Алгоритм обратного распространения ошибки
Решение по методу наименьших квадратов. Производные целевой функции по весам нейронов выходного слоя. Нахождение минимума методом наискорейшего спуска. Случайные весовые коэффициенты. Сеть прямого распространения со случайными весовыми коэффициентами.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 17.07.2013 |
Размер файла | 30,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Алгоритм обратного распространения ошибки, примеры
Рассмотрим один из самых популярных алгоритмов обучения, так называемы, алгоритм обратного распространения. Это один из вариантов обучения с учителем. Пусть у нас имеется многослойная сеть прямого распространения со случайными весовыми коэффициентами. Есть некоторое обучающее множество, состоящее из пар вход сети - желаемый выход . Через Y обозначим реальное выходное значение нашей сети, которое в начале практически случайно из-за случайности весовых коэффициентов.
Обучение состоит в том, чтобы подобрать весовые коэффициенты таким образом, чтобы минимизировать некоторую целевую функцию. В качестве целевой функции рассмотрим сумму квадратов ошибок сети на примерах из обучающего множества.
искусственный нейрон алгоритм радиальный
(6)
где реальный выход N-го выходного слоя сети для p-го нейрона на j-м обучающем примере, желаемый выход. То есть, минимизировав такой функционал, мы получим решение по методу наименьших квадратов.
Поскольку весовые коэффициенты в зависимость входят нелинейно, воспользуемся для нахождения минимума методом наискорейшего спуска. То есть на каждом шаге обучения будем изменять весовые коэффициенты по формуле
(7)
где весовой коэффициент j-го нейрона n-го слоя для связи с i-м нейроном (n-1)-го слоя. Параметр называется параметром скорости обучения.
Таким образом, требуется определить частные производные целевой функции E по всем весовым коэффициентам сети. Согласно правилам дифференцирования сложной функции
(8)
где - выход, а - взвешенная сума входов j-го нейрона n-го слоя. Заметим, что, зная функцию активации, мы можем вычислить . Например, для сигмоида в соответствии с формулой (5) эта величина будет равняться
. (9)
Третий сомножитель / есть ни что иное, как выход i-го нейрона (n-1)-го слоя, то есть
. (10)
Частные производные целевой функции по весам нейронов выходного слоя теперь можно легко вычислить. Производя дифференцирование (6) по и учитывая (8) и (10) будем иметь
(11)
Введем обозначение
. (12)
Тогда для нейронов выходного слоя
. (13)
Для весовых коэффициентов нейронов внутренних слоев мы не можем сразу записать, чему равен 1-й сомножитель из (9), однако его можно представить следующим образом:
(14)
Заметим, что в этой формуле 1-е два сомножителя есть не что иное, как . Таким образом, с помощью (14) можно выражать величины для нейронов n-го слоя через для нейронов (n+1)-го. Поскольку для последнего слоя легко вычисляется по (13), то можно с помощью рекурсивной формулы
(15)
получить значения для вех нейронов всех слоев.
Окончательно формулу (7) для модификации весовых коэффициентов можно записать в виде
. (16)
Размещено на Allbest.ru
...Подобные документы
Обучение нейронных сетей как мощного метода моделирования, позволяющего воспроизводить сложные зависимости. Реализация алгоритма обратного распространения ошибки на примере аппроксимации функции. Анализ алгоритма обратного распространения ошибки.
реферат [654,2 K], добавлен 09.06.2014Обучение простейшей и многослойной искусственной нейронной сети. Метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Реализация в программном продукте NeuroPro 0.25. Использование алгоритма обратного распространения ошибки.
курсовая работа [1019,5 K], добавлен 05.05.2015Рассмотрение способов применения и основных понятий нейронных сетей. Проектирование функциональной структуры автоматизированной системы построения нейросети обратного распространения ошибки, ее классов и интерфейсов. Описание периода "бета тестирования".
дипломная работа [3,0 M], добавлен 02.03.2010Нахождение минимума целевой функции для системы ограничений, заданной многоугольником. Графическое решение задачи линейного программирования. Решение задачи линейного программирования с использованием таблицы и методом отыскания допустимого решения.
курсовая работа [511,9 K], добавлен 20.07.2012Разработка алгоритма аппроксимации данных методом наименьших квадратов. Средства реализации, среда программирования Delphi. Физическая модель. Алгоритм решения. Графическое представление результатов. Коэффициенты полинома (обратный ход метода Гаусса).
курсовая работа [473,6 K], добавлен 09.02.2015Основные методы и алгоритмы исследования. Нахождение минимума среднеквадратичного отклонения. Особенности решения нормальных уравнений. Параметры линейной аппроксимирующей функции. Расчет значений аппроксимирующей функции и среднеквадратичного уклонения.
курсовая работа [749,3 K], добавлен 08.06.2019Обучение нейросимулятора определению видовой принадлежности грибов по их заданным внешним признакам с применением алгоритма обратного распространения ошибки. Зависимость погрешностей обучения и обобщения от числа нейронов внутреннего слоя персептрона.
презентация [728,2 K], добавлен 14.08.2013Преобразование формулы и решение ее с помощью Метода Эйлера. Моделирование метода оптимизации с функцией Розенброка. Поиск модели зашумленного сигнала. Нахождение минимума заданной целевой функции методом покоординатного спуска нулевого порядка.
курсовая работа [1,2 M], добавлен 21.12.2013Минимизация квадратической функции на всей числовой оси методами Ньютона, наискорейшего спуска и сопряженных направлений. Нахождение градиента матрицы. Решение задачи линейного программирования в каноническом виде графическим способом и симплекс-методом.
контрольная работа [473,1 K], добавлен 23.09.2010Определение ускорения свободного падения с помощью физического маятника. Период колебания физического маятника. Нахождение ускорения свободного падения методом наименьших квадратов. Решение задач методами Гаусса-Ньютона и квазиньютоновскими методами.
лабораторная работа [32,4 K], добавлен 29.03.2015Развитие навыков работы с табличным процессором Microsoft Excel и программным продуктом MathCAD и применение их для решения задач с помощью электронно-вычислительных машин. Схема алгоритма. Назначение функции Линейн и метода наименьших квадратов.
курсовая работа [340,4 K], добавлен 17.12.2014Обзор методов аппроксимации. Математическая постановка задачи аппроксимации функции. Приближенное представление заданной функции другими, более простыми функциями. Общая постановка задачи метода наименьших квадратов. Нахождение коэффициентов функции.
курсовая работа [1,5 M], добавлен 16.02.2013Определение зависимости одной физической величины от другой. Применение метода наименьших квадратов с помощью программного обеспечения Mathcad. Суть метода наименьших квадратов. Корреляционный анализ, интерпретация величины корреляционного момента.
курсовая работа [63,8 K], добавлен 30.10.2013Матричная форма записи системы линейных уравнений, последовательность ее решения методом исключений Гаусса. Алгоритмы прямого хода и запоминания коэффициентов. Решение задачи о сглаживании экспериментальных данных с помощью метода наименьших квадратов.
курсовая работа [610,7 K], добавлен 25.06.2012Модель и задачи искусственного нейрона. Проектирование двуслойной нейронной сети прямого распространения с обратным распространением ошибки, способной подбирать коэффициенты ПИД-регулятора, для управления движения робота. Комплект “LEGO Mindstorms NXT.
отчет по практике [797,8 K], добавлен 13.04.2015Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа [814,6 K], добавлен 29.09.2014Отделение корней методом простых интеграций. Дифференцирование и аппроксимация зависимостей методом наименьших квадратов. Решение нелинейного уравнения вида f(x)=0 методом Ньютона. Решение системы линейных уравнений методом Зейделя и методом итераций.
курсовая работа [990,8 K], добавлен 23.10.2011Анализ методов идентификации, основанных на регрессионных процедурах с использованием метода наименьших квадратов. Построение прямой регрессии методом Асковица. Определение значения дисперсии адекватности и воспроизводимости, коэффициентов детерминации.
курсовая работа [549,8 K], добавлен 11.12.2012Программное обеспечение для получения исходных данных для обучения нейронных сетей и классификации товаров с их помощью. Алгоритм метода обратного распространения ошибки. Методика классификации товаров: составление алгоритма, программная реализация.
дипломная работа [2,2 M], добавлен 07.06.2012Разработка систем автоматического управления. Свойства нейронных сетей. Сравнительные оценки традиционных ЭВМ и нейрокомпьютеров. Формальная модель искусственного нейрона. Обучение нейроконтроллера при помощи алгоритма обратного распространения ошибки.
реферат [1,4 M], добавлен 05.12.2010