Сети Хопфилда и Хемминга, особенности распознавания образов, расчет параметров сетей и порядок работы
Сеть Хопфилда: понятие, слои, граница емкости памяти, структурная схема. Пороговая передаточная функция. Обучение сети Хемминга, алгоритм функционирования. Весовые коэффициенты тормозящих синапсов. Определение состояния нейронов второго слоя сети.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 17.07.2013 |
Размер файла | 115,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Сети Хопфилда и Хемминга, особенности распознавания образов, расчет параметров сетей и порядок работы
Сеть Хопфилда
Сеть базируется на аналогии физики динамических систем. Начальные применения для этого вида сети включали ассоциативную, или адресованную по смыслу память и решали задачи оптимизации.
Сеть Хопфилда использует три слоя: входной, слой Хопфилда и выходной слой. Каждый слой имеет одинаковое количество нейронов. Входы слоя Хопфилда подсоединены к выходам соответствующих нейронов входного слоя через изменяющиеся веса соединений. Выходы слоя Хопфилда подсоединяются ко входам всех нейронов слоя Хопфилда, за исключением самого себя, а также к соответствующим элементам в выходном слое. В режиме функционирования, сеть направляет данные из входного слоя через фиксированные веса соединений к слою Хопфилда. Слой Хопфилда колебается, пока не будет завершено определенное количество циклов, и текущее состояние слоя передается на выходной слой. Это состояние отвечает образу, уже запрограммированному в сеть.
Обучение сети Хопфилда требует, чтобы обучающий образ был представлен на входном и выходном слоях одновременно. Рекурсивный характер слоя Хопфилда обеспечивает средства коррекции всех весов соединений. Недвоичная реализация сети должна иметь пороговый механизм в передаточной функции. Для правильного обучение сети соответствующие пары "вход-выход" должны отличаться между собой.
Если сеть Хопфилда используется как память, адресуемая по смыслу она имеет два главных ограничения. Во-первых, число образов, которые могут быть сохранены и точно воспроизведены является строго ограниченным. Если сохраняется слишком много параметров, сеть может сходится к новому несуществующему образу, отличному от всех запрограммированных образов, или не сходится вообще.
Граница емкости памяти для сети приблизительно 15% от числа нейронов в слое Хопфилда. Вторым ограничением парадигмы есть то, что слой Хопфилда может стать нестабильным, если обучающие примеры являются слишком похожими. Образец образа считается нестабильным, если он применяется за нулевое время и сеть сходится к некоторому другому образу из обучающего множества. Эта проблема может быть решена выбором обучающих примеров более ортогональных между собой.
Структурная схема сети Хопфилда приведена на рис. 1.
Рис. 1 - Структурная схема сети Хопфилда
Задача, решаемая данной сетью в качестве ассоциативной памяти, как правило, формулируется так. Известен некоторый образцовый набор двоичных сигналов (изображений, звуковых оцифровок, других данных, которые описывают определенные объекты или характеристики процессов). Сеть должна уметь с зашумленого сигнала, представленного на ее вход, выделить ("припомнить" по частичной информации) соответствующий образец или "дать вывод" о том, что входные данные не отвечают ни одному из образцов. В общем случае, любой сигнал может быть описан вектором x1, хі, хn..., n - число нейронов в сети и величина входных и выходных векторов. Каждый элемент xi равняется или +1, или -1. Обозначим вектор, который описывает k-ий образец, через Xk, а его компоненты, соответственно, - xik, k=0, ..., m-1, m - число образцов. Если сеть распознает (или "вспоминает") определенный образец на основе предъявленных ей данных, ее выходы будут содержать именно его, то есть Y = Xk, где Y - вектор выходных значений сети: y1, yi, yn. В противном случае, выходной вектор не совпадет ни с одним образцом.
Если, например, сигналы представляют собой какое-то изображение, то, отобразив в графическом виде данные с выхода сети, можно будет увидеть картинку, которая целиком совпадает с одной из образцовых (в случае успеха) или же "свободную импровизацию" сети (в случае неудачи).
Алгоритм функционирования сети
На стадии инициализации сети синаптические коэффициенты устанавливаются таким образом:
Здесь i и j - индексы, соответственно, предсинаптического и постсинаптического нейронов; xik, xjk - i-ый і j-ый элементы вектора k-ого образца.
На входы сети подается неизвестный сигнал. Его распространение непосредственно устанавливает значения выходов:
yi(0) = xi , i = 0...n-1,
поэтому обозначения на схеме сети входных сигналов в явном виде носит чисто условный характер. Нуль в скобке yi означает нулевую итерацию в цикле работы сети.
Рассчитывается новое состояние нейронов
, j=0...n-1
и новые значения выходов
где f - передаточная функция в виде пороговой, приведена на рис. 2.
Рис. 2 - Передаточные функции
Проверяем изменились ли выходные значения выходов за последнюю итерацию. Если да - переход к пункту 2, иначе (если выходы стабилизировались) - конец. При этом выходной вектор представляет собой образец, что лучше всего отвечает входным данным.
Иногда сеть не может провести распознавания и выдает на выходе несуществующий образ. Это связано с проблемой ограниченности возможностей сети. Для сети Хопфилда число запомненых образов m не должно превышать величины, приблизительно равной 0.15*n. Кроме того, если два образа А і Б сильно похожи, они, возможно, будут вызвать в сети перекрестные ассоциации, то есть предъявление на входы сети вектора А приведет к появлению на ее выходах вектора Б и наоборот. Благодаря итерационному алгоритму, машина продвигается к наилучшему решению
Сеть Хемминга
Сеть Хемминга (Hamming) - расширение сети Хопфилда. Сеть Хемминга реализует классификатор, базирующийся на наименьшей погрешности для векторов двоичных входов, где погрешность определяется расстоянием Хемминга. Расстояние Хемминга определяется как число бит, отличающихся между двумя соответствующими входными векторами фиксированной длины. Один входной вектор является незашумленым примером образа, другой - испорченным образом. Вектор выходов обучающего множества является вектором классов, к которым принадлежат образы. В режиме обучения входные векторы распределяются по категориям, для которых расстояние между образцовыми входными векторами и текущим входным вектором является минимальным.
Сеть Хемминга имеет три слоя: входной слой с количеством узлов, сколько имеется отдельных двоичных признаков; слой категорий (слой Хопфилда), с количеством узлов, сколько имеется категорий или классов; выходной слой, который отвечает числу узлов в слое категорий.
Сеть есть простой архитектурой прямого распространения с входным уровнем, полностью подсоединенным к слою категорий. Каждый элемент обработки в слое категорий является обратно подсоединенным к каждому нейрону в том же самом слое и прямо подсоединенным к выходному нейрону. Выход из слоя категорий к выходному слою формируется через конкуренцию.
Обучение сети Хемминга похоже на методологию Хопфилда. На входной слой поступает желаемый обучающий образ, а на выход выходного слоя поступает значение желаемого класса, к которому принадлежит вектор. Выход содержит лишь значение класса к которому принадлежит входной вектор. Рекурсивный характер слоя Хопфилда обеспечивает средства коррекции всех весов соединений.
Рис. 3 - Структурная схема сети Хемминга
Алгоритм функционирования сети Хемминга
На стадии инициализации весовым коэффициентам первой слоя и порогу передаточной функции присваиваются такие значения:
Wik=xIk/2, i=0...n-1, k=0...m-1
bk = n / 2, k = 0...m-1
Здесь xik - i-ый элемент k-ого образца.
Весовые коэффициенты тормозящих синапсов во втором слое берут равными некоторой величине 0 < v < 1/m. Синапс нейрона, связанный с его же выходом имеет вес +1.
На входы сети подается неизвестный вектор x1, xi, xn ... Рассчитываются состояния нейронов первого слоя (верхний индекс в скобках указывает номер слоя):
, j=0...m-1
После этого получения значения инициализируют значения выходов второго слоя:
хопфилд хемминг сеть синапс
yj(2) = yj(1), j = 0...m-1
Вычисляются новые состояния нейронов второго слоя:
и значения их выходов:
Передаточная функция f имеет вид порога, причем величина b должна быть достаточно большой, чтобы любые возможные значения аргумента не приводили к насыщению.
Проверяется, изменились ли выходы нейронов второго слоя за последнюю итерацию. Если да - перейти к шагу 3. Иначе - конец.
Роль первой слоя является условной: воспользовавшись один раз на первом шаге значениями его весовых коэффициентов, сеть больше не возвращается к нему, поэтому первый слой может быть вообще исключен из сети.
Сеть Хемминга имеет ряд преимуществ над сетью Хопфилда. Она способна найти минимальную погрешность, если погрешности входных бит являются случайными и независимыми. Для функционирования сети Хемминга нужно меньшее количество нейронов, поскольку средний слой требует лишь один нейрон на класс, вместо нейрона на каждый входной узел. И, в конце концов, сеть Хемминга не страдает от неправильных классификаций, которые могут случиться в сети Хопфилда. В целом, сеть Хемминга быстрее и точнее, чем сеть Хопфилда.
Размещено на Allbest.ru
...Подобные документы
Выбор типа и структуры нейронной сети. Подбор метода распознавания, структурная схема сети Хопфилда. Обучение системы распознавания образов. Особенности работы с программой, ее достоинства и недостатки. Описание интерфейса пользователя и экранных форм.
курсовая работа [3,0 M], добавлен 14.11.2013Программная реализация статической нейронной сети Хемминга, распознающей символы текста. Описание реализации алгоритма. Реализация и обучение сети, входные символы. Локализация и масштабирование изображения, его искажение. Алгоритм распознавания текста.
контрольная работа [102,3 K], добавлен 29.06.2010Характеристика моделей обучения. Общие сведения о нейроне. Искусственные нейронные сети, персептрон. Проблема XOR и пути ее решения. Нейронные сети обратного распространения. Подготовка входных и выходных данных. Нейронные сети Хопфилда и Хэмминга.
контрольная работа [1,4 M], добавлен 28.01.2011Принципы и система распознавание образов. Программное средство и пользовательский интерфейс. Теория нейронных сетей. Тривиальный алгоритм распознавания. Нейронные сети высокого порядка. Подготовка и нормализация данных. Самоорганизующиеся сети Кохонена.
курсовая работа [2,6 M], добавлен 29.04.2009Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа [2,6 M], добавлен 23.09.2013Основы нейрокомпьютерных систем. Искусственные нейронные сети, их применение в системах управления. Алгоритм обратного распространения. Нейронные сети Хопфилда, Хэмминга. Современные направления развития нейрокомпьютерных технологий в России и за рубежом.
дипломная работа [962,4 K], добавлен 23.06.2012Сущность и классификация компьютерных сетей по различным признакам. Топология сети - схема соединения компьютеров в локальные сети. Региональные и корпоративные компьютерные сети. Сети Интернет, понятие WWW и унифицированный указатель ресурса URL.
презентация [96,4 K], добавлен 26.10.2011Особенности построения сети доступа. Мониторинг и удаленное администрирование. Разработка структурной схемы сети NGN. Анализ условий труда операторов ПЭВМ. Топология и архитектура сети. Аппаратура сетей NGN и измерение основных параметров сети.
дипломная работа [5,7 M], добавлен 19.06.2011Применение нейрокомпьютеров на российском финансовом рынке. Прогнозирование временных рядов на основе нейросетевых методов обработки. Определение курсов облигаций и акций предприятий. Применение нейронных сетей к задачам анализа биржевой деятельности.
курсовая работа [527,2 K], добавлен 28.05.2009Общее понятие файлообменной сети. Основные принципы работы файлообмена, его широкие возможности. Типы организации файлообменных сетей. Функционирование частично децентрализованных (гибридных) сетей. Устройство и особенности одноранговой сети, P2P.
презентация [685,6 K], добавлен 28.11.2012Структура локальной компьютерной сети организации. Расчет стоимости построения локальной сети. Локальная сеть организации, спроектированная по технологии. Построение локальной сети Ethernet организации. Схема локальной сети 10Base-T.
курсовая работа [126,7 K], добавлен 30.06.2007Описание структурной схемы искусственного нейрона. Характеристика искусственной нейронной сети как математической модели и устройств параллельных вычислений на основе микропроцессоров. Применение нейронной сети для распознавания образов и сжатия данных.
презентация [387,5 K], добавлен 11.12.2015Структурная организация сети IP. Основные виды строения сетей IP-телефонии. Способ и средства организации сети TCP/IP, ее структурная организация. Определение длины информационного блока, среднего времени его доставки. Расчет структурных параметров.
реферат [1,6 M], добавлен 01.10.2014Классификация компьютерных сетей. Назначение компьютерной сети. Основные виды вычислительных сетей. Локальная и глобальная вычислительные сети. Способы построения сетей. Одноранговые сети. Проводные и беспроводные каналы. Протоколы передачи данных.
курсовая работа [36,0 K], добавлен 18.10.2008Разработка алгоритма и программы для распознавания пола по фотографии с использованием искусственной нейронной сети. Создание алгоритмов: математического, работы с приложением, установки весов, реализации функции активации и обучения нейронной сети.
курсовая работа [1,0 M], добавлен 05.01.2013Искусственные нейронные сети как вид математических моделей, построенных по принципу организации и функционирования сетей нервных клеток мозга. Виды сетей: полносвязные, многослойные. Классификация и аппроксимация. Алгоритм обратного распространения.
реферат [270,4 K], добавлен 07.03.2009Организация частной сети. Структура незащищенной сети и виды угроз информации. Типовые удаленные и локальные атаки, механизмы их реализации. Выбор средств защиты для сети. Схема защищенной сети с Proxy-сервером и координатором внутри локальных сетей.
курсовая работа [2,6 M], добавлен 23.06.2011Возможности программ моделирования нейронных сетей. Виды нейросетей: персептроны, сети Кохонена, сети радиальных базисных функций. Генетический алгоритм, его применение для оптимизации нейросетей. Система моделирования нейронных сетей Trajan 2.0.
дипломная работа [2,3 M], добавлен 13.10.2015Рост активности в области теории и технической реализации искусственных нейронных сетей. Основные архитектуры нейронных сетей, их общие и функциональные свойства и наиболее распространенные алгоритмы обучения. Решение проблемы мертвых нейронов.
реферат [347,6 K], добавлен 17.12.2011Назначение и классификация компьютерных сетей. Обобщенная структура компьютерной сети и характеристика процесса передачи данных. Управление взаимодействием устройств в сети. Типовые топологии и методы доступа локальных сетей. Работа в локальной сети.
реферат [1,8 M], добавлен 03.02.2009