одного из них. Сочетание управляющих и адресных сигналов, определяет для кого именно. Управляющая логика возбуждает специальные стробирующие сигналы, чтобы указать получателю, когда ему следует принимать данные. Получатели и отправители могут быть однонаправленными (т.е. осуществлять только либо передачу, либо прием) и двунаправленными (осуществлять и то и другое). Однако самая быстрая процессорная шина не сильно поможет, если память не сможет доставлять данные с соответствующей скоростью.

Типы шин:

Шина данных. Служит для пересылки данных между процессором и памятью или процессором и устройствами ввода-вывода. Эти данные могут представлять собой как команды микропроцессора, так и информацию, которую он посылает в порты ввода-вывода или принимает оттуда.

Шина адресов. Используется ЦП для выбора требуемой ячейки памяти или устрой-ства ввода-вывода путем установки на шине конкретного адреса, соответствующего одной из ячеек памяти или одного из элементов ввода-вывода, входящих в систему.

Шина управления. По ней передаются управляющие сигналы, предназначенные памяти и устройствам ввода-вывода. Эти сигналы указывают направление передачи данных (в процессор или из него).

Регистры - это внутренняя память процессора. Представляют собой ряд специали-зированных дополнительных ячеек памяти, а также внутренние носители информа-ции микропроцессора. Регистр является устройством временного хранения данных, числа или команды и используется с целью облегчения арифметических, логических и пересылочных операций. Над содержимым некоторых регистров спе-циальные электронные схемы могут выполнять некоторые манипуляции. Например, "вырезать" отдельные части команды для последующего их использования или вы-полнять определенные арифметические операции над числами. Основным элементом регистра является электронная схема, называемая триггером, которая способна хранить одну двоичную цифру (разряд). Регистр представляет собой совокупность триггеров, связанных друг с другом определённым образом общей системой управления. Существует несколько типов регистров, отличающихся видом выполняемых операций.

Некоторые важные регистры имеют свои названия, например:

сумматор -- регистр АЛУ, участвующий в выполнении каждой операции.

счетчик команд -- регистр УУ, содержимое которого соответствует адресу очеред-ной выполняемой команды; служит для автоматической выборки программы из по-следовательных ячеек памяти.

регистр команд -- регистр УУ для хранения кода команды на период времени, не-обходимый для ее выполнения. Часть его разрядов используется для хранения кода операции, остальные -- для хранения кодов адресов операндов.

Размещено на Allbest.ru

...

Подобные документы

  • Начало современного этапа развития систем искусственного интеллекта. Особенности взаимодействия с компьютером. Цель когнитивного моделирования. Перспективы основных направлений современного развития нейрокомпьютерных технологий, моделирование интеллекта.

    реферат [24,7 K], добавлен 05.01.2010

  • Понятие искусственного интеллекта в робототехнике и мехатронике. Структура и функции интеллектуальной системы управления. Классификация и типы знаний, представление их с помощью логики предикатов. Суть семантических сетей, фреймовое представление знаний.

    курс лекций [1,1 M], добавлен 14.01.2011

  • Сущность искусственного интеллекта, сферы человеческой деятельности, в которых он распространен. История и этапы развития данного явления. Первые идеи и их воплощение. Законы робототехники. Использование искусственного интеллекта в коммерческих целях.

    реферат [40,8 K], добавлен 17.08.2015

  • Понятие искусственного интеллекта как свойства автоматических систем брать на себя отдельные функции интеллекта человека. Экспертные системы в области медицины. Различные подходы к построению систем искусственного интеллекта. Создание нейронных сетей.

    презентация [3,0 M], добавлен 28.05.2015

  • История создания и основные направления в моделировании искусственного интеллекта. Проблемы обучения зрительному восприятию и распознаванию. Разработка элементов интеллекта роботов. Исследования в области нейронных сетей. Принцип обратной связи Винера.

    реферат [45,1 K], добавлен 20.11.2009

  • Может ли искусственный интеллект на данном уровне развития техники и технологий превзойти интеллект человека. Может ли человек при контакте распознать искусственный интеллект. Основные возможности практического применения искусственного интеллекта.

    презентация [511,2 K], добавлен 04.03.2013

  • Сущность и проблемы определения искусственного интеллекта, его основных задач и функций. Философские проблемы создания искусственного интеллекта и обеспечения безопасности человека при работе с роботом. Выбор пути создания искусственного интеллекта.

    контрольная работа [27,9 K], добавлен 07.12.2009

  • Исторический обзор развития работ в области искусственного интеллекта. Создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека. От логических игр до медицинской диагностики.

    реферат [29,1 K], добавлен 26.10.2009

  • Понятие, сущность и история создания искусственного интеллекта. Области его практического приложения в человеческой деятельности. Использование его для создания роботизированной техники. Задача создания первой разумной системы на основе сети Интернет.

    презентация [622,3 K], добавлен 01.12.2014

  • Феномен мышления. Создание искусственного интеллекта. Механический, электронный, кибернетический, нейронный подход. Появление перцептрона. Искусственный интеллект представляет пример интеграции многих научных областей.

    реферат [27,2 K], добавлен 20.05.2003

  • Игровая программа "шашки" для игры между человеком и компьютером. Разработка алгоритмов, историческая линия развития задач. Различные подходы к построению систем. Сокращенный листинг программы и описание алгоритма. Компоненты искусственного интеллекта.

    курсовая работа [196,2 K], добавлен 26.03.2009

  • Искусственный интеллект – научное направление, связанное с машинным моделированием человеческих интеллектуальных функций. Черты искусственного интеллекта Развитие искусственного интеллекта, перспективные направления в его исследовании и моделировании.

    реферат [70,7 K], добавлен 18.11.2010

  • История развития искусственного интеллекта в странах дальнего зарубежья, в России и в Республике Казахстан. Разработка проекта эффективного внедрения и адаптации искусственного интеллекта в человеческом социуме. Интеграция искусственного в естественное.

    научная работа [255,5 K], добавлен 23.12.2014

  • Понятие и суть нечеткой логики и генетических алгоритмов. Характеристика программных пакетов для работы с системами искусственного интеллекта в среде Matlab R2009b. Реализация аппроксимации функции с применением аппарата нечеткого логического вывода.

    курсовая работа [2,3 M], добавлен 23.06.2012

  • История возникновения и развития современной робототехники, применение технологий искусственного интеллекта. Разработка структурной схемы системы навигации мобильного робота, коррекция траектории его движения, методы управления локальными перемещениями.

    дипломная работа [1,1 M], добавлен 18.05.2011

  • Характеристика сущности искусственного интеллекта. Проблема создания искусственного интеллекта. Базовые положения, методики и подходы построения систем ИИ (логический, структурный, эволюционный, имитационный). Проблемы создания и реализация систем ИИ.

    реферат [43,1 K], добавлен 19.07.2010

  • Применение методов искусственного интеллекта и современных компьютерных технологий для обработки табличных данных. Алгоритм муравья, его начальное размещение и перемещение. Правила соединения UFO-компонентов при моделировании шахтной транспортной системы.

    дипломная работа [860,8 K], добавлен 23.04.2011

  • Эволюция систем искусственного интеллекта. Направления развития систем искусственного интеллекта. Представление знаний - основная проблема систем искусственного интеллекта. Что такое функция принадлежности и где она используется?

    реферат [49,0 K], добавлен 19.05.2006

  • Области человеческой деятельности, в которых может применяться искусственный интеллект. Решение проблем искусственного интеллекта в компьютерных науках с применением проектирования баз знаний и экспертных систем. Автоматическое доказательство теорем.

    курсовая работа [41,3 K], добавлен 29.08.2013

  • История развития искусственного интеллекта. Экспертные системы: их типы, назначение и особенности, знания и их представление. Структура идеальной и инструменты построения экспертных систем. Управление системой продукции. Семантические сети и фреймы.

    реферат [85,7 K], добавлен 20.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.