Стандарт 802.11

Архитектура и организация сети. Стек протоколов IEEE 802.11. Распределенный и централизованный режим доступа PCF. Уровень доступа к среде, стандарт, физический и канальный уровень IEEE 802.11. Типы и разновидности соединений. Безопасность WiFi сетей.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 13.06.2013
Размер файла 723,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

MINISTERUL EDUCAЮIEI al REPUBLICII MOLDOVA

UNIVERSITATEA TEHNICГ a MOLDOVEI

FACULTATEA CALCULATOARE, INFORMATICA

єi MICROELECTRONICA

CATEDRA AUTOMATICГ єi TEHNOLOGII INFORMAЮIONALE

Реферат

На тему:

«Стандарт 802.11»

Выполнил

студент гр. TI -103Мельник Дм.

Проверил преподаватель:

Романенко А.

Chiєinau 2012

Содержание

Введение

1. Теоретическая часть

2. Архитектура сети и стандарты

3. Организация сети

4. Стек протоколов IEEE 802.11

5. Уровень доступа к среде стандарта 802.11

5.1 Распределенный режим доступа DCF

5.2 Централизованный режим доступа PCF

6. Стандарт IEEE 802.11

6.1 Физический уровень IEEE 802.11

6.2 Канальный уровень IEEE 802.11

7. Типы и разновидности соединений

8. Безопасность WiFi сетей

Заключение

Список литературы

Введение

Уже несколько десятилетий люди применяют компьютерные сети для обеспечения связи между персоналом, компьютерами и серверами в компаниях, колледжах и городах. Однако наблюдается тенденция ко все более широкому использованию беспроводных сетей. И действительно, сейчас доступны беспроводные интерфейсы, позволяющие использовать сетевые службы, работать с электронной почтой и просматривать Web-страницы независимо от того, где находится пользователь. Эти беспроводные приложения позволяют людям "расширить" свое рабочее место и получить в результате этого ряд преимуществ. Во время деловых поездок можно, например, отправлять электронные письма в ожидании посадки на самолет в аэропорту. Домовладельцы могут с легкостью использовать общее Internet-соединение для многих ПК и ноутбуков без прокладки кабелей.

В наши дни потребность доступа к сетевым данным, без использования кабелей высока. Будь то предприятие или же учебное заведение. Радиосети позволяют применить относительно дешевое и практичное решение создания сети.

1. Теоретическая часть

Самый популярный стандарт беспроводных локальных сетей - IEEE 802.11. Институт инженеров по электротехнике и электронике IEEE (Institute of Electrical and Electronics Engineers) сформировал рабочую группу по стандартам для беспроводных локальных сетей 802.11 в 1990 году. Эта группа занялась разработкой всеобщего стандарта для радиооборудования и сетей, работающих на частоте 2,4 ГГц, со скоростями доступа 1 и 2 Мбит/с. Работы по созданию стандарта были завершены через 7 лет, и в июне 1997 года была ратифицирована первая спецификация 802.11. Стандарт IEEE 802.11 являлся первым стандартом для продуктов WLAN от независимой международной организации, разрабатывающей большинство стандартов для проводных сетей.

В этом подразделе будет рассмотрена архитектура самого популярного стандарта беспроводных локальных сетей - IEEE 802.11, а в следующем подразделе речь пойдет о наиболее популярных стандартах: IEEE 802.11a, IEEE 802.11b и IEEE 802.11g.

2. Архитектура, компоненты сети и стандарты

Преобладающим для беспроводных локальных сетей является стандарт IEEE 802.ll, различные версии которого регламентируют передачу данных в диапазонах 2,4 и 5 ГГц.

Стандарт RadioEthernet IEEE 802.11 - это стандарт организации беспроводных коммуникаций на ограниченной территории в режиме локальной сети, т.е. когда несколько абонентов имеют равноправный доступ к общему каналу передач. 802.11 - первый промышленный стандарт для беспроводных локальных сетей (Wireless Local Area Networks), или WLAN. Стандарт был разработан Institute of Electrical and Electronics Engineers (IEEE).

Основная проблема, связанная с этим стандартом, состоит в том, что в должной мере не обеспечивается взаимодействие устройств, соответствующих его различным версиям. Так, адаптеры компьютерных устройств беспроводных локальных сетей стандарта 802.11а не обеспечивают соединения с компьютерными устройствами, соответствующими стандарту 802.11b. Существуют и другие нерешенные вопросы, связанные со стандартом 802.11, например недостаточная степень безопасности.

Для того чтобы как-то разрешить проблемы, связанные с применением устройств стандарта 802.11, организация "Альянс Wi-Fi" свела все его совместимые функции в единый стандарт, названный Wireless Fidelity (Wi-Fi). Если какое-то устройство беспроводных локальных сетей соответствует стандарту Wi-Fi, это практически гарантирует способность его совместной работы с другими устройствами, соответствующими стандарту Wi-Fi. Открытость стандарта Wi-Fi позволяет различным пользователям, применяющим разные платформы, работать в одной и той же беспроводной локальной сети, что чрезвычайно важно для общедоступных беспроводных локальных сетей.

Стандарт 802.11 используется как в MAN (Metropolitan Area Network) то есть в региональных сетях, Хотя системы этого стандарта оптимальны для удовлетворения требований, предъявляемым к сетям внутри зданий, они могут обеспечивать соединения и в масштабах города с использованием направленных антенн.

Беспроводные региональные, или как их еще называют городские, сети обслуживают зоны, по площади соответствующие городу.

Характеристики беспроводных региональных сетей различны. Соединения между строениями с использованием радиоканалов скорость передачи до 100 кбит/с, но расстояния свыше 30 км (Рисунок 1)

Рисунок 1 - Беспроводные региональные сети являются альтернативой для применения в домашних условиях или в компаниях для получения доступа к Интернету

Многие колледжи и начальные школы считают целесообразным развернуть на своей территории беспроводную локальную сеть -- в основном, для обеспечения мобильного доступа к сетевым приложениям для своих учащихся. Наличие такого доступа расценивается как конкурентоспособное преимущество. Школы стараются увеличить число учеников с ноутбуками, желающих получить доступ в Интернет и к школьным ресурсам из любого уголка кампуса (студенческого городка), например из класса, библиотеки, институтского двора или общежития. Быстро получить и отправить электронную почту, просмотреть Web-страницы, воспользоваться специализированными школьными приложениями, узнать свои оценки и посмотреть конспекты лекций. Все это дает возможность учащимся рациональнее распределять свое время. Приобретение и обеспечение работы компьютерных классов -- дорогое удовольствие, но необходимое для выполнения учебных заданий. Ученикам часто приходится ждать, пока компьютер освободится. Беспроводная локальная сеть дает ученикам доступ к необходимым им ресурсам через их ноутбуки из любого уголка и в любое время, даже когда компьютерный класс закрыт. Благодаря этому доступ к сети равномерно распределяется между учениками, повышая тем самым эффективность обучения. При этом учебное заведение может сэкономить средства, выделяемые на содержание компьютерных классов.

Кабели не отличаются высокой надежностью из-за коррозии и возможных повреждений. Причиной выхода из строя проводных сетей чаще всего является неправильная прокладка кабелей или их повреждение.

Проводная сеть может оказаться необходимой, если беспроводная не удовлетворяет предъявляемым к сети требованиям, но беспроводная сеть может обеспечить резервирование проводного канала связи.

Стандарт RadioEthernet IEEE 802.11 определяет порядок организации беспроводных сетей на уровне управления доступом к среде (MAC-уровне) и физическом (PHY) уровне. В стандарте определен один вариант MAC (Medium Access Control) уровня и три типа физических каналов. Подобно проводному Ethernet, IEEE 802.11 определяет протокол использования единой среды передачи, получивший название carrier sense multiple access collision avoidance (CSMA/CA). Вероятность коллизий беспроводных узлов минимизируется путем предварительной посылки короткого сообщения, называемого ready to send (RTS), оно информирует другие узлы о продолжительности предстоящей передачи и адресате. Это позволяет другим узлам задержать передачу на время, равное объявленной длительности сообщения. Приемная станция должна ответить на RTS посылкой clear to send (CTS). Это позволяет передающему узлу узнать, свободна ли среда и готов ли приемный узел к приему. После получения пакета данных приемный узел должен передать подтверждение (ACK) факта безошибочного приема. Если ACK не получено, попытка передачи пакета данных будет повторена.

В стандарте предусмотрено обеспечение безопасности данных, которое включает аутентификацию для проверки того, что узел, входящий в сеть, авторизован в ней, а также шифрование для защиты от подслушивания.

На физическом уровне стандарт предусматривает два типа радиоканалов и один инфракрасного диапазона.

В основу стандарта 802.11 положена сотовая архитектура. Сеть может состоять из одной или нескольких ячеек (сот). Каждая сота управляется базовой станцией, называемой точкой. Точка доступа и находящиеся в пределах радиуса ее действия рабочие станции образуют базовую зону обслуживания (Basic Service Set, BSS). Точки доступа многосотовой сети взаимодействуют между собой через распределительную систему (Distribution System, DS), представляющую собой эквивалент магистрального сегмента кабельных локальных сетей. Вся инфраструктура, включающая точки доступа и распределительную систему, образует расширенную зону обслуживания (Extended Service Set). Стандартом предусмотрен также односотовый вариант беспроводной сети, который может быть реализован и без точки доступа, при этом часть ее функций выполняется непосредственно рабочими станциями.

Базовая станция -- распространенный компонент инфраструктуры. Она обеспечивает передачу информационных сигналов беспроводных сетей, распространяющихся через воздушную среду, в проводную сеть, ее иногда называют распределительной системой. Следовательно, базовая станция обеспечивает доступ пользователей ко множеству сетевых служб, таких как сервисы просмотра Web-страниц, электронная почта и базы данных. Базовая станция часто содержит плату интерфейса беспроводной сети, использующую те же принципы работы, что и плата интерфейса беспроводной сети в компьютере пользователя. Название базовой станции зависит от выполняемых ею функций. Например, точка доступа (Access Point) -- это основная базовая станция беспроводных локальных сетей. Комплект точек доступа беспроводной локальной сети обеспечивает роуминг в пределах здания. Плата интерфейса сети, находящаяся в компьютерном устройстве пользователя, устанавливает соединение с ближайшей точкой доступа, обеспечивая взаимодействие с входящими в инфраструктуру системами и пользователями, ассоциированными с другими точками доступа. Когда пользователь перемещается в помещение, ближе к которому расположена другая точка доступа, плата интерфейса сети автоматически переключается на связь с нею, поддерживая надежное соединение. Шлюзы и маршрутизаторы локальной сети -- это примеры базовых станций с расширенными возможностями, обеспечивающих выполнение дополнительных функций в сети. Шлюз может выполнять такие функции, как контроль доступа и обеспечение взаимодействия приложений, что улучшает обслуживание распределенных сетей общего доступа. Маршрутизатор (Router) обеспечивает работу нескольких компьютеров через одно широкополосное соединение. Базовая станция может поддерживать соединения типа "точка-точка" или "точка - несколько точек" (Рисунок 2). Системы типа "точка-точка" способны передавать поток сигналов от одной базовой станции или компьютерного устройства к другой (другому).

Рисунок 2 - Базовая станция поддерживает различные способы соединений

В настоящее время существует множество стандартов семейства IEEE 802.11:

-802.11 - первоначальный основополагающий стандарт. Поддерживает передачу данных по радиоканалу со скоростями 1 и 2 (опционально) Мбит/с;

-802.11a - высокоскоростной стандарт WLAN. Поддерживает передачу данных со скоростями до 54 Мбит/с по радиоканалу в диапазоне около 5 ГГц;

-802.11b - самый распространенный стандарт. Поддерживает передачу данных со скоростями до 11 Мбит/с по радиоканалу в диапазоне около 2,4 Ггц;

-802.11c - Стандарт, регламентирующий работу беспроводных мостов. Данная спецификация используется производителями беспроводных устройств при разработке точек доступа.

-802.11d - Стандарт определял требования к физическим параметрам каналов (мощность излучения и диапазоны частот) и устройств беспроводных сетей с целью обеспечения их соответствия законодательным нормам различных стран;

-802.11e - Создание данного стандарта связано с использованием средств мультимедиа. Он определяет механизм назначения приоритетов разным видам трафика - таким, как аудио- и видеоприложения. Требование качества запроса, необходимое для всех радио интерфейсов IEEE WLAN;

-802.11f - Данный стандарт, связанный с аутентификацией, определяет механизм взаимодействия точек связи между собой при перемещении клиента между сегментами сети. Другое название стандарта - Inter Access Point Protocol. Стандарт, описывающий порядок связи между равнозначными точками доступа;

-802.11g - устанавливает дополнительную технику модуляции для частоты 2,4 ГГц. Предназначен, для обеспечения скоростей передачи данных до 54 Мбит/с по радиоканалу в диапазоне около 2,4 ГГц;

-802.11h - Разработка данного стандарта связана с проблемами при использовании 802.11а в Европе, где в диапазоне 5 ГГц работают некоторые системы спутниковой связи. Для предотвращения взаимных помех стандарт 802.11h имеет механизм "квазиинтеллектуального" управления мощностью излучения и выбором несущей частоты передачи. Стандарт, описывающий управление спектром частоты 5 ГГц для использования в Европе и Азии;

-802.11i (WPA2) - Целью создания данной спецификации является повышение уровня безопасности беспроводных сетей. В ней реализован набор защитных функций при обмене информацией через беспроводные сети - в частности, технология AES (Advanced Encryption Standard) - алгоритм шифрования, поддерживающий ключи длиной 128, 192 и 256 бит. Предусматривается совместимость всех используемых в данное время устройств - в частности, Intel Centrino - с 802.11i-сетями. Затрагивает протоколы802.1X,TKIPиAES;

-802.11j - Спецификация предназначена для Японии и расширяет стандарт 802.11а добавочным каналом 4,9 ГГц;

-802.11n - Перспективный стандарт, находящийся на сегодняшний день в разработке, который позволит поднять пропускную способность сетей до 100 Мбит/сек;

-802.11r - Данный стандарт предусматривает создание универсальной и совместимой системы роуминга для возможности перехода пользователя из зоны действия одной сети в зону действия другой. Из всех существующих стандартов беспроводной передачи данных IEEE 802.11, на практике наиболее часто используются всего три, определенных Инженерным институтом электротехники и радиоэлектроники (IEEE), это: 802.11b, 802.11g и 802.11a;

Таблица 1 - Сравнение стандартов беспроводной передачи данных

Стандарт

802.11b

802.11g

802.11a

Кол-во исп. радиоканалов

3 не перекрывающихся

3 не перекрывающихся

8 не перекрывающихся

Частотный диапазон

2.4 ГГц

2.4 ГГц

5 ГГц

Макс. скорость передачи д-х

11 Мб/с

54 Мб/с

54 Мб/с

Таблица 2 - Примерное отношение дальности к скорости для стандартов беспроводной передачи данных

Стандарт

802.11b

802.11g

802.11a

Примерная дальность действия

30 м

100 м

15 м

50 м

12 м

100 м

Пропускная способность

11 Мб/с

1 Мб/с

54 Мб/с

11 Мб/с

54 Мб/с

6 Мб/с

В окончательной редакции широко распространенный стандарт 802.11b был принят в 1999 году и благодаря ориентации на свободный от лицензирования диапазон 2,4 ГГц завоевал наибольшую популярность у производителей оборудования. Пропускная способность (теоретическая 11 Мбит/с, реальная -- от 1 до 6 Мбит/с) отвечает требованиям большинства приложений. Поскольку оборудование 802.11b, работающее на максимальной скорости 11 Мбит/с, имеет меньший радиус действия, чем на более низких скоростях, то стандартом 802.11b предусмотрено автоматическое понижение скорости при ухудшении качества сигнала. К началу 2004 года в эксплуатации находилось около 15 млн. радиоустройств 802.11b.

В конце 2001-го появился - стандарт беспроводных локальных сетей 802.11a, функционирующих в частотном диапазоне 5 ГГц (диапазон ISM). Беспроводные ЛВС стандарта IEEE 802.11a обеспечивают скорость передачи данных до 54 Мбит/с, т. е. примерно в пять раз быстрее сетей 802.11b, и позволяют передавать большие объемы данных, чем сети IEEE 802.11b.К недостаткам 802.11а относятся большая потребляемая мощность радиопередатчиков для частот 5 ГГц, а также меньший радиус действия (оборудование для 2,4 ГГц может работать на расстоянии до 300 м, а для 5 ГГц -- около 100 м). Кроме того, устройства для 802.11а дороже, но со временем ценовой разрыв между продуктами 802.11b и 802.11a будет уменьшаться.

802.11g является новым стандартом, регламентирующим метод построения WLAN, функционирующих в не лицензируемом частотном диапазоне 2,4 ГГц. Максимальная скорость передачи данных в беспроводных сетях IEEE 802.11g составляет 54 Мбит/с. Стандарт 802.11g представляет собой развитие 802.11b и обратно совместим с 802.11b. Соответственно ноутбук с картой 802.11g сможет подключаться и к уже действующим точкам доступа 802.11b, и ко вновь создаваемым 802.11g. Теоретически 802.11g обладает достоинствами двух своих предшественников. В числе преимуществ 802.11g надо отметить низкую потребляемую мощность, большую дальность действия и высокую проникающую способность сигнала. Можно надеяться и на разумную стоимость оборудования, поскольку низкочастотные устройства проще в изготовлении.

3. Организация сети

стандарт архитектура доступ безопасность сеть

Стандарт IEEE 802.11 работает на двух нижних уровнях модели ISO/OSI: физическом и канальном. Другими словами, использовать оборудование Wi-Fi так же просто, как и Ethernet: протокол TCP/IP накладывается поверх протокола, описывающего передачу информации по каналу связи. Расширение IEEE 802.11b не затрагивает канальный уровень и вносит изменения в IEEE 802.11 только на физическом уровне. В беспроводной локальной сети есть два типа оборудования: клиент (обычно это компьютер, укомплектованный беспроводной сетевой картой, но может быть и иное устройство) и точка доступа, которая выполняет роль моста между беспроводной и проводной сетями. Точка доступа содержит приемопередатчик, интерфейс проводной сети, а также встроенный микрокомпьютер и программное обеспечение для обработки данных.

4. Стек протоколов IEEE 802.11

Стек протоколов стандарта IEEE 802.11 соответствует общей структуре стандартов комитета 802, то есть состоит из физического уровня и канального уровня с подуровнями управления доступом к среде MAC (Media Access Control) и логической передачи данных LLC (Logical Link Control). Как и у всех технологий семейства 802, технология 802.11 определяется двумя нижними уровнями, то есть физическим уровнем и уровнем MAC, а уровень LLC выполняет свои стандартные общие для всех технологий LAN функции (Рисунок 3).

На физическом уровне существует несколько вариантов спецификаций, которые отличаются используемым частотным диапазоном, методом кодирования и как следствие - скоростью передачи данных. Все варианты физического уровня работают с одним и тем же алгоритмом уровня MAC, но некоторые временные параметры уровня MAC зависят от используемого физического уровня.

Рисунок 3 - Стек протоколов IEEE 802.11

5. Уровень доступа к среде стандарта 802.11

В сетях 802.11 уровень MAC обеспечивает два режима доступа к разделяемой среде:

-распределенный режим DCF (Distributed Coordination Function);

-централизованный режим PCF (Point Coordination Function).

5.1 Распределенный режим доступа DCF

Рассмотрим сначала, как обеспечивается доступ в распределенном режиме DCF. В этом режиме реализуется метод множественного доступа с контролем несущей и предотвращением коллизий (Carrier Sense Multiple Access with Collision Avoidance - CSMA/CA). Вместо неэффективного в беспроводных сетях прямого распознавания коллизий по методу CSMA/CD здесь используется их косвенное выявление. Для этого каждый переданный кадр должен подтверждаться кадром положительной квитанции, посылаемым станцией назначения. Если же по истечении оговоренного тайм-аута квитанция не поступает, станция-отправитель считает, что произошла коллизия.

Режим доступа DCF требует синхронизации станций. В спецификации 802.11 эта проблема решается достаточно элегантно - временные интервалы начинают отсчитываться от момента окончания передачи очередного кадра (Рисунок 4).Это не требует передачи каких-либо специальных синхронизирующих сигналов и не ограничивает размер пакета размером слота, так как слоты принимаются во внимание только при принятии решения о начале передачи кадра.

Рисунок 4 - Режим доступа DCF

Станция, которая хочет передать кадр, обязана предварительно прослушать среду. Стандарт IEEE 802.11 предусматривает два механизма контроля активности в канале (обнаружения несущей): физический и виртуальный. Первый механизм реализован на физическом уровне и сводится к определению уровня сигнала в антенне и сравнению его с пороговой величиной. Виртуальный механизм обнаружения несущей основан на том, что в передаваемых кадрах данных, а также в управляющих кадрах АСК и RTS/CTS содержится информация о времени, необходимом для передачи пакета (или группы пакетов) и получения подтверждения. Все устройства сети получают информацию о текущей передаче и могут определить, сколько времени канал будет занят, т.е. устройство при установлении связи сообщает всем, на какое время оно резервирует канал. Как только станция фиксирует окончание передачи кадра, она обязана отсчитать интервал времени, равный межкадровому интервалу (IFS). Если после истечения IFS среда все еще свободна, начинается отсчет слотов фиксированной длительности. Кадр можно передавать только в начале какого-либо из слотов при условии, что среда свободна. Станция выбирает для передачи слот на основании усеченного экспоненциального двоичного алгоритма отсрочки, аналогичного используемому в методе CSMA/CD. Номер слота выбирается как случайное целое число, равномерно распределенное в интервале [0, CW], где "CW" означает "Competition Window" (конкурентное окно).

В режиме доступа DCF применяются меры для устранения эффекта скрытого терминала. Для этого станция, которая хочет захватить среду и в соответствии с описанным алгоритмом начинает передачу кадра в определенном слоте, вместо кадра данных сначала посылает станции назначения короткий служебный кадр RTS (Request To Send - запрос на передачу). На этот запрос станция назначения должна ответить служебным кадром CTS (Clear To Send - свободна для передачи), после чего станция-отправитель посылает кадр данных. Кадр CTS должен оповестить о захвате среды те станции, которые находятся вне зоны сигнала станции-отправителя, но в зоне досягаемости станции-получателя, то есть являются скрытыми терминалами для станции-отправителя.

Максимальная длина кадра данных 802.11 равна 2346 байт, длина RTS-кадра - 20 байт, CTS-кадра - 14 байт. Так как RTS- и CTS-кадры гораздо короче, чем кадр данных, потери данных в результате коллизии RTS- или CTS-кадров гораздо меньше, чем при коллизии кадров данных. Процедура обмена RTS- и CTS-кадрами не обязательна. От нее можно отказаться при небольшой нагрузке сети, поскольку в такой ситуации коллизии случаются редко, а значит, не стоит тратить дополнительное время на выполнение процедуры обмена RTS- и CTS-кадрами.

При помехах иногда случается, что теряются большие фреймы данных, поэтому можно уменьшить длину этих фреймов путем фрагментации. Фрагментация фрейма - это выполняемая на уровне MAC функция, назначение которой - повысить надежность передачи фреймов через беспроводную среду. Под фрагментацией понимается дробление фрейма на меньшие фрагменты и передача каждого из них отдельно (Рисунок 5)

Предполагается, что вероятность успешной передачи меньшего фрагмента через зашумленную беспроводную среду выше. Получение каждого фрагмента фрейма подтверждается отдельно; следовательно, если какой-нибудь фрагмент фрейма будет передан с ошибкой или вступит в коллизию, передавать повторно придется только его, а не весь фрейм. Это увеличивает пропускную способность среды.

Рисунок 5 - Фрагментация фрейма

Размер фрагмента может задавать администратор сети. Фрагментации подвергаются только одноадресные фреймы. Широковещательные, или многоадресные, фреймы передаются целиком. Кроме того, фрагменты фрейма передаются пакетом, с использованием только одной итерации механизма доступа к среде DCF.

Хотя за счет фрагментации можно повысить надежность передачи фреймов в беспроводных локальных сетях, она приводит к увеличению "накладных расходов" МАС-протокола стандарта 802.11. Каждый фрагмент фрейма включает информацию, содержащуюся в заголовке 802.11 MAC, а также требует передачи соответствующего фрейма подтверждения. Это увеличивает число служебных сигналов МАС-протокола и снижает реальную производительность беспроводной станции. Фрагментация - это баланс между надежностью и непроизводительной загрузкой среды.

5.2 Централизованный режим доступа PCF

В том случае, когда в сети имеется станция, выполняющая функции точки доступа, может также применяться централизованный режим доступа PCF, обеспечивающий приоритетное обслуживание трафика. В этом случае говорят, что точка доступа играет роль арбитра среды.

Режим доступа PCF в сетях 802.11 сосуществует с режимом DCF. Оба режима координируются с помощью трех типов межкадровых интервалов (Рисунок 6).

Рисунок 6 - Сосуществование режимов PCF и DCF

После освобождения среды каждая станция отсчитывает время простоя среды, сравнивая его с тремя значениями:

-короткий межкадровый интервал (Short IFS - SIFS);

-межкадровый интервал режима;

-межкадровый интервал режима DCF (PCF (PIFS) DI;FS).

Захват среды с помощью распределенной процедуры DCF возможен только в том случае, когда среда свободна в течение времени, равного или большего, чем DIFS. То есть в качестве IFS в режиме DCF нужно использовать интервал DIFS - самый длительный период из трех возможных, что дает этому режиму самый низкий приоритет.

Межкадровый интервал SIFS имеет наименьшее значение, он служит для первоочередного захвата среды ответными CTS-кадрами или квитанциями, которые продолжают или завершают уже начавшуюся передачу кадра.

Значение межкадрового интервала PIFS больше, чем SIFS, но меньше, чем DIFS. Промежутком времени между завершением PIFS и DIFS пользуется арбитр среды. В этом промежутке он может передать специальный кадр, который говорит всем станциям, что начинается контролируемый период. Получив этот кадр, станции, которые хотели бы воспользоваться алгоритмом DCF для захвата среды, уже не могут этого сделать, они должны дожидаться окончания контролируемого периода. Его длительность объявляется в специальном кадре, но этот период может закончиться и раньше, если у станций нет чувствительного к задержкам трафика. В этом случае арбитр передает служебный кадр, после которого по истечении интервала DIFS начинает работать режим DCF.

На управляемом интервале реализуется централизованный метод доступа PCF. Арбитр выполняет процедуру опроса, чтобы по очереди предоставить каждой такой станции право на использование среды, направляя ей специальный кадр. Станция, получив такой кадр, может ответить другим кадром, который подтверждает прием специального кадра и одновременно передает данные (либо по адресу арбитра для транзитной передачи, либо непосредственно станции).

Для того чтобы какая-то доля среды всегда доставалась асинхронному трафику, длительность контролируемого периода ограничена. После его окончания арбитр передает соответствующий кадр и начинается неконтролируемый период.

Каждая станция может работать в режиме PCF, для этого она должна подписаться на данную услугу при присоединении к сети.

6. Стандарт IEEE 802.11

6.1 Физический уровень IEEE 802.11

Стандарт IEEE 802.11 предусматривает передачу сигнала одним из двух методов - прямой последовательности (Direct Sequence Spread Spectrum, DSSS) и частотных скачков (Frequency Hopping Spread Spectrum, FHSS) различающиеся способом модуляции, но использующие одну и ту же технологию расширения спектра. Основной принцип технологии расширения спектра (Spread Spectrum, SS) заключается в том, чтобы от узкополосного спектра сигнала, возникающего при обычном потенциальном кодировании, перейти к широкополосному спектру, что позволяет значительно повысить помехоустойчивость передаваемых данных. Метод FHSS предусматривает изменение несущей частоты сигнала при передаче информации. Для повышения помехоустойчивости нужно увеличить спектр передаваемого сигнала, для чего несущая частота меняется по псевдослучайному закону, и каждый пакет данных передается на своей несущей частоте. При использовании FHSS конструкция приемопередатчика получается очень простой, но этот метод применим, только если пропускная способность не превышает 2 Мбит/с, так что в дополнении IEEE 802.11b остался один DSSS. Из этого следует, что совместно с устройствами IEEE 802.11b может применяться только то оборудование стандарта IEEE 802.11, которое поддерживает DSSS, при этом скорость передачи не превысит максимальной скорости в "узком месте" (2 Мбит/с), коим является оборудование, использующее старый стандарт без расширения. В основе метода DSSS лежит принцип фазовой манипуляции (т.е. передачи информации скачкообразным изменением начальной фазы сигнала). Для расширения спектра передаваемого сигнала применяется преобразование передаваемой информации в так называемый код Баркера, являющийся псевдослучайной последовательностью. На каждый передаваемый бит приходится 11 бит в последовательности Баркера. Различают прямую и инверсную последовательности Баркера. Из-за большой избыточности при кодировании вероятность того, что действие помехи превратит прямую последовательность Баркера в инверсную, близка к нулю. Единичные биты передаются прямым кодом Баркера, а нулевые - инверсным. Под беспроводные компьютерные сети в диапазоне 2,4 ГГц отведен довольно узкий "коридор" шириной 83 МГц, разделенный на 14 каналов. Для исключения взаимных помех между каналами необходимо, чтобы их полосы отстояли друг от друга на 25 МГц. Несложный подсчет показывает, что в одной зоне одновременно могут использоваться только три канала. В таких условиях невозможно решить проблему отстройки от помех автоматическим изменением частоты, вот почему в беспроводных локальных сетях используется кодирование с высокой избыточностью. В ситуации, когда и эта мера не позволяет обеспечить заданную достоверность передачи, скорость с максимального значения 11 Мбит/с последовательно снижается до одного из следующих фиксированных значений: 5,5; 2; 1 Мбит/с. Снижение скорости происходит не только при высоком уровне помех, но и если расстояние между элементами беспроводной сети достаточно велико.

6.2 Канальный уровень IEEE 802.11

Подобно проводной сети Ethernet, в беспроводных компьютерных сетях Wi- Fi канальный уровень включает в себя подуровни управления логическим соединением (Logical Link Control, LLC) и управления доступом к среде передачи (Media Access Control, MAC). У Ethernet и IEEE 802.11 один и тот же LLC, что значительно упрощает объединение проводных и беспроводных сетей. MAC у обоих стандартов имеет много общего, однако есть некоторые тонкие различия, принципиальные для сравнения проводных и беспроводных сетей. В Ethernet для обеспечения возможности множественного доступа к общей среде передачи (в данном случае кабелю) используется протокол CSMA/CD, обеспечивающий выявление и обработку коллизий (в терминологии компьютерных сетей так называются ситуации, когда несколько устройств пытаются начать передачу одновременно). В сетях IEEE 802.11 используется полудуплексный режим передачи, т.е. в каждый момент времени станция может либо принимать, либо передавать информацию, поэтому обнаружить коллизию в процессе передачи невозможно. Для IEEE 802.11 был разработан модифицированный вариант протокола CSMA/CD, получивший название CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance). Работает он следующим образом. Станция, которая собирается передавать информацию, сначала "слушает эфир". Если не обнаружено активности на рабочей частоте, станция сначала ожидает в течение некоторого случайного промежутка времени, потом снова "слушает эфир" и, если среда передачи данных все еще свободна, осуществляет передачу. Наличие случайной задержки необходимо для того, чтобы сеть не зависла, если несколько станций одновременно захотят получить доступ к частоте. Если информационный пакет приходит без искажений, принимающая станция посылает обратно подтверждение. Целостность пакета проверяется методом контрольной суммы. Получив подтверждение, передающая станция считает процесс передачи данного информационного пакета завершенным. Если подтверждение не получено, станция считает, что произошла коллизия, и пакет передается снова через случайный промежуток времени. Еще одна специфичная для беспроводных сетей проблема - две клиентские станции имеют плохую связь друг с другом, но при этом качество связи каждой из них с точкой доступа хорошее. В таком случае передающая клиентская станция может послать на точку доступа запрос на очистку эфира. Тогда по команде с точки доступа другие клиентские станции прекращают передачу на время "общения" двух точек с плохой связью. Режим принудительной очистки эфира (протокол Request to Send/Clear to Send - RTS/CTS) реализован далеко не во всех моделях оборудования IEEE 802.11 и, если он есть, то включается лишь в крайних случаях. В Ethernet при передаче потоковых данных используется управление доступом к каналу связи, распределенное между всеми станциями. Напротив, в IEEE 802.11 в таких случаях применяется централизованное управление с точки доступа. Клиентские станции последовательно опрашиваются на предмет передачи потоковых данных. Если какая-нибудь из станций сообщает, что она будет передавать потоковые данные, точка доступа выделяет ей промежуток времени, в который из всех станций сети будет передавать только она. Следует отметить, что принудительная очистка эфира снижает эффективность работы беспроводной сети, поскольку связана с передачей дополнительной служебной информации и кратковременными перерывами связи. Кроме этого, в проводных сетях Ethernet при необходимости можно реализовать не только полудуплексный, но и дуплексный вариант передачи, когда коллизия обнаруживается в процессе передачи (это повышает реальную пропускную способность сети). Поэтому, увы, при прочих равных условиях реальная пропускная способность беспроводной сети IEEE 802.11b будет ниже, чем у проводного Ethernet. Таким образом, если сетям Ethernet 10 Мбит/с и IEEE 802.11b (максимальная скорость передачи информации 11 Мбит/с) с одинаковым числом пользователей давать одинаковую нагрузку, постепенно увеличивая ее, то, начиная с некоторого порога, сеть IEEE 802.11b начнет "тормозить", а Ethernet все еще будет функционировать нормально. Поскольку клиентские станции могут быть мобильными устройствами с автономным питанием, в стандарте IEEE 802.11 большое внимание уделено вопросам управления питанием. В частности, предусмотрен режим, когда клиентская станция через определенные промежутки времени "просыпается", чтобы принять сигнал включения, который, возможно, передает точка доступа. Если этот сигнал принят, клиентское устройство включается, в противном случае оно снова "засыпает" до следующего цикла приема информации.

7. Типы и разновидности соединений

Соединение Ad-Hoc (точка-точка). Все компьютеры оснащены беспроводными картами (клиентами) и соединяются напрямую друг с другом по радиоканалу работающему по стандарту 802.11b и обеспечивающих скорость обмена 11 Mбит/с, чего вполне достаточно для нормальной работы;

инфраструктурное соединение. Все компьютеры оснащены беспроводными картами и подключаются к точке доступа. Которая, в свою очередь, имеет возможность подключения к проводной сети как показано на рисунке 7. Данная модель используется, когда необходимо соединить больше двух компьютеров. Сервер с точкой доступа может исполнять роль роутера и самостоятельно распределять интернет-канал;

Рисунок 7 - Точка доступа и клиенты в сетях 802.11

Точка доступа, с использованием роутера и модема.

Точка доступа включается в роутер, роутер -- в модем (эти устройства могут быть объединены в два или даже в одно). Теперь на каждом компьютере в зоне действия Wi Fi, в котором есть адаптер Wi Fi, будет работать интернет.

Клиентская точка. В этом режиме точка доступа работает как клиент и может соединятся с точкой доступа работающей в инфраструктурном режиме. Но к ней можно подключить только один МАС-адрес. Здесь задача состоит в том, чтобы объединить только два компьютера. Два WiFi-адаптера могут работать друг с другом напрямую без центральных антенн.

Рисунок 8 - Мостовое соединение

Соединение мост. Компьютеры объединены в проводную сеть. К каждой группе сетей подключены точки доступа, которые соединяются друг с другом по радио каналу, как показано на рисунке 8. Этот режим предназначен для объединения двух и более проводных сетей. Подключение беспроводных клиентов к точке доступа, работающей в режиме моста не возможно.

8. Безопасность WiFi сетей

Как и любая компьютерная сеть, WiFi - является источником повышенного риска несанкционированного доступа. Кроме того, проникнуть в беспроводную сеть значительно проще, чем в обычную, -- не нужно подключаться к проводам, достаточно оказаться в зоне приема сигнала. Беспроводные сети отличаются от кабельных только на первых двух - физическом (Phy) и отчасти канальном (MAC) - уровнях семиуровневой модели взаимодействия открытых систем. Более высокие уровни реализуются как в проводных сетях, а реальная безопасность сетей обеспечивается именно на этих уровнях. Поэтому разница в безопасности тех и других сетей сводится к разнице в безопасности физического и MAC-уровней. Хотя сегодня в защите WiFi-сетей применяются сложные алгоритмические математические модели аутентификации, шифрования данных и контроля целостности их передачи, тем не менее, вероятность доступа к информации посторонних лиц является весьма существенной. И если настройке сети не уделить должного внимания злоумышленник может:

-заполучить доступ к ресурсам и дискам пользователей WiFi-сети, а через неё и к ресурсам LAN;

-подслушивать трафик, извлекать из него конфиденциальную информацию;

-искажать проходящую в сети информацию;

-воспользоваться Интернет -- трафиком;

-атаковать ПК пользователей и серверы сети;

-внедрять поддельные точки доступа;

-рассылать спам, и совершать другие противоправные действия от имени вашей сети.

Для защиты сетей 802.11 предусмотрен комплекс мер безопасности передачи данных. На раннем этапе использования WiFi сетей таковым являлся пароль SSID (Server Set ID) для доступа в локальную сеть, но со временем оказалось, что данная технология не может обеспечить надежную защиту. Главной же защитой долгое время являлось использование цифровых ключей шифрования потоков данных с помощью функции Wired Equivalent Privacy (WEP). Сами ключи представляют из себя обыкновенные пароли с длиной от 5 до 13 символов ASCII. Данные шифруются ключом с разрядностью от 40 до 104 бит. Но это не целый ключ, а только его статическая составляющая. Для усиления защиты применяется так называемый вектор инициализации Initialization Vector (IV), который предназначен для рандомизации дополнительной части ключа, что обеспечивает различные вариации шифра для разных пакетов данных. Данный вектор является 24-битным. Таким образом, в результате мы получаем общее шифрование с разрядностью от 64 (40+24) до 128 (104+24) бит, в результате при шифровании мы оперируем и постоянными, и случайно подобранными символами. Но, как оказалось, взломать такую защиту можно соответствующие утилиты присутствуют в Интернете (например, AirSnort, WEPcrack). Основное её слабое место -- это вектор инициализации. Поскольку мы говорим о 24 битах, это подразумевает около 16 миллионов комбинаций, после использования этого количества, ключ начинает повторяться. Хакеру необходимо найти эти повторы (от 15 минут до часа для ключа 40 бит) и за секунды взломать остальную часть ключа. После этого он может входить в сеть как обычный зарегистрированный пользователь.Как показало время, WEP тоже оказалась не самой надёжной технологией защиты. После 2001 года для проводных и беспроводных сетей был внедрён новый стандарт IEEE 802.1X, который использует вариант динамических 128-разрядных ключей шифрования, то есть периодически изменяющихся во времени. Таким образом, пользователи сети работают сеансами, по завершении которых им присылается новый ключ. Например, Windows XP поддерживает данный стандарт, и по умолчанию время одного сеанса равно 30 минутам. IEEE 802.1X -- это новый стандарт, который оказался ключевым для развития индустрии беспроводных сетей в целом. За основу взято исправление недостатков технологий безопасности, применяемых в 802.11, в частности, возможность взлома WEP, зависимость от технологий производителя и т. п. 802.1X позволяет подключать в сеть даже PDA-устройства, что позволяет более выгодно использовать саму идею беспроводной связи. С другой стороны, 802.1X и 802.11 являются совместимыми стандартами. В 802.1X применяется тот же алгоритм, что и в WEP, а именно -- RC4, но с некоторыми отличиями. 802.1X базируется на протоколе расширенной аутентификации (EAP), протоколе защиты транспортного уровня (TLS) и сервере доступа Remote Access Dial-in User Server. Протокол защиты транспортного уровня TLS обеспечивает взаимную аутентификацию и целостность передачи данных. Все ключи являются 128-разрядными по умолчанию. В конце 2003 года был внедрён стандарт WiFi Protected Access (WPA), который совмещает преимущества динамического обновления ключей IEEE 802.1X с кодированием протокола интеграции временного ключа TKIP, протоколом расширенной аутентификации (EAP) и технологией проверки целостности сообщений MIC. WPA -- это временный стандарт, о котором договорились производители оборудования, пока не вступил в силу IEEE 802.11i. По сути, WPA = 802.1X + EAP + TKIP + MIC, где:

-WPA -- технология защищённого доступа к беспроводным сетям;

-EAP -- протокол расширенной аутентификации (Extensible Authentication Protocol);

-TKIP -- протокол интеграции временного ключа (Temporal Key Integrity Protocol);

-MIC -- технология проверки целостности сообщений (Message Integrity Check).

Стандарт TKIP использует автоматически подобранные 128-битные ключи, которые создаются непредсказуемым способом и общее число вариаций которых достигает 500 миллиардов. Сложная иерархическая система алгоритма подбора ключей и динамическая их замена через каждые 10 Кбайт (10 тыс. передаваемых пакетов) делают систему максимально защищённой. От внешнего проникновения и изменения информации также обороняет технология проверки целостности сообщений (Message Integrity Check). Достаточно сложный математический алгоритм позволяет сверять отправленные в одной точке и полученные в другой данные. Если замечены изменения и результат сравнения не сходится, такие данные считаются ложными и выбрасываются. Правда, TKIP сейчас не является лучшим в реализации шифрования, поскольку в силу вступают новые алгоритмы, основанные на технологии Advanced Encryption Standard (AES), которая, уже давно используется в VPN. Что касается WPA, поддержка AES уже реализована в Windows XP, пока только опционально. Помимо этого, параллельно развивается множество самостоятельных стандартов безопасности от различных разработчиков, в частности, в данном направлении преуспевают Intel и Cisco. В 2004 году появляется WPA2, или 802.11i, который, в настоящее время является максимально защищённым.Таким образом, на сегодняшний день у обычных пользователей и администраторов сетей имеются все необходимые средства для надёжной защиты WiFi, и при отсутствии явных ошибок (пресловутый человеческий фактор) всегда можно обеспечить уровень безопасности, соответствующий ценности информации, находящейся в такой сети.Сегодня беспроводную сеть считают защищенной, если в ней функционируют три основных составляющих системы безопасности: аутентификация пользователя, конфиденциальность и целостность передачи данных.

Заключение

В наше время стандарты беспроводных сетей с каждым становятся все лучше, быстрее, надежнее, а главное доступнее. Человеку все больше требуется мобильность. А с сетями, построенными на кабелях это не возможно. Что касается скоростей, то теперь беспроводные сети даже быстрее. Конечно, беспроводные сети более небезопасны от посторонних вторжений, но и эти проблемы легко решаемы. Следовательно, беспроводные радио сети наиболее выгодны.

Список литературы

Лекция: Архитектура IEEE 802.11.

Попов, Максимов «Компьютерные сети» (учебное пособие, 2-е издание, издательство ИНФРА-М, 2007год).

Размещено на Allbest.ru

...

Подобные документы

  • Применение компьютерных сетей для обеспечения связи между персоналом, компьютерами и серверами. Архитектура сети, ее стандарты и организация. Физический и канальный уровни IEEE 802.11, типы и разновидности соединений. Защита и безопасность WiFi сетей.

    курсовая работа [1,1 M], добавлен 15.10.2009

  • Характеристика стандарта IEEE 802.11. Основные направления применения беспроводных компьютерных сетей. Методы построения современных беспроводных сетей. Базовые зоны обслуживания BSS. Типы и разновидности соединений. Обзор механизмов доступа к среде.

    реферат [725,9 K], добавлен 01.12.2011

  • Беспроводные сети стандарта IEEE 802.11: подключение, поддержка потоковых данных, управление питанием, безопасность для здоровья. Шифры RC4, AES. Протоколы безопасности в сетях стандарта IEEE 802.11. Атаки на протокол WEP. Качество генераторов ПСП.

    дипломная работа [2,4 M], добавлен 09.06.2013

  • Методы доступа к сети. Алгоритм ALOHA, используемый для доступа к радиоканалу большого числа независимых узлов. Эффективность алгоритма CSMA/CD. Метод маркерного доступа. Ethernet – самый распространенный в настоящий момент стандарт локальных сетей.

    лекция [112,9 K], добавлен 25.10.2013

  • Способы организации беспроводных сетей по стандартам IEEE 802.16. WiMAX как телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях. Этапы построения полносвязной городской Wi-Fi сети.

    курсовая работа [1,6 M], добавлен 31.08.2013

  • Базовые положения стандарта IEEE 802.11n для сетей Wi-Fi. Исследование изменения скорости доступа к данным, расположенным в локальной сети, при беспроводном подключении. Позиционирование по первичному ключу. Искажения радиочастотного и светового сигнала.

    дипломная работа [1,3 M], добавлен 20.06.2014

  • Обзор стандарта IEEE 802.15.4. Упрощенная модель OSI. Беспроводные сенсорные сети. Взаимодействие сетевых протоколов. Серверное приложение, отправка теста, получение результатов, клиентское приложение. MAC слой, механизм адресации, точки доступа.

    курсовая работа [334,6 K], добавлен 31.05.2016

  • Архитектура, компоненты сети и стандарты. Организация сети. Типы и разновидности соединений. Безопасность Wi-Fi сетей. Адаптер Wi-Fi ASUS WL-138g V2. Интернет-центр ZyXEL P-330W. Плата маршрутизатора Hi-Speed 54G. PCI-адаптер HWP54G. Новинки.

    курсовая работа [36,2 K], добавлен 02.11.2007

  • Беспроводная технология передачи информации. Развитие беспроводных локальных сетей. Стандарт безопасности WEP. Процедура WEP-шифрования. Взлом беспроводной сети. Режим скрытого идентификатора сети. Типы и протоколы аутентификации. Взлом беспроводной сети.

    реферат [51,8 K], добавлен 17.12.2010

  • Принципы работы режима энергосбережения Stand-by, виды энергосберегающих режимов. Стандарт управления энергопотреблением мониторов. Режим энергосбережения для вывода компьютера беспроводного клиента в энергосберегающий режим спецификации IEEE 802.11.

    реферат [150,5 K], добавлен 03.05.2010

  • Область использования телекоммуникационной технологии. Целесообразность применения WiMAX как технологии доступа, фиксированный и мобильный вариант. Особенности широкополосного доступа, пользовательское оборудование. Режимы работы, MAC-канальный уровень.

    контрольная работа [47,0 K], добавлен 22.11.2011

  • Классификация и характеристика сетей доступа. Технология сетей коллективного доступа. Выбор технологии широкополосного доступа. Факторы, влияющие на параметры качества ADSL. Способы конфигурации абонентского доступа. Основные компоненты DSL соединения.

    дипломная работа [1,6 M], добавлен 26.09.2014

  • Физический уровень протокола CAN. Скорость передачи и длина сети. Канальный уровень протокола CAN. Рецессивные и доминантные биты. Функциональная схема сети стандарта CAN. Методы обнаружения ошибок. Основные характеристики сети. Протоколы высокого уровня.

    реферат [464,4 K], добавлен 17.05.2013

  • Стандартные сети коммуникационных протоколов. Стек OSI. Стек TCP/IP. Принципы объединения сетей на основе протоколов сетевого уровня. Ограничения мостов и коммутаторов. Модем как средство связи между компьютерами. Международные стандарты модемов.

    курсовая работа [29,3 K], добавлен 06.07.2008

  • Сеть доступа как система средств связи между местной станцией и терминалом пользователя с замещением части или всей распределительной сети, типы и функциональные особенности, сферы практического применения. Операционные системы управления сети доступа.

    реферат [2,1 M], добавлен 14.02.2012

  • Многоуровневая структура стека TCP/IP. Уровень межсетевого взаимодействия. Основной уровень. Прикладной уровень. Уровень сетевых интерфейсов. Соответствие уровней стека TCP/IP семиуровневой модели ISO/OSI. Проектирование локальной вычислительной сети.

    курсовая работа [645,2 K], добавлен 04.03.2008

  • Основная цель и модели сети. Принцип построения ее соединений. Технология клиент-сервер. Характеристика сетевых архитектур Ethernet, Token Ring, ArcNet: метод доступа, среда передачи, топология. Способы защиты информации. Права доступа к ресурсам сети.

    презентация [269,0 K], добавлен 26.01.2015

  • Подключение рабочих станций к локальной вычислительной сети по стандарту IEEE 802.3 10/100 BASET. Расчёт длины витой пары, затраченной на реализацию сети и количества разъёмов RJ-45. Построение топологии локальной вычислительной сети учреждения.

    курсовая работа [1,4 M], добавлен 14.04.2016

  • Предназначение стек протоколов TCP/IP для соединения отдельных подсетей, построенных по разным технологиям канального и физического уровней в единую составную сеть. Современные стандарты IP протоколов. Использование стандартных классов сетей маски.

    презентация [244,8 K], добавлен 10.11.2016

  • Сравнительные характеристика протоколов организации беспроводных сетей. Структура и топология сети ZigBee, спецификация стандарта IEEE 802.15.4. Варианты аппаратных решений ZigBee на кристаллах различных производителей и технология программирования.

    дипломная работа [3,0 M], добавлен 25.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.