История шифрования. Примеры шифров

История применения первых шифров перестановки, использование криптографии в политике и военном деле, для защиты интеллектуальной собственности. Использование многоалфавитной подстановки для маскировки естественной статистики, метод шифрования биграммами.

Рубрика Программирование, компьютеры и кибернетика
Вид лабораторная работа
Язык русский
Дата добавления 13.09.2013
Размер файла 128,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лабораторная работа

Тема: История шифрования. Примеры шифров

Содержание

1.Теоретическая часть

1.1 Шифр перестановки "Скитала"

1.1.1 Шифрующие таблицы

1.1.2 Применение магических квадратов

1.2 Шифры простой замены

1.2.1 Полибианский квадрат

1.2.2 Система шифрования Цезаря

1.2.3 Аффинная система подстановок Цезаря

1.2.4 Система Цезаря с ключевым словом

1.2.5 Шифрующие таблицы Трисемуса

1.2.6 Биграммный шифр Плейфейра

1.2.7 Система омофонов

1.3 Шифры сложной замены

1.3.1 Шифр Гронсфельда

1.3.2 Система шифрования Вижинера

2. Практическая часть

1. Теоретическая часть

1.1 Шифр перестановки "Скитала"

В V веке до нашей эры правители Спарты, наиболее воинственного их греческих государств, имели хорошо отработанную систему секретной военной связи и шифровали свои послания с помощью скитала, первого простейшего криптографического устройства, реализующего метод простой перестановки.

Шифрование выполнялось следующим образом. На стержень цилиндрической формы, который назывался скитала, наматывали спиралью (виток к витку) полоску пергамента и писали на ней вдоль стержня несколько строк текста сообщения. Затем снимали со стержня полоску пергамента с написанным текстом. Буквы на этой полоске оказывались расположенными хаотично. Такой же результат можно получить, если буквы сообщения писать по кольцу не подряд, а через определенное число позиций до тех пор, пока не будет исчерпан весь текст.

Рис.1.

Сообщение НАСТУПАЙТЕ при размещении его по окружности стержня по три буквы дает шифртекст НУТАПЕСА_ТЙ

Для расшифрования такого шифртекста нужно не только знать правило шифрования, но и обладать ключом в виде стержня определенного диаметра. Зная только вид шифра, но не имея ключа, расшифровать сообщение было непросто. Шифр скитала многократно совершенствовался в последующие времена

1.1.1 Шифрующие таблицы

С начала эпохи Возрождения (конец XIV столетия) начала возрождаться и криптография. Наряду с традиционными применениями криптографии в политике, дипломатии и военном деле появляются и другие задачи - защита интеллектуальной собственности от преследований инквизиции или заимствований злоумышленников. В разработанных шифрах перестановки того времени применяются шифрующие таблицы, которые в сущности задают правила перестановки букв в сообщении

В качестве ключа в шифрующих таблицах используются'

* размер таблицы;

* слово или фраза, задающие перестановку,

* особенности структуры таблицы.

Одним из самых примитивных табличных шифров перестановки является простая перестановка, для которой ключом служит размер таблицы. Этот метод шифрования сходен с шифром скитала Например, сообщение

ТЕРМИНАТОР ПРИБЫВАЕТ СЕДЬМОГО В ПОЛНОЧЬ

записывается в таблицу поочередно по столбцам.

Результат заполнения таблицы из 5 строк и 7 столбцов показан на рис. 2.

Рис 2. Заполнение таблицы из 5 строк и 7 столбцов

После заполнения таблицы текстом сообщения по столбцам для формирования шифртекста считывают содержимое таблицы по строкам. Если шифртекст записывать группами по пять букв, получается такое шифрованное сообщение

ТНПВЕ ГЛЕАР АДОНР ТИЕЬВ ОМОБТ МПЧИР ЫСООЬ

Естественно, отправитель и получатель сообщения должны заранее условиться об общем ключе в виде размера таблицы Следует заметить, что объединение букв шифртекста в 5-буквенные группы не входит в ключ шифра и осуществляется для удобства записи несмыслового текста. При расшифровании действия выполняют в обратном порядке.

Несколько большей стойкостью к раскрытию обладает метод шифрования, называемый одиночной перестановкой по ключу Этот метод отличается от предыдущего тем, что столбцы таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы.

Применим в качестве ключа, например, слово ПЕЛИКАН, а текст сообщения возьмем из предыдущего примера. На рис. 3 показаны две таблицы, заполненные текстом сообщения и ключевым словом, при этом левая таблица соответствует заполнению до перестановки, а правая таблица- заполнению после перестановки.

Рис 3. Таблицы, заполненные ключевым словом и текстом сообщения

В верхней строке левой таблицы записан ключ, а номера под буквами ключа определены в соответствии с естественным порядком соответствующих букв ключа в алфавите. Если бы в ключе встретились одинаковые буквы, они бы были пронумерованы слева направо. В правой таблице столбцы переставлены в соответствии с упорядоченными номерами букв ключа.

При считывании содержимого правой таблицы по строкам и записи шифртекста группами по пять букв получим шифрованное сообщение:

ГНВЕП ЛТООА ДРНЕВ ТЕЬИО РПОТМ БЧМОР СОЫЬИ

Для обеспечения дополнительной скрытности можно повторно зашифровать сообщение, которое уже прошло шифрование. Такой метод шифрования называется двойной перестановкой. В случае двойной перестановки столбцов и строк таблицы перестановки определяются отдельно для столбцов и отдельно для строк. Сначала в таблицу записывается текст сообщения, а потом поочередно переставляются столбцы, а затем строки. При расшифровании порядок перестановок должен быть обратным. шифр криптография многоалфавитный биграмма

Пример выполнения шифрования методом двойной перестановки показан на рис. 4.

Если считывать шифртекст из правой таблицы построчно блоками по четыре буквы, то получится следующее:

ТЮАЕ ООГМ РЛИП ОЬСВ

Ключом к шифру двойной перестановки служит последовательность номеров столбцов и номеров строк исходной таблицы (в нашем примере последовательности 4132 и 3142 соответственно).

Рис. 4. Пример выполнения шифрования методом двойной перестановки

Число вариантов двойной перестановки быстро возрастает при увеличении размера таблицы:

* для таблицы 3х 3 36 вариантов;

* для таблицы 4х 4 576 вариантов;

* для таблицы 5х 5 14400 вариантов.

Однако двойная перестановка не отличается высокой стойкостью и сравнительно просто "взламывается" при любом размере таблицы шифрования.

1.1.2 Применение магических квадратов

В средние века для шифрования перестановкой применялись и магические квадраты.

Магическими квадратами называют квадратные таблицы с вписанными в их клетки последовательными натуральными числами, начиная от 1, которые дают в сумме по каждому столбцу, каждой строке и каждой диагонали одно и то же число.

Шифруемый текст вписывали в магические квадраты в соответствии с нумерацией их клеток. Если затем выписать содержимое такой таблицы по строкам, то получится шифртекст, сформированный благодаря перестановке букв исходного сообщения. В те времена считалось, что созданные с помощью магических квадратов шифртексты охраняет не только ключ, но и магическая сила.

Пример магического квадрата и его заполнения сообщением ПРИЛЕТАЮ ВОСЬМОГО показан на рис. 5.

Рис 5. Пример магического квадрата 4х 4 и его заполнения сообщением ПРИЛЕТАЮ ВОСЬМОГО

Шифртекст, получаемый при считывании содержимого правой таблицы по строкам, имеет вполне загадочный вид:

ОИРМ ЕОСЮ ВТАЪ ЛГОП

Число магических квадратов быстро возрастает с увеличением размера квадрата. Существует только один магический квадрат размером 3х 3 (если не учитывать его повороты). Количество магических квадратов 4х 4 составляет уже 880, а количество магических квадратов 5х 5 - около 250000.

Магические квадраты средних и больших размеров могли служить хорошей базой для обеспечения нужд шифрования того времени, поскольку практически нереально выполнить вручную перебор всех вариантов для такого шифра.

1.2 Шифры простой замены

При шифровании заменой (подстановкой) символы шифруемого текста заменяются символами того же или другого алфавита с заранее установленным правилом замены. В шифре простой замены каждый символ исходного текста заменяется символами того же алфавита одинаково на всем протяжении текста. Часто шифры простой замены называют шифрами одноалфавитной подстановки.

1.2.1 Полибианский квадрат

Одним из первых шифров простой замены считается так называемый "полибианский квадрат". За два века до нашей эры греческий писатель и историк Полибий изобрел для целей шифрования квадратную таблицу размером 5x5, заполненную буквами греческого алфавита в случайном порядке. (Рис.6.)

При шифровании в этом полибианском квадрате находили очередную букву открытого текста и записывали в шифртекст букву, расположенную ниже ее в том же столбце. Если буква текста оказывалась нижней в строке таблицы, то для шифр текста брали самую верхнюю букву из того же столбца.

Рис.6. Полибианский квадрат, заполненный случайным образом 24 буквами греческого алфавита и пробелом.

Например, для слова получается шифртекст .

Концепция полибианского квадрата оказалась плодотворной и нашла применение в криптосистемах последующего времени.

1.2.2 Система шифрования Цезаря

Шифр Цезаря является частным случаем шифра простой замены (одноалфавитной подстановки). Свое название этот шифр получил по имени римского императора Гая Юлия Цезаря, который использовал этот шифр при переписке с Цицероном (около 50 г. до н.э.).

При шифровании исходного текста каждая буква заменялась на другую букву того же алфавита по следующему правилу. Заменяющая буква определялась путем смещения по алфавиту от исходной буквы на К букв. При достижении конца алфавита выполнялся циклический переход к его началу. Цезарь использовал шифр замены при смещении К = 3. Такой шифр замены можно задать таблицей подстановок, содержащей соответствующие пары букв открытого текста и шифр текста. Совокупность возможных подстановок для К=3 показана в табл. 1.

Таблица 1. Одно-алфавитные подстановки (К = 3, m = 26)

A

D

J

M

S

V

B

E

K

N

T

W

C

F

L

O

U

X

D

G

M

Р

V

Y

E

H

N

Q

W

Z

F

I

O

R

X

A

G

J

Р

S

Y

B

H

K

Q

T

Z

C

I

L

R

U

Например, послание Цезаря: VENI VIDI VICI (в переводе на русский означает "Пришел, Увидел, Победил"), направленное его другу Аминтию после победы над понтийским царем Фарнаком, сыном Митридата, выглядело бы в зашифрованном виде так: YHQL YLGL YLFL

1.2.3 Аффинная система подстановок Цезаря

В системе шифрования Цезаря использовались только аддитивные свойства множества целых Zm . Однако символы множества Zm можно также умножать по модулю m. Применяя одновременно операции сложения и умножения по модулю m над элементами множества Zm, можно получить систему подстановок, которую называют аффинной системой подстановок Цезаря.

Определим преобразование в такой системе:

Ea,b : ZmZm

Ea,b : tEa,b(t)

Ea.b(t) = at + b (mod m),

где a, b - целые числа, 0<a,b<m, НОД(а,m) = 1.

В данном преобразовании буква, соответствующая числу t, заменяется на букву, соответствующую числовому значению (at + b) по модулю m.

Следует заметить, что преобразование Eab(t) является взаимно однозначным отображением на множестве Zm только в том случае, если наибольший общий делитель чисел а и m, обозначаемый как НОД (а, m), равен единице, т.е. а и m должны быть взаимно простыми числами.

Например, пусть m = 26, а = 3, b = 5. Тогда, очевидно,

НОД (3,26) = 1, и мы получаем следующее соответствие между

числовыми кодами букв:

Преобразуя числа в буквы английского языка, получаем следующее соответствие для букв открытого текста и шифртекста:

Исходное сообщение НОРЕ преобразуется в шифртекст AVYR

Достоинством аффинной системы является удобное управление ключами - ключи шифрования и расшифрования представляются в компактной форме в виде пары чисел (а, Ь). Недостатки аффинной системы аналогичны недостаткам системы шифрования Цезаря.

Аффинная система использовалась на практике несколько веков назад, а сегодня ее применение ограничивается большей частью иллюстрациями основных криптологических положений.

1.2.4 Система Цезаря с ключевым словом

Система шифрования Цезаря с ключевым словом является одноалфавитной системой подстановки. Особенностью этой системы является использование ключевого слова для смещения и изменения порядка символов в алфавите подстановки.

Выберем некоторое число k, 0 < k < 25, и слово или короткую фразу в качестве ключевого слова. Желательно, чтобы все буквы ключевого слова были различными. Пусть выбраны слово DIPLOMAT в качестве ключевого слова и число k = 5.

Ключевое слово записывается под буквами алфавита, начиная с буквы, числовой код которой совпадает с выбранным числом k:

Оставшиеся буквы алфавита подстановки записываются после ключевого слова в алфавитном порядке:

Теперь мы имеем подстановку для каждой буквы произвольного сообщения.

Исходное сообщение SEND MORE MONEY

шифруется как HZBY TCGZ TCBZS

Требование о различии всех букв ключевого слова не обязательно. Можно просто записать ключевое слово (или фразу) без повторения одинаковых букв. Например, ключевая фраза

КАК ДЫМ ОТЕЧЕСТВА НАМ СЛАДОК И ПРИЯТЕН и число k = 3 порождают следующую таблицу подстановок:

Несомненным достоинством системы Цезаря с ключевым словом является то, что количество возможных ключевых слов практически неисчерпаемо. Недостатком этой системы является возможность взлома шифртекста на основе анализа частот появления букв.

1.2.5 Шифрующие таблицы Трисемуса

В 1508 г. аббат из Германии Иоганн Трисемус написал печатную работу по криптологии под названием "Полиграфия". В этой книге он впервые систематически описал применение шифрующих таблиц, заполненных алфавитом в случайном порядке. Для получения такого шифра замены обычно использовались таблица для записи букв алфавита и ключевое слово (или фраза). В таблицу сначала вписывалось по строкам ключевое слово, причем повторяющиеся буквы отбрасывались. Затем эта таблица дополнилась не вошедшими в нее буквами алфавита по порядку.

Поскольку ключевое слово или фразу легко хранить в памяти, то такой подход упрощал процессы шифрования и расшифрования.

Пример. Для русского алфавита шифрующая таблица может иметь размкр 4х 8. Ключевое слово - БАНДЕРОЛЬ. Шифрующая таблица с таким ключом имеет следующий вид.

Б

А

Н

Д

Е

Р

О

Л

Ь

В

Г

Ж

З

И

И

Л

М

П

С

Т

У

Ф

Х

Ц

Ч

Ш

Щ

Ы

Ъ

Э

Ю

Я

Как и в случае полибианского квадрата, при шифровании находят в этой таблице очередную букву открытого текста и записывают в шифртекст букву, расположенную ниже ее в том же столбце. Если буква текста оказывается в нижней строке таблицы, тогда для шифртекста берут самую верхнюю букву из того же столбца.

Например, при шифровании с помощью этой таблицы сообщения

ВЫЛЕТАЕМ ПЯТОГО

получаем шифртекст

ПДКЗЫВЗЧШЛЫЙСЙ

Такие табличные шифры называются монограммными, так как шифрование выполняется по одной букве. Трисемус первым заметил, что шифрующие таблицы позволяют шифровать сразу по две буквы. Такие шифры называются биграммными.

1.2.6 Биграммный шифр Плейфейра

Шифр Плейфейра, изобретенный в 1854 г., является наиболее известным биграммным шифром замены. Он применялся Великобританией во время первой мировой войны. Основой шифра Плейфейра является шифрующая таблица со случайно расположенными буквами алфавита исходных сообщений.

Для удобства запоминания шифрующей таблицы отправителем и получателем сообщений можно использовать ключевое слово (или фразу) при заполнении начальных строк таблицы. В целом структура шифрующей таблицы системы Плейфейра полностью аналогична структуре шифрующей таблицы Трисемуса. Поэтому для пояснения процедур шифрования и расшифрования в системе Плейфейра воспользуемся шифрующей таблицей Трисемуса.

Процедура шифрования включает следующие шаги.

1. Открытый текст исходного сообщения разбивается на пары букв (биграммы). Текст должен иметь четное количество букв и в нем не должно быть биграмм, содержащих две одинаковые буквы. Если эти требования не выполнены, то текст модифицируется даже из-за незначительных орфографических ошибок.

2. Последовательность биграмм открытого текста преобразуется с помощью шифрующей таблицы в последовательность биграмм шифртекста по следующим правилам:

2.1 Если обе буквы биграммы открытого текста не попадают на одну строку или столбец (как, например, буквы А и Й в предыдущей таблице), тогда находят буквы в углах прямоугольника, определяемого данной парой букв. (В нашем примере это - буквы АЙОВ. Пара букв АЙ отображается в пару ОВ. Последовательность букв в биграмме шифртекста должна быть зеркально расположенной по отношению к последовательности букв в биграмме открытого текста.).

2.2 Если обе буквы биграммы открытого текста принадлежат одному столбцу таблицы, то буквами шифртекста считаются буквы, которые лежат под ними. (Например, биграмма НС дает биграмму шифртекста ГЩ.) Если при этом буква открытого текста находится в нижней строке, то для шифртекста берется соответствующая буква из верхней строки того же столбца. (Например, биграмма ВШ дает битрамму шифртекста ПА.)

2.3 Если обе буквы биграммы открытого текста принадлежат одной строке таблицы, то буквами шифртекста считаются буквы, которые лежат справа от них. (Например, биграмме НО дает биграмму шифртекста ДЛ.) Если при этом буква открытого текста находится в крайнем правом столбце, то для шифра берут соответствующую букву из левого столбца той же строке. (Например, биграмма ФЦ дает биграмму шифртекста ХМ.) Зашифруем текст

ВСЕ ТАЙНОЕ СТАНЕТ ЯВНЫМ

Разбиение этого текста на биграммы дает

ВС ЕТ АЙ НО ЕС ТА НЕ ТЯ ВН ЫМ

Данная последовательность биграмм открытого текста преобразуется с помощью шифрующей таблицы в следующую последовательность биграмм шифртекста

ГП ДУ ОВ ДЛ НУ ПД ДР ЦЫ ГА ЧТ

При расшифровании применяется обратный порядок действий.

Следует отметить, что шифрование биграммами резко повышает стойкость шифров к вскрытию. Хотя книга И. Трисемуса "Полиграфия" была относительно доступной, описанные в ней идеи получили признание лишь спустя три столетия. По всей вероятности, это было обусловлено плохой осведомленностью криптографов о работах богослова и библиофила Трисемуса в области криптографии.

1.2.7 Система омофонов
Система омофонов обеспечивает простейшую защиту от криптоаналитических атак, основанных на подсчете частот появления букв в шифртексте. Система омофонов является одноалфавитной, хотя при этом буквы походного сообщения имеют несколько замен. Число замен берется пропорциональным вероятности появления буквы в открытом тексте.
Данные о распределениях вероятностей букв в русском тексте приведены в таблице. Буквы в таблицах указаны в порядке убывания вероятности их появления в тексте. Например, русская буква Е встречается в 36 раз чаще, чем буква Ф, а английская буква Е встречается в 123 раза чаще, чем буква Z.
Шифруя букву исходного сообщения, выбирают случайным образом одну из ее замен. Замены (часто называемые омофонами) могут быть представлены трехразрядными числами от 000 до 999. Например, в английском алфавите букве Е присваиваются 123 случайных номера, буквам В и G - по 16 номеров, а буквам J и Z - по 1 номеру. Если омофоны (замены) присваиваются случайным образом различные появления одной и той же буквы, тогда каждый омофон появляется в щифртексте равномерно.
При таком подходе к формированию шифртекста простой подмчет частот уже ничего не дает криптоаналитику. Однако в принципе полезна также информация о распределении пар и троек букв в в различных естественных языках. Если эту информацию использовать при криптоанализе, он будет проведен более успешно.
Распределение вероятностей букв в русских текстах

Буква

Вероятн.

Буква

Вероятн

Буква

Вероятность

Буква

Вероятность

Пробел

0,175

Р

0,040

Я

0,018

X

0.009

О

0,030

В

0,038

Ы

0.016

Ж

0,007

Е

0,072

Л

0,035

3

0,016

Ю

0.006

А

0,062

К

0,028

Ъ

0,014

Ш

0,006

И

0,062

М

0,026

Б

0,014

Ц

0.004

Н

0,053

Д

0,025

Г

0,013

Щ

0,003

Т

0,053

П

0,023

Ч

0,012

Э

0,003

С

0,045

У

0,021

Й

0,010

Ф

0,002

1.3 Шифры сложной замены
Шифры сложной замены называют многоалфавитными, так как для шифрования каждого символа исходного сообщения применяют свой шифр простой замены. Многоалфавитная подстановка последовательно и циклически меняет используемые алфавиты.
При r-алфавитной подстановке символ хо исходного сообщения заменяется символом уо из алфавита Во, символ x1 -символом y1 из алфавита B1, и так далее, символ Хг-1 заменяется символом ум из алфавита Вг-1, символ хг заменяется символом уг снова из алфавита Во, и т.д.
Общая схема многоалфавитной подстановки для случая г = 4 показана на рис. 5.7

Входной символ

X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

Алфавит подстановки

B0

B1

B2

B3

B0

B1

B2

B3

B0

B1

Схема г-алфавитной подстановки для случая г = 4
Эффект использования многоалфавитной подстановки заключается в том, что обеспечивается маскировка естественной статистики исходного языка, так как конкретный символ из исходного алфавита А может быть поеобразован в несколько различных символов шифровальных алфавитов Вj. Степень обеспечиваемой защиты теоретически пропорциональна длине периода г в последовательности используемых алфавитов В.
Многоалфавитные шифры замены предложил и ввел в практику криптографии Леон Батист Альберти, который также был известным архитектором и теоретиком искусства. Его книга "Трактат о шифре", написанная в 1566 г., представляла собой первый в Европе научный труд по криптологии. Кроме шифра многоалфавитной замены, Альберти также подробно описал устройства из вращающихся колес для его реализации. Криптологи всего мира почитают Л.Альберти основоположником криптологии.
1.3.1 Шифр Гронсфельда
Этот шифр сложной замены, называемый шифром Гронсфельда, представляет собой модификацию шифра Цезаря числовым ключом. Для этого под буквами исходного сообщения записывают цифры числового ключа. Если ключ короче сообщения, то его запись циклически повторяют. Шифртекст получают примерно, как в шифре Цезаря, но отсчитывают по алфавиту не третью букву (как это делается в шифре Цезаря), а выбирают ту букву, которая смещена по алфавиту на соответствующую цифру ключа. Например, применяя в качестве ключа группу из четырех начальных цифр числа е (основания натуральных логарифмов), а именно 2718, получаем для исходного сообщения ВОСТОЧНЫЙ ЭКСПРЕСС следующий шифртекст:

Сообщение

В

О

С

Т

О

Ч

Н

Ы

Й

Э

К

С

П

Р

Е

С

С

Ключ

2

7

1

8

2

7

1

8

2

7

1

8

2

7

1

8

2

Шифртекст

Д

Х

Т

Ь

Р

Ю

О

Г

Л

Д

Л

Щ

С

Ч

Ж

Щ

У

Чтобы зашифровать первую букву сообщения В, используя первую цифру ключа 2, нужно отсчитать вторую по порядку букву от В в алфавите В-Г-Д; получается первая буква шифр текста Д.

Следует отметить, что шифр Гронсфельда вскрывается относительно легко, если учесть, что в числовом ключе каждая цифра имеет только десять значений, а значит, имеется лишь десять вариантов прочтения каждой буквы шифртекста. С другой стороны, шифр Гронсфельда допускает дальнейшие модификации, улучшающие его стойкость, в частности двойное шифрование разными числовыми ключами.

1.3.2 Система шифрования Вижинера

Система Вижинера впервые была опубликована в 1586 г. и является одной из старейших и наиболее известных многоалфавитных систем. Свое название она получила по имени французского дипломата XVI века Блеза Вижинера, который развивал и совершенствовал криптографические системы.

Система Вижинера подобна такой системе шифрования Цезаря, у которой ключ подстановки меняется от буквы к букве. Этот шифр многоалфавитной замены можно описать таблицей шифрования, называемой таблицей (квадратом) Вижинера.

Таблица Вижинера для английского алфавита

ключ

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

1

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

2

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

3

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

4

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

5

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

6

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

7

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

8

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

9

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

10

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

11

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

12

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

13

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

14

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

15

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

16

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

17

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

18

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

19

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

20

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

21

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

22

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

23

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

24

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

25

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Таблица Вижинера используется для зашифрования и расшифрования. Таблица имеет два входа:

верхнюю строку подчеркнутых символов, используемую для считывания очередной буквы исходного открытого текста;

крайний левый столбец ключа.

Последовательность ключей обычно получают из числовых значений букв ключевого слова.

При шифровании исходного сообщения его выписывают в строку, а под ним записывают ключевое слово (или фразу). Если ключ оказался короче сообщения, то его циклически повторяют. В процессе шифрования находят в верхней строке таблицы очередную букву исходного текста и в левом столбце очередное значение ключа. Очередная буква шифртекста находится на пересечении столбца, определяемого шифруемой буквой, и строки, определяемой числовым значением ключа.

Рассмотрим пример получения шифртекста с помощью таблицы Вижинера. Пусть выбрано ключевое слово АМБРОЗИЯ. Необходимо зашифровать сообщение ПРИЛЕТАЮ СЕДЬМОГО.

Выпишем исходное сообщение в строку и запишем под ним ключевое слово с повторением. В третью строку будем выписывать буквы шифртекста, определяемые из таблицы Вижинера.

Сообщение П Р И Л Е Т А Ю С Е Д Ь М О Г О

Ключ А М Б Р О З И Я А М Б Р О З И Я

Шифртекст П Ъ Й ЫУЩ И Э С С Е К Ь ХЛ Н

1.3.3 Шифр "двойной квадрат" Уитстона

В 1854 г. англичанин Чарльз Уитстон разработал новый метод шифрования биграммами, который называют "двойным квадратом". Свое название этот шифр получил по аналогии с полибианским квадратом. Шифр Уитстона открыл новый этап в истории развития криптографии. В отличие от полибианского шифр "двойной квадрат" использует сразу две таблицы, размещенные по одной горизонтали, а шифрование идет биграммами, как в шифре Плейфейра. Эти не столь сложные модификации привели к появлению на свет качественно новой криптографической системы ручного шифрования. Шифр "двойной квадрат" оказался очень надежным и удобным и применялся Германией даже в годы второй мировой войны.

Ж

Щ

Н

Ю

Р

И

Ч

Г

Я

Т

И

Т

Ь

Ц

Б

,

Ж

Ь

М

О

Я

М

Е

.

С

З

Ю

Р

В

Щ

В

Ы

П

Ч

Ц

:

П

Е

Л

:

Д

У

О

К

Ъ

А

Н

.

Х

З

Э

Ф

Г

Ш

Э

К

С

Ш

Д

Х

А

,

Л

Ъ

Б

Ф

У

Ы

Пример процедуры шифрования данным методом:

Пусть имеются две таблицы со случайно расположенными в них русскими алфавитами. Перед шифрованием исходное сообщение разбивают на биграммы. Каждая биграмма шифруется отдельно Первую букву биграммы находят в левой таблице, а вторую букву - в правой таблице. Затем мысленно строят прямоугольник так, чтобы буквы биграммы лежали в его противоположных вершинах. Другие две вершины этого прямоугольник адают буквы биграммы шифртекста.

Предположим, что шифруется биграмма исходного текста ИЛ. Буква И находится в столбце 1 и строке 2 левой таблицы. Буква Л находится в столбце 5 и строке 4 правой таблицы. Это означает, что прямоугольник образован строками 2 и 4, а также столбцами 1 левой таблицы и 5 правой таблицы. Следовательно, в биграмму шифртекста входят буква О, расположенная в столбце 5 и строке 2 правой таблицы, и буква В, расположенная в столбце 1 и строке 4 левой таблицы, т.е. получаем биграмму шифртекста ОВ.

Если обе буквы биграммы сообщения лежат в одной строке, то и буквы шифртекста берут из этой же строки. Первую букву биграммы шифртекста берут из левой таблицы в столбце, соответствующем второй букве биграммы сообщения. Вторая же буква биграммы шифртекста берется из правой таблицы в столбце, соответствующем первой букве биграммы сообщения. Поэтому би-грамма сообщения ТО превращается в биграмму шифртекста ЖБ. Аналогичным образом шифруются все биграммы сообщения:

Сообщение ПР ИЛ ЕТ АЮ _Ш ЕС ТО ГО

Шифртекст ПЕ ОБ ЩН ФМ ЕШ РФ БЖ ДЦ

Шифрование методом "двойного квадрата" дает весьма устойчивый к вскрытию и простой в применении шифр. Взламывание шифртекста "двойного квадрата" требует больших усилий, при этом длина сообщения должна быть не менее тридцати строк.

2. Практическая часть

Задание: 1. Ознакомиться с вышеперечисленными методами шифрования.

2. Взять какую-либо ключевую фразу (не менее 2 слов, не менее 16 символов, например свои ФИО), выполнить ее шифрование/дешифрование всем способами. Результаты привести в отчете.

Размещено на Allbest.ru

...

Подобные документы

  • Выбор шифров перестановки для проведения анализа. Анализ алгоритма двух различных шифров, построение блок-схемы алгоритма и программы, разработка общего интерфейса. Сравнение шифров перестановки по результатам шифрования и криптоанализа текстов.

    курсовая работа [2,8 M], добавлен 14.01.2014

  • Появление шифров, история эволюции криптографии. Способ приложения знаний особенностей естественного текста для нужд шифрования. Критерии определения естественности. Способ построения алгоритмов симметричного шифрования. Криптосистема с открытым ключом.

    реферат [452,2 K], добавлен 31.05.2013

  • Особенности шифрования данных, предназначение шифрования. Понятие криптографии как науки, основные задачи. Анализ метода гаммирования, подстановки и метода перестановки. Симметрические методы шифрования с закрытым ключом: достоинства и недостатки.

    курсовая работа [564,3 K], добавлен 09.05.2012

  • Определения криптографии как практической дисциплины, изучающей и разрабатывающей способы шифрования сообщений. История развития шифров. Хэш-функции и понятие электронной подписи. Системы идентификации, аутентификации и сертификации открытых ключей.

    реферат [77,1 K], добавлен 10.12.2011

  • История криптографии. Сравнение алгоритмов шифрования, применение в операционной системе. Анализ продуктов в области пользовательского шифрования. Включение и отключение шифрования на эллиптических кривых. Использование хеш-функции. Электронная подпись.

    курсовая работа [492,6 K], добавлен 18.09.2016

  • Изучение классических криптографических алгоритмов моноалфавитной подстановки и перестановки для защиты текстовой информации. Анализ частоты встречаемости символов в тексте для криптоанализа классических шифров. Сущность одноалфавитного метода шифрования.

    лабораторная работа [2,8 M], добавлен 25.03.2015

  • Основные способы криптографии, история ее развития. Принцип шифрования заменой символов, полиалфавитной подстановкой и методом перестановки. Симметричный алгоритм шифрования (DES). Открытое распределение ключей. Шифры Ривеста-Шамира-Алдемана и Эль Гамаля.

    реферат [39,3 K], добавлен 22.11.2013

  • Шифрование как метод защиты информации. История развития криптологии. Классификация алгоритмов шифрования, симметричные и асимметричные алгоритмы. Использование инструментов криптографии в Delphi-приложениях. Краткая характеристика среды Delphi 7.

    курсовая работа [48,5 K], добавлен 19.12.2009

  • Криптография и шифрование. Симметричные и асимметричные криптосистемы. Основные современные методы шифрования. Алгоритмы шифрования: замены (подстановки), перестановки, гаммирования. Комбинированные методы шифрования. Программные шифраторы.

    реферат [57,7 K], добавлен 24.05.2005

  • Понятие шифров сложной замены. Шифры сложной замены называют многоалфавитными. Данная подстановка последовательно и циклически меняет используемые алфавиты. Понятие схемы шифрования Вижинера. Стойкость шифрования методом гаммирования и свойство гаммы.

    реферат [52,2 K], добавлен 22.06.2010

  • Краткая история развития криптографических методов защиты информации. Сущность шифрования и криптографии с симметричными ключами. Описание аналитических и аддитивных методов шифрования. Методы криптографии с открытыми ключами и цифровые сертификаты.

    курсовая работа [1,2 M], добавлен 28.12.2014

  • Изучение, освоение на примере симметричных шифров элементы практической криптографии. Использование расширенного алгоритма Евклида для нахождения обратного по модулю числа. Ознакомление с демо-версией программы симметричного шифрования с секретным ключом.

    лабораторная работа [97,5 K], добавлен 18.04.2015

  • Основные методы криптографической защиты информации. Система шифрования Цезаря числовым ключом. Алгоритмы двойных перестановок и магические квадраты. Схема шифрования Эль Гамаля. Метод одиночной перестановки по ключу. Криптосистема шифрования данных RSA.

    лабораторная работа [24,3 K], добавлен 20.02.2014

  • Реализация криптографического алгоритма шифрования и дешифрования с использованием шифра Виженера. Понятие и суть полиалфавитного шифра. Метод полиалфавитного шифрования буквенного текста с использованием ключевого слова. Взлом полиалфавитных шифров.

    курсовая работа [863,0 K], добавлен 21.04.2012

  • История развития криптографии, ее основные понятия. Простейший прием дешифровки сообщения. Основные методы и способы шифрования, современный криптографический анализ. Перспективы развития криптографии. Создание легкого для запоминания и надежного пароля.

    курсовая работа [3,9 M], добавлен 18.12.2011

  • Ознакомление с различными способами шифрования информации. Рассмотрение кодов Цезаря, Гронсфельда, Тритемиуса, азбуки Морзе, цифровые, табличные и шифров перестановки. Книжный, компьютерный коды и шифр Масонов. Изучение алгоритма сложных протоколов.

    реферат [1,8 M], добавлен 14.05.2014

  • Основные требования к разрабатываемым программам и исходным текстовым файлам. Характеристика шифров замены. Укрупненные структурные схемы и коды программ шифрования и дешифрования, скриншоты их выполнения. Пример зашифрованного текста и его дешифрования.

    курсовая работа [556,8 K], добавлен 14.01.2013

  • Сравнение производительности программных реализаций алгоритмов шифрования с оптимизациями под языки С и Java. История разработки, сущность, принципы шифрования и успехи в криптоанализе таких алгоритмов шифрования как AES, RC4, RC5, RC6, Twofish и Mars.

    реферат [1,3 M], добавлен 13.11.2009

  • Автоматизация процесса шифрования на базе современных информационных технологий. Криптографические средства защиты. Управление криптографическими ключами. Сравнение симметричных и асимметричных алгоритмов шифрования. Программы шифрования информации.

    курсовая работа [795,7 K], добавлен 02.12.2014

  • История алгоритмов симметричного шифрования (шифрования с закрытым ключом). Стандарты на криптографические алгоритмы. Датчики случайных чисел, создание ключей. Сфера интересов криптоанализа. Системы электронной подписи. Обратное преобразование информации.

    краткое изложение [26,3 K], добавлен 12.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.