Автоматизована інформаційно-пошукова система, що ґрунтується на нечіткій моделі портрета людини
Дослідження проблеми подання інформації про зовнішність людини. Характеристика створення зображення нечіткої моделі фотопортрета обличчя, заснованої на словесному портреті. Огляд рекомендаційної розробки автоматизованої інформаційної системи пошуку.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | автореферат |
Язык | украинский |
Дата добавления | 28.08.2013 |
Размер файла | 291,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
ДОНЕЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ
Автореферат
дисертації на здобуття наукового ступеня кандидата технічних наук
АВТОМАТИЗОВАНА ІНФОРМАЦІЙНО-ПОШУКОВА СИСТЕМА, ЩО ҐРУНТУЄТЬСЯ НА НЕЧІТКІЙ МОДЕЛІ ПОРТРЕТА ЛЮДИНИ
Спеціальність: Автоматизовані системи управління та прогресивні інформаційні технології
Григор'єв Андрій Вікторович
Донецьк, 2005 рік
1. ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ
Актуальність теми. На сучасному етапі розвитку суспільства відомо декілька додатків щодо застосування задачі ідентифікації особистості. Один з головних виникає в процесі оперативно-розшукової діяльності органів внутрішніх справ. У сучасній криміналістиці є актуальною задача ідентифікації особистості за зовнішністю людини - фотопортретом або словесним описом, складеним свідком.
В умовах підвищеної небезпеки терористичних актів створюються комп`ютерні системи глобального спостереження, в яких головна роль відводиться задачі ідентифікації особистості за оперативними даними від камер, розміщених у громадських місцях різних міст світу, за словесним описом або портретом, складеним за допомогою фоторобота.
Перспективними також є дослідження в галузі інтелектуальних пошукових машин у зв`язку з тенденцією до інтеграції різнорідної інформації і створення інтелектуальних середовищ. Створення систем, які припускають пошук інформації не лише за текстовими фрагментами, але й за іншими видами даних, такими як зображення та звук, надасть можливість суттєво підвищити якість пошукових систем.
Найбільшого успіху в галузі пошуку інформації про людину за словесним описом досягнуто в криміналістиці. Сучасні системи криміналістичного обліку, наприклад, такі як автоматизована дактилоскопічна інформаційна система АДІС “Папілон” та Система інформаційного забезпечення ОВС України, які містять у своєму складі модулі, що забезпечують внесення інформації про зовнішність людини як у формі словесного портрета, так і фотографії. Однак можливість автоматизованого пошуку за фотопортретом у цих системах не реалізована, а створення словесного портрета на практиці викликає певні складнощі. Таким чином, удосконалення методів пошуку за портретом людини є актуальною проблемою.
Зв`язок роботи із науковими програмами, планами, темами.
Дисертаційна робота виконана за період з 2000 по 2005 роки відповідно до наукової тематики кафедри комп`ютерних технологій Донецького національного університету в рамках держбюджетних тем: реєстр. №0101U005380 “Технології ситуаційних нечітких динамічних процесів для створення систем штучного інтелекту” і реєстр. №0104U002161 “Інтелектуальні машини, засновані на інтегрованих знаннях”.
Мета і задачі дослідження. Метою роботи є створення автоматизованої системи ідентифікації особистості людини та пошуку інформації на основі портрета (словесного та фото).
Для досягнення мети в роботі поставлені наступні задачі:
- дослідити сучасний стан проблеми представлення інформації про зовнішність людини, у тому числі методів представлення та порівняння зображень обличчя людини;
- розробити модель представлення словесної та графічної інформації про обличчя людини;
- розробити метод порівняння гібридних моделей, які відбивають як словесну, так і графічну інформацію про обличчя людини;
- розробити автоматизовану систему ідентифікації особистості за портретом;
- перевірити ефективність запропонованих методів та моделей за допомогою комп`ютерного експерименту.
Об`єкт дослідження - ідентифікація людини за зовнішнім виглядом.
Предмет дослідження - методи ідентифікації обличчя людини.
Методи дослідження.
У роботі використані такі методи: теорії нечітких множин, нечіткого моделювання, експертних оцінок, нечіткого ситуаційного висновку, теорії систем автоматизованого управління, словесного портрета, програмування і оптимізації.
Наукова новизна отриманих результатів:
1) отримав подальший розвиток метод словесного портрета, що відрізняється від існуючих представленням ознак опису обличчя людини нечіткими моделями;
2) розроблено модель ідентифікації особистості, що відрізняється від відомих нечітким представленням та зіставленням словесного портрета обличчя;
3) розроблено модель представлення інформації, що ґрунтується на “особливих областях” фотопортрета обличчя людини в фас, що надало можливість розробити новий механізм нечіткого пошуку в базах;
4) запропоновано процедуру використання накопичених експертних знань, які використовуються у традиційному методі словесного портрета при побудові функцій приналежності нечітких множин, що відображають значення ознак метричного типу.
Практичне значення отриманих результатів:
1) Метод нечіткого словесного портрета максимально наближений до можливостей людини щодо опису зовнішності у вигляді словесного портрета, що підвищує ефективність автоматизованого пошуку інформації про людину в базі даних;
2) Метод нечітких особливих областей дозволяє розширити функції автоматизованих пошукових систем і перейти до створення систем нового покоління, в яких пошук може бути реалізований не лише за текстовою, але й за графічною інформацією;
3) Метод нечіткого словесного портрета і нечітких особливих областей можуть бути використані в системах криміналістичного обліку як гібридні моделі в гетерогенних базах даних, що суттєво розширює їх функціонально та підвищує ефективність;
4) Результати дисертації впроваджені на ДД ВАТ “Укртелеком” у розробці інтелектуального порталу “Донбас”;
5) Запропоновані методи та моделі можуть бути використані в інтелектуальних пошукових машинах ІНТЕРНЕТ, що дозволить організувати віртуальне бюро знайомств, розшуку зниклих людей, глобальні системи спостереження та ін.
Особистий внесок здобувача. Всі головні ідеї, положення, теоретичні і практичні розробки, та інші результати дисертаційної роботи, які винесені на захист, отримані автором самостійно.
Апробація результатів роботи. Результати дисертаційної роботи були повідомлені, обговорені та схвалені на наступних семінарах та конференціях:
- науковій конференції Донецького національного університету за підсумками науково-дослідницьких робіт за період 1999 - 2000 рр., 18-20 квітня 2001 р., м. Донецьк;
- 13-й міжнародній школі-семінарі “Перспективні системи управління на залізничному, промисловому та міському транспорті”, 20-25 вересня 2000 р., м. Алушта;
- другій, третій, четвертій і п`ятій міжнародних науково-практичних конференціях “Сучасні інформаційні та електронні технології”, 28-31 травня 2001 р., 21-24 травня 2002 р., 19-23 травня 2003 р. і 17-21 травня 2004 р., м. Одеса;
- міжнародній конференції з управління “Автоматика - 2002”, 16-20 вересня 2002 р., м. Донецьк.
Публікації. За результатами дослідження опубліковано 12 робіт. З них 5 - у наукових виданнях, які входять до переліку ВАК України.
Структура і обсяг дисертації. Дисертація складається із вступу, чотирьох розділів, висновку, списку використаної літератури зі 106 найменувань і 2 додатків. Робота містить 30 рисунків, 4 таблиці. Повний обсяг дисертації складає 143 сторінки тексту.
2. ОСНОВНИЙ ЗМІСТ РОБОТИ
У вступі обґрунтовано актуальність теми, сформульовано мету дослідження і перераховано основні положення, винесені на захист.
У першому розділі виконано аналіз існуючого стану досліджуваної проблеми. Показано місце автоматизованих інформаційно-пошукових систем, що використовуються для вирішення задачі ідентифікації особистості людини за зовнішнім виглядом. В умовах інтенсивного впровадження електронних технологій у різні галузі людського життя виникає потреба в нових моделях взаємодії людини з інформаційними ресурсами. Показано, що на сучасному етапі акцент зміщується від простих пошукових систем текстової інформації до моделей, які базуються на психологічних особистостях сприйняття людиною різноманітної інформації, що використовують в інтелектуальних пошукових системах.
Під час роботи з гетерогенними базами даних, які містять як текстову, так і графічну інформацію, сучасні пошукові системи підтримують пошук як за ключовими словами, термінами та значущими фрагментами текстової інформації, так і за фрагментами графічної інформації. У гетерогенних базах даних, що зберігають фотографії і текстову інформацію (як спеціальні криміналістичні, так і загального користування - сайти знайомств, пошуку зниклих, галереї, музеї та ін.), використовують два підходи: перший пов`язаний з пошуком у базі даних інформації про людину за словесним описом, другий - за фотопортретом. Обґрунтовується вибір методу словесного портрета який використовується в сучасній криміналістиці для вирішення першої задачі. Виконано аналіз простору ознак і виділено три механізми формування значень ознак, запропоновано їх класифікацію на метричні, експертні та похідні.
Показано основний недолік існуючого методу словесного портрета при формуванні ознак метричного типу - перехід від числових даних, отриманих вимірюваннями, до вербальних значень здійснюється за допомогою порогових оціночних функцій. Зазначено, що ця проблема порогових оцінок призводить до виникнення протирічних ситуацій. Для ознак експертного типу виявлено проблему категоричності. Ознаки похідного типу формуються на основі вже сформованих значень ознак і правил за допомогою методу логічного висновку. Для вирішення цих проблем запропоновано перейти до нечіткої моделі словесного портрета, як такого, що найбільш точно відбиває психологічні властивості людини.
Проведений аналіз систем криміналістичного обліку: “АДІС “Папілон” та “Системи інформаційного забезпечення ОВС України”, а також ряду зарубіжних інформаційних систем, що здійснюють ідентифікацію людини за фотографією її обличчя і реалізуються такими компаніями, як Visionic, Viisage, Miros. Аналіз показав, що в розглянутих системах криміналістичного обліку реалізована можливість збереження інформації про зовнішність людини у вигляді словесного портрета і фотографії обличчя, однак не реалізована можливість пошуку за зображенням обличчя та гібридним запитом. Крім цього, має місце залежність показників якості розпізнавання від швидкісних характеристик. Таким чином, під час розробки системи пошуку переслідувалась мета підвищення якості розпізнавання за умови високих швидкісних показників. У другому розділі подано модель нечіткого словесного портрета. Вона заснована на методі, який використовується в криміналістиці та передбачає опис зовнішності людини впорядкованим набором ознак, що відносяться до різних її елементів. У дисертаційній роботі використовується частина словесного портрета, що побудована на ознаках, які належать до обличчя людини (обличчя в цілому, волосся на обличчі, вуса, борода, чоло, брови, очі, вії, повіки, ніс у цілому, перенісся, спинка носа, основа носа, кінчик носа, крила носа, ніздрі, носова перегородка, рот, носо-губний фільтр, губи, зуби, підборіддя) та до таких загальних елементів зовнішності, як антропологічний тип, стать та вік. До кожного з цих елементів входить множина ознак (наприклад, до елемента “чоло” належать ознаки: форма, висота, ширина, величина, нахил, а також чолові бугри та надбрівні дуги) - всього модель складається із 95 ознак, із якими взагалі пов`язано 292 значення. Нечітка модель побудована на впорядкованому наборі ознак зовнішності та представлена множиною нечітких підмножин:
Де:
- множина ознак;
x та y - прийняті в методі словесного портрета індикативні коди елемента і ознаки зовнішності);
- множина значень ознаки .
Модель словесного портрета має два компоненти: нечіткий еталон, який міститься в базі даних, та нечіткий запит. У першому випадку функція приналежності за формулою:
- формується на основі об'єктивних даних.
У другому - на основі суб'єктивної впевненості. Нечіткий еталон позначається у вигляді (1). Нечітку модель-запит та значення ознак, які входять до неї, позначено відповідно та . Процедура формування функції приналежності в (2) залежить від типу ознаки. Нечіткі ознаки метричного типу будуються на основі числових результатів абсолютних або відносних вимірювань. На рис.1 цифрами позначені результати вимірювань, які використовуються для обчислення значень ознак висоти і ширини чола:
1) - висота чола;
2) - фізична висота обличчя;
3) - ширина чола;
4) - ширина обличчя на рівні вилиці.
Для висоти чола використовується відношення вимірювань 1) і 2), для ширини чола - відношення 3) та 4). Перехід від числового результату вимірювання до нечіткого значення ознаки - фази - заданий сімейством функцій:
А функція приналежності для (2) є:
Рис. 1. - Схематичне зображення обличчя людини в фас:
Для визначення області домінування на множині заданий порядок, представлений умовою:
На основі впровадженого порядку на виділені елементи такі, що:
Та елементи:
- який безпосередньо розміщений перед елементом та той, що безпосередньо йде за ним.
Показано, що областями домінування є:
Де:
- точка розмежування між областями домінування та , яка відповідає пороговому значенню, що розмежовує області домінування для значень на .
Обґрунтовано доцільність апроксимації залежностей L-R функціями вигляду:
Для ознак експертного типу нечіткі значення будуються на основі образу елемента зовнішності, який безпосередньо спостерігається та описується ознакою , де - множина різноманітних образів елемента зовнішності, який описується ознакою , і зумовлена різними його значеннями. Кожному відповідає шаблонний образ , яким може бути словесний опис, який чітко відповідає цьому значенню елемента зовнішності, або його графічне зображення. Значення ознаки формуються експертом, роль якого полягає у встановлені ступеня подібності образу, що спостерігається, кожному з шаблонів. Таким чином, функція приналежності для нечіткої множини , яка задає значення ознаки . Значення ознак похідного типу обчислюється методом нечіткого висновку на основі, з одного боку, вже обчислених нечітких ознак зовнішності, і, з іншого боку, на основі формалізації заданих експертом правил. Таким чином, функція приналежності для нечіткої множини , яка виражає значення ознаки похідного типу, є:
Де:
- нечіткий вираз, який формалізує правило, що описує умови, за яких ознака приймає значення .
Процедура пошуку в гетерогенній базі даних запису за словесним описом зовнішності припускає впорядкування моделей-еталонів, які зберігаються в базі даних, за нечітким ступенем їх відповідності моделі-запиту.
Обґрунтовано двох етапну процедуру обчислення ступеня відповідності моделі-еталона S моделі-запиту :
1) обчислення ступеня відповідності за окремими ознаками ;
2) обчислення інтегрального ступеня відповідності запиту на основі отриманих відповідностей за окремими нечіткими ознаками. Як правило, модель-еталон і модель-запит - не є повними. Зі вставлення проводиться на підпросторі ознак (у випадку порожнього підпростору отримаємо невизначеність - на практиці такі випадки запропоновано розглядати як особливі ситуації).
Для першого етапу - знаходження ступеня нечіткої відповідності моделі-еталона запиту - обґрунтовано використання ступеня нечіткого входження однієї нечіткої множини в іншу. Аналіз класичного ступеня входження:
З нечіткою імплікацією Гьоделя показав, що мають місце випадки, коли даний вираз дає суперечний результат. Для подолання виявлених протиріч запропоновано ступінь відповідності:
Де:
- ступінь нечіткого розрізнення на R(E).
Наведено виведення спрощеного варіанта формули, для чого сформульована і доведена теорема, що задає явно ступінь нечіткого входження:
Де:
G - нечітка міра.
Для вирішення другої задачі обґрунтовано використання avg-критерію:
У третьому розділі досліджено метод пошуку в базі даних інформації за запитом, репрезентованим фотопортретом обличчя людини. Введена нечітка модель обличчя, заснована на даних сучасної психології сприйняття та психофізики. Аналіз експериментів, проведених психологами в галузі фотометрії (а саме, дослідження зареєстрованих рухів очей людини, отриманих під час дослідження фотографії), показав, що при візуальному сприйнятті інтерес людини до різних ланок зображення розподілений нерівномірно. При вільному дослідженні фотографії людини найбільшу увагу привертають ланки зображення, що відповідають очам, носу та роту людини.
У зв`язку з цим запропоновано процес ідентифікації обличчя будувати на гіпотезі, згідно з якою для впізнавання достатньо порівняти найбільш інформативні області зображення, які запропоновано називати “особливими областями”. Під час аналізу отриманих психологами графів рухів, зареєстрованих при вільному дослідженні фотографії обличчя людини в фас, виявлено п`ять таких особливих областей: “права зінична”, “ліва зінична”, “передньоносова”, “ротова” та “средньоносова”. Таким чином, модель фотопортрета обличчя є набором моделей особливих областей зображення. Формально це подано таким чином.
Вхідне зображення представлене функцією яскравості, яка задана на піксельній площині:
Задані координати центрів особливих областей:
відповідно “правої” і “лівої зіничних”, “передньоносової”, “ротової” та “средньоносової”.
Координати точок:
вводяться в автоматизованому або автоматичному режимах, координата обчислюється із співвідношення:
Відповідно до висунутої передумови, модель фотопортрета обличчя є набором моделей особливих областей: . Для того, щоб нечітка модель фотографії була інваріантною до поворотів зображення та до зміни його масштабу, введені такі характеристики особливої області, як базовий напрямок та радіус околу , що залежать від координат центрів особливих областей і не залежать віт орієнтації або розмірів всього зображення, тобто:
Напрямок особливих областей запропоновано задавати кутом між віссю ординат та векторами:
Радіуси особливих областей знаходяться із співвідношень:
Де:
- евклідова відстань між точками і .
Для зручності опису моделі особливої області запропоновано перейти до полярної системи координат із початком відліку в особливій точці , нульовим напрямком та одиничним радіусом . Модель особливої області запропоновано задавати нечіткими характеристиками:
Де:
- нечіткий напрямок контуру в околі контрольної точки . Координати задані залежно від ступенів градації радіальної і кутової складових та відповідно, а також коефіцієнту перенесення радіальної складової:
Функція приналежності відображає впевненість у тому, що напрямок контуру в точці відповідає напрямку :
Де:
- координати пікселя у полярній системі координат із центром у контрольній точці , нульовим напрямком та одиничним відрізком радіальної складової, що відповідає розміру - околу контрольної точки.
За допомогою цих множин, що описують: - окіл контрольної точки ().
Наближення до прямої, що проходить через контрольну точку в напрямку ().
І піксельні області, які знаходяться з умовної позитивної () та негативної сторін відносно цієї прямої ().
Вираз відображає різницю у середній освітленості між центральною відносно напрямку частиною околу контрольної точки з однією із двох периферійних частин - позитивною:
Або негативною:
Сигма-функція, відображає особливості суб`єктивного сприйняття зображення та є функцією переходу від розрізнення середньої освітленості нечітких областей до суб`єктивної впевненості у наявності контуру в контрольній точці у заданому напрямку. Порівняння нечітких моделей запропоновано проводити аналогічно процедурі порівняння моделей нечіткого словесного портрета. Ступенем подібності моделей і є:
Де:
- ступінь нечіткої подібності моделей k-х особливих областей.
Де:
- ступінь нечіткої подібності за окремими контрольними точками.
Нечіткий ступінь подібності за контрольними точками запропоновано шукати у вигляді інверсії нечіткої відстані:
У четвертому розділі наведено результати експериментів і опис автоматизованої інформаційно-пошукової системи АІПС “Портрет”. Експерименти виконані окремо для двох методів, розроблених у дисертації: нечіткого словесного портрета та нечітких особливих областей обличчя. У процесі проведення експериментів використовувалась характеристика CMS (cumulative matching score), суть якої складається у наступному. Результатом пошуку за кожним образом із тестової вибірки є впорядкований за ступенем відповідності тестовому образу набір моделей із бази даних. Якщо в отриманому наборі образ, який шукається, знаходиться не більш ніж на r-ій позиції, то кажуть, що він розпізнаний за рангом r. Характеристика CMS - залежність відсотка розпізнавання від рангу r.
Під час тестування методу нечіткого словесного портрета були складені класичні та нечіткі моделі словесного портрета для 20 осіб (чоловіки у віці від 25 до 45 років). Моделі будувались на 38 ознаках зовнішності, з яких: 24 - метричного типу, 12 - експертного і 2 - похідного. Це такі ознаки:
- форма, горизонтальне профілювання, співвідношення висоти і ширини обличчя;
- лінія росту волосся;
- форма, висота, ширина, величина та нахил чола;
- контур, напрямок, взаємно розміщення, висота, ширина й довжина брів;
- контур, довжина, ступінь розкриття, положення і колір очей;
- виваженість вилиць;
- висота та ширина носа;
- глибина перенісся;
- контур, довжина і ширина спинки носа;
- положення основи носа;
- розмір, контур рота;
- положення кутів рота;
- загальна ширина кайм губ;
- висота, ширина і контур підборіддя.
Людині, не знайомій раніше із жодним з учасників експерименту, запропоновано по черзі ознайомитися із зовнішністю кожної з 20 осіб та скласти чіткий та нечіткий словесні портрети. Комп'ютерний експеримент показав, що нечітка модель має перевагу над чіткою: якість пошуку за рангом 1 зростає більш ніж на 15%: від 70% до 85%. Встановлено, що автоматично обчислений ступінь відповідності нечітких моделей словесного портрета адекватно відображає суб`єктивне уявлення людини про зовнішню подібність (зі вставлення парних порівнянь із уявленням експертів склало більше 80%).
Тестування методу нечітких особливих областей проводилося на п`яти наборах фотографій облич людей у фас із бази даних FERET: галерейному наборі та чотирьох тестових (fafb, fafc, dup1 и dup2). Галерея складається із 1197 фотографій, fafb - 1196 фотографій, зроблених через малий проміжок часу після галерейних у тих самих умовах зйомки (але образи можуть відрізнятися виразом облич та положенням голови), fafc - 194 фотографій, виконаних іншою камерою при іншому освітленні (візуально зображення із набору fafc виглядають більш темними, ніж зображення із галерейного набору), dup1 - 722 фото, зроблених за 6-18 місяців після галерейних, dup2 - 234 фото, зроблених за 18-36 місяців після галерейних. Проведено порівняння методу із зарубіжними аналогами. Графіки CMS, отримані на наборах fafb, результати методів від US Army Research Laboratory (із позначкою arl); зумовлені вибором метрики варіанти методу власних облич (ef_hist); система компанії Excalibur Inc. (excalibur); методи, розроблені у Масачусетському технічному інституті (mit), університетах Південної Каліфорнії (usc) та Меріленд (umd). За сукупністю тестів запропонований у дисертації нечіткий метод показав результати сумірні із кращими зарубіжними аналогами: методами, розробленими в Масачусетському технічному інституті і університетах Південної Каліфорнії та Меріленд: на наборі fafb отримано результат більший за 96%, на наборі fafc - 75%, на dup_1 - 53%, на dup_2 - 38% за рангом 1.
Рис. 2. - Порівняння методів ідентифікації облич на наборі fafb:
Проведений підбір параметрів нечіткої моделі фотографії обличчя із метою оптимізації швидкості пошуку. Використавши різні комбіновані критерії, які включають результативність пошуку та його швидкість, виділені набори параметрів, за яких відсоток вдалого пошуку та його швидкість склали відповідно:
- 92% та 84072 фот/c;
- 95% та 28584 фот/c;
- 96% та 5810 фот/c, що дозволяє працювати з великими базами даних в режимі реального часу.
На основі результатів, отриманих у другому і третьому розділах дисертації, розроблена автоматизована інформаційно-пошукова система АІПС “Портрет”. Система побудована на триланковій клієнт-серверній архітектурі, яка зарекомендувала себе в проектуванні великих ERP-систем. Система має три рівні: презентаційний рівень, рівень додатків та рівень баз даних. Третій рівень системи репрезентований СУБД MySQL. Система працює в двох режимах: режимі реєстрації запису та режимі запиту. У режимі реєстрації запису система дозволяє в автоматичному режимі за допомогою вбудованого модуля фотографічного аналізу, що працює з фотографіями в фас і профіль - виділяти основні метричні ознаки. Після автоматичного обчислення нечітких ознак метричного типу в автоматизованому режимі вводяться експертні ознаки, та, після обчислення нечітких ознак похідного типу на основі нечітких правил, які містяться в базі даних, нечіткі моделі словесних портретів та фотографій додаються до бази даних.
Система дозволяє працювати із запитами, введеними як за допомогою користувача повністю в ручному режимі, так і складеними за допомогою модуля фотографічного аналізу. Під час тестування система показала цілком логічні результати, а швидкість пошуку за нечітким словесним портретом склала більше 1000 записів за секунду.
У додатках наведено довідкові дані, які використовуються при створенні нечіткої моделі-еталона словесного портрета, а також акти про впровадження.
ВИСНОВКИ
У дисертації запропоновано подальший розвиток і нове розв`язання актуальної проблеми пошуку інформації в гетерогенних інформаційних системах. Основні результати роботи сформульовані таким чином.
1. Проведений аналіз існуючих підходів до пошуку інформації у гетерогенних БД виявив недоліки методів пошуку за словесною та графічною моделями портрета обличчя людини:
- класичному методу словесного портрета властиві проблеми порогових оцінок та категоричності при формуванні моделі зовнішності, що суттєво зменшує результативність пошуку;
- методи пошуку за цифровими графічними моделями зображення обличчя, по-перше, реалізовані у вигляді закритих систем, що ускладнює їх інтеграцію до автоматизованих інтелектуальних пошукових систем, і, по-друге, або не характеризуються достатньою швидкістю, або потребують наявності навчальної вибірки, або дуже критичні до вхідних зображень.
2. Подолання вказаних недоліків можливе на основі моделей, які враховують особливості сприйняття людиною інформації про обличчя людини, досліджених в когнітивній психології. Запропоновано формалізувати словесну та графічну моделі портрета обличчя на основі апарату теорії нечітких множин.
3. Модель нечіткого словесного портрета, як систему нечіткого виведення, розроблено з урахуванням досвіду застосування класичного методу словесного портрета. Запропонований підхід до формування фази, що ґрунтується на поняттях точок максимальної відповідності та областей домінування, дозволив використати досвід, накопичений в криміналістиці, для обчислення функції приналежності нечітких ознак метричного типу. Новий підхід до знаходження ступеня входження однієї нечіткої множини в іншу дозволив подолати протиріччя, які були виявлені для класичного підходу.
4. Результати комп`ютерних експериментів показали, що: при переході до моделі нечіткого словесного портрета результативність пошуку зростає більш ніж на 15% (з 70 до 85%) порівняно з класичною моделлю; автоматично обчислений ступінь нечіткого порівняння моделей словесного портрета більш адекватно відображає суб`єктивне уявлення людини про зовнішню схожість.
5. Розроблено метод нечіткого пошуку фотографій у базі даних, що ґрунтується на даних, отриманих у психології сприйняття, психофізиці та криміналістиці, що базується на протиставленні особливих областей обличчя.
6. На основі отриманих психологами графів рухів очей виділено п`ять таких областей: “права зінична”, “ліва зінична”, “передня носова”, “ротова” та “середня носова”. Кожна з цих областей репрезентована набором нечітких множин, які характеризують направлення контуру в контрольних точках, що належать цим особливим областям.
7. Проведений на базі фотографій FERET комп`ютерний експеримент показав, що розроблений метод нечітких особливих областей за результативністю пошуку не поступається кращим зарубіжним аналогам. Залежно від параметрів моделі швидкість пошуку може становити від 5810 фот/с (результативність пошуку 96%) до 84072 (результативність - 92%) на ПЕОМ класу P-IV 2,8MHz.
8. Розроблені й запропоновані в дисертаційній роботі методи пошуку за запитом, представленим словесною та графічною інформацією про обличчя людини, дозволяють розширити можливості існуючих інформаційно-пошукових систем та поширити їх на гетерогенні системи.
9. Розроблена автоматизована інформаційно-пошукова система АІПС “Портрет”, у якій були реалізовані запропоновані в роботі методи і моделі, впроваджена в ДД ВАТ “Укртелеком”. Теоретичні та практичні результати дисертаційної роботи використовуються на кафедрі Комп`ютерних технологій у навчальному процесі та науковій роботі у створені інтелектуального порталу “Донбас”. інформація зображення автоматизований
СПИСОК ОПУБЛІКОВАНИХ АВТОРОМ РОБІТ ЗА ТЕМОЮ ДИСЕРТАЦІЇ
1. Григорьев А.В. Методика нечёткого словесного портрета // Вестник Херсонского государственного технического университета №1(19) - 2004, Херсон: “Олди-плюс”, 2004. - с. 100-104.
2. Григорьев А.В., Каргин А.А. Нечеткий метод к идентификации человека по фотопортрету // Радіоелектроніка, Інформатика, Управління № 2(12) - 2004, Запоріжжя: ЗНТУ, 2004. - с. 131 - 135.
3. Григорьев А.В. О нечёткой импликации и степени нечёткого вхождения одного нечёткого множества в другое // Вісник Донецького університету, Сер. A. Природничі науки, 2005, вип. 1, Донецьк: ДонНУ, 2004. - с. 416-419.
4. Григорьев А.В., Каргин А.А. Метод нечеткого поиска неизвестного лица по фотопортрету // Наукові праці Донецького національного технічного університету. Серія: “Обчислювальна техніка та автоматизація”. Вип. 88. - Донецьк, ДонНТУ, 2005. - с. 113-119.
5. Григорьев А.В., Каргин А.А. Сравнение методик нечёткого и классического словесного портрета // Радиоэлектроника и информатика № 1(30) - 2005, Харьков: ХНУРЭ, 2005. - с. 122-125.
Размещено на Allbest.ru
...Подобные документы
Забезпечення захисту інформації. Аналіз системи інформаційної безпеки ТОВ "Ясенсвіт", розробка моделі системи. Запобігання витоку, розкраданню, спотворенню, підробці інформації. Дослідження та оцінка ефективності системи інформаційної безпеки організації.
курсовая работа [1,6 M], добавлен 27.04.2014Опис алгоритмів реалізації автоматизованої інформаційної системи обслуговування роботи торгового агента в середовищі програмування Delphi. Створення схем технологічного процесу введення, редагування і видачі результатів. Інсталяція і експлуатація проекту.
курсовая работа [118,4 K], добавлен 25.09.2010Розроблення та створення автоматизованої інформаційно-довідкової системи обліку проданих квитків на авіарейси. Обробка баз даних СКБД Access. Розробка зручного діалогового інтерфейсу у вигляді меню користувача, яке реалізоване через керуючу форму.
курсовая работа [56,9 K], добавлен 16.04.2011Автоматизована система обробки економічної інформації, яка використовується на підприємстві АТ відкритого типу “Продукт-Сервіс". Технологічний процес обробки інформації конкретної задачі в системі. Створення таблиці "Фрукти", "Описання наборів".
контрольная работа [26,4 K], добавлен 27.07.2009Розробка автоматизованої інформаційно-довідкової системи "Шовкова фея". Область використання системи, визначення функцій, вибір програмних засобів для розв’язання задачі, її комп’ютерна реалізація. Вимоги до ПЗ. Аналіз вихідних даних засобами MS Excel.
презентация [980,4 K], добавлен 09.09.2010Характеристика інфологічної та даталогічної моделі бази даних. Поняття та класифікація управлінських інформаційних систем. Інформаційні системи управління технологічними процесами. Інтелектуальні інформаційно-пошукові системи, штучний інтелект.
контрольная работа [11,9 K], добавлен 29.10.2009Інформаційна система НБУ грунтується на використанні інформаційних технологій. Основні функції інформаційної системи реалізуються в процесі роботи на автоматизованому робочому місці (АРМ) спеціаліста. Моделі інформаційних систем НБУ та захист інформації.
контрольная работа [23,2 K], добавлен 13.08.2008Склад і зміст робіт зі створення системи автоматизованої системи, що фіксує витрати на вироблення продукції сільського господарства (на вирощування цукрового буряку) і забезпечує контроль дотримання технологічних процесів. Схема дії інформаційної системи.
курсовая работа [486,4 K], добавлен 06.07.2011Особливості функціонального складу автоматизованої інформаційної системи Казначейства. АРМ формування розпорядження та реєстру на здійснення видатків державного бюджету автоматизованої системи Держказначейства України. Призначення АС "Казна-Видатки".
контрольная работа [27,1 K], добавлен 02.04.2010Побудування інформаційної концептуальної моделі дошкільного навчального закладу. Визначення ідентифікуючого набора атрибутів інформаційної системи. Відомості про структуру програми, мова програмування. Код створення бази даних на мові Transact-SQL.
курсовая работа [433,7 K], добавлен 27.03.2016Аналіз проектування баз даних та створення програми на тему IC "Туристичні агентства". Розробка простого для розуміння інтерфейсу, огляд реалізації додавання, редагування, видалення, пошуку інформації. Характеристика задач автоматизації і фізичної моделі.
курсовая работа [4,1 M], добавлен 12.01.2012Основні поняття теорії нечіткої логіки. Прогнозування економічних процесів та курсу валюти на фінансовому ринку. Системи та алгоритми нечіткого виводу. Адаптивні системи нейро-нечіткого виводу. Процес розробки і перевірки нечіткої моделі гібридної мережі.
курсовая работа [3,1 M], добавлен 19.06.2014Модель – це прообраз, опис або зображення якогось об'єкту. Класифікація моделей за способом зображення. Математична модель. Інформаційна модель. Комп'ютерна модель. Етапи створення комп'ютерної моделі.
доклад [11,7 K], добавлен 25.09.2007Комп'ютерні інформаційні системи. Характеристика автоматизованої системи обробки економічної інформації на підприємстві. Технологічний процес обробки інформації конкретної задачі в системі. Впровадження в дію автоматизації бухгалтерського обліку.
контрольная работа [25,1 K], добавлен 26.07.2009Автоматизована системи обробки економічної інформації, яка використовується на підприємстві, її характеристика. Технологічний процес обробки інформації конкретної задачі в системі. Зауваження користувача щодо функціональних і ергономічних характеристик.
контрольная работа [26,5 K], добавлен 27.07.2009Розробка інформаційної системи, що містить дані про товари, їх поставку і доставку за допомогою моделі "Сутність-зв'язок". Вибір засобів її реалізації Структурна схема реляційної бази даних та таблиці БД. Інструкція для користувача програмним продуктом.
курсовая работа [2,4 M], добавлен 19.06.2013Автоматизована інформаційно-довідкова система для створення нормативно-довідкової інформації про замовників, які замовляють послуги і персонал, який виконує замовлення. Вибір програмних засобів для розв'язання задачі. Створення між табличних зв'язків.
презентация [468,3 K], добавлен 09.09.2010Напрямки використання інформаційно-комунікаційних технологій в процесі навчання студентів. Визначення шляхів залучення комунікаційних мереж і сервісів в систему вищої освіти. Побудова функціонально-інформаційної та техніко-технологічної моделі деканату.
дипломная работа [6,4 M], добавлен 27.01.2022Системи розпізнавання обличчя. Призначення та область застосування програми "Пошук обличчя люди у відеопотоках стандарту MPEG-4". Штучна нейронна мережа, локалізація та розпізнавання обличчя. Методи, засновані на геометричних характеристиках обличчя.
курсовая работа [1,8 M], добавлен 27.03.2010Автоматизація роботи овочевої бази, яка дозволить значно підвищити продуктивність праці за рахунок автоматизації функцій, які раніше виконувалися вручну. Розробка канонічних uml-діаграм автоматизованої інформаційної системи у середовищі case-засобу.
курсовая работа [2,4 M], добавлен 27.04.2013