Структура и принципы функционирования ЭВМ

Обобщённая логическая структура электронно-вычислительной машины. История компьютерной техники. Основные характеристики вычислительной техники. Определяющая особенность "универсального компьютера". Основные перспективы развития вычислительных средств.

Рубрика Программирование, компьютеры и кибернетика
Вид лекция
Язык русский
Дата добавления 24.10.2013
Размер файла 74,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Структура и принципы функционирования ЭВМ

Человечество научилось пользоваться простейшими счётными приспособлениями тысячи лет назад. Наиболее востребованной оказалась необходимость определять количество предметов, используемых в меновой торговле. Одним из самых простых решений было использование весового эквивалента меняемого предмета, что не требовало точного пересчёта количества его составляющих. Для этих целей использовались простейшие балансирные весы, которые стали, таким образом, одним из первых устройств для количественного определения массы.

Принцип эквивалентности широко использовался и в другом, знакомом для многих, простейшем счётном устройств Абак или Счёты. Количество подсчитываемых предметов соответствовало числу передвинутых костяшек этого инструмента.

Сравнительно сложным приспособлением для счёта могли быть чётки, применяемые в практике многих религий. Верующий как на счётах отсчитывал на зёрнах чёток число произнесённых молитв, а при проходе полного круга чёток передвигал на отдельном хвостике особые зёрна-счётчики, означающие число отсчитанных кругов.

С изобретением зубчатых колёс появились и гораздо более сложные устройства выполнения расчётов. Антикитерский механизм, обнаруженный в начале XX века. Он был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), и умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т. п. Вычисления выполнялись за счёт соединения более 30 бронзовых колёс и нескольких циферблатов; для вычисления лунных фаз использовалась дифференциальная передача, изобретение которой исследователи долгое время относили не ранее чем к XVI веку. Впрочем, с уходом античности навыки создания таких устройств были позабыты; потребовалось около полутора тысяч лет, чтобы люди вновь научились создавать похожие по сложности механизмы.

В 1623 году Вильгельм Шикард придумал «Считающие часы» - первый механический калькулятор, умевший выполнять четыре арифметических действия. Считающими часами устройство было названо потому, что как и в настоящих часах работа механизма была основана на использовании звёздочек и шестерёнок. Практическое использование это изобретение нашло в руках друга Шикарда, философа и астронома Иоганна Кеплера.

За этим последовали машины Блеза Паскаля («Паскалина», 1642 г.) и Готфрида Вильгельма Лейбница.

Примерно в 1820 году Charles Xavier Thomas создал первый удачный, серийно выпускаемый механический калькулятор -- Арифмометр Томаса, который мог складывать, вычитать, умножать и делить. В основном, он был основан на работе Лейбница. Механические калькуляторы, считающие десятичные числа, использовались до 1970-х.

Лейбниц также описал двоичную систему счисления -- центральный ингредиент всех современных компьютеров. Однако вплоть до 1940-х, многие последующие разработки (включая машины Чарльза Бэббиджа и даже ЭНИАК 1945 года) были основаны на более сложной в реализации десятичной системе.

Джон Непер заметил, что умножение и деление чисел может быть выполнено сложением и вычитанием, соответственно, логарифмов этих чисел. Действительные числа могут быть представлены интервалами длины на линейке, и это легло в основу вычислений с помощью логарифмической линейки, что позволило выполнять умножение и деление намного быстрее. Логарифмические линейки использовались несколькими поколениями инженеров и других профессионалов, вплоть до появления карманных калькуляторов. Инженеры программы «Аполлон» отправили человека на Луну, выполнив на логарифмических линейках все вычисления, многие из которых требовали точности в 3--4 знака. Для составления первых логарифмических таблиц Неперу понадобилось выполнить множество операций умножения, и в то же время он разрабатывал палочки Непера.

В 1804 году Жозеф Мари Жаккар разработал ткацкий станок, в котором вышиваемый узор определялся перфокартами. Серия карт могла быть заменена, и смена узора не требовала изменений в механике станка. Это было важной вехой в истории программирования.

В 1838 году Чарльз Бэббидж перешёл от разработки Разностной машины к проектированию более сложной аналитической машины, принципы программирования которой напрямую восходят к перфокартам Жаккара.

В 1890 году Бюро Переписи США использовало перфокарты и механизмы сортировки (табуляторы), разработанные Германом Холлеритом, чтобы обработать поток данных десятилетней переписи, переданный под мандат в соответствии с Конституцией. Компания Холлерита в конечном счёте стала ядром IBM. Эта корпорация развила технологию перфокарт в мощный инструмент для деловой обработки данных и выпустила обширную линию специализированного оборудования для их записи. К 1950 году технология IBM стала вездесущей в промышленности и правительстве. Предупреждение, напечатанное на большинстве карт, «не сворачивать, не скручивать и не рвать», стало девизом послевоенной эры.

Во многих компьютерных решениях перфокарты использовались до (и после) конца 1970-х.

Определяющая особенность «универсального компьютера» -- это программируемость, что позволяет компьютеру эмулировать любую другую вычисляющую систему всего лишь заменой сохранённой последовательности инструкций.

В 1835 году Чарльз Бэббидж описал свою аналитическую машину. Это был проект компьютера общего назначения, с применением перфокарт в качестве носителя входных данных и программы, а также парового двигателя в качестве источника энергии. Одной из ключевых идей было использование шестерней для выполнения математических функций.

Его первоначальной идеей было использование перфокарт для машины, вычисляющей и печатающей логарифмические таблицы с большой точностью (то есть для специализированной машины). В дальнейшем эти идеи были развиты до машины общего назначения -- его «аналитической машины».

Хотя планы были озвучены и проект, по всей видимости, был реален или, по крайней мере, проверяем, при создании машины возникли определённые трудности. Бэббидж был человеком, с которым трудно было работать, он спорил с каждым, кто не отдавал дань уважения его идеям. Все части машины должны были создаваться вручную. Небольшие ошибки в каждой детали, для машины, состоящей из тысяч деталей, могли вылиться в значительные отклонения, поэтому при создании деталей требовалась точность, необычная для того времени. В результате, проект захлебнулся в разногласиях с исполнителем, создающим детали, и завершился с прекращением государственного финансирования.

Ада Лавлейс, дочь лорда Байрона, перевела и дополнила комментариями труд «Sketch of the Analytical Engine». Её имя часто ассоциируют с именем Бэббиджа. Утверждается также, что она является первым программистом, хотя это утверждение и значение её вклада многими оспаривается.

Реконструкция 2-го варианта Разностной машины -- раннего, более ограниченного проекта, действует в Лондонском музее науки с 1991 года. Она работает именно так, как было спроектировано Бэббиджем, лишь с небольшими тривиальными изменениями, и это показывает что Бэббидж в теории был прав. Для создания необходимых частей, музей применил машины с компьютерным управлением, придерживаясь допусков, которые мог достичь слесарь того времени. Некоторые полагают, что технология того времени не позволяла создать детали с требуемой точностью, но это предположение оказалось неверным. Неудача Бэббиджа при конструировании машины, в основном, приписывается трудностям, не только политическим и финансовым, но и его желанию создать очень изощрённый и сложный компьютер.

По стопам Бэббиджа, хотя и не зная о его более ранних работах, шёл Percy Ludgate, бухгалтер из Дублина. Он независимо спроектировал программируемый механический компьютер, который он описал в работе, изданной в 1909 году.

К 1900-у году ранние механические калькуляторы, кассовые аппараты и счётные машины были перепроектированы с использованием электрических двигателей с представлением положения переменной как позиции шестерни. С 1930-х такие компании как Friden, Marchant и Monro начали выпускать настольные механические калькуляторы, которые могли складывать, вычитать, умножать и делить. Словом «computer» (буквально -- «вычислитель») называлась должность -- это были люди, которые использовали калькуляторы для выполнения математических вычислений.

В 1948 году появился Curta -- небольшой механический калькулятор, который можно было держать в одной руке. В 1950-х -- 1960-х годах на западном рынке появилось несколько марок подобных устройств. Первым полностью электронным настольным калькулятором был британский ANITA Мк. VII, который использовал дисплей на газоразрядных цифровых индикаторах и 177 миниатюрных тиратронов. В июне 1963 года Friden представил EC-130 с четырьмя функциями. Он был полностью на транзисторах, имел 13-цифровое разрешение на 5-дюймовой электронно-лучевой трубке, и представлялся фирмой на рынке калькуляторов по цене 2200 $. В модель EC 132 были добавлены функция вычисления квадратного корня и обратные функции. В 1965 году Wang Laboratories произвёл LOCI-2, настольный калькулятор на транзисторах с 10 цифрами, который использовал дисплей на газоразрядных цифровых индикаторах и мог вычислять логарифмы.

В Советском Союзе в то время самым известным и распространённым калькулятором был механический арифмометр «Феликс», выпускавшийся с 1929 по 1978 год на заводах в Курске (завод «Счетмаш»), Пензе и Москве.

Перед Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба -- положения колёс или электрическое напряжение и ток -- подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. Они моделировали эти и другие физические явления значениями электрического напряжения и тока.

В 1936 году молодой немецкий инженер-энтузиаст Конрад Цузе начал работу над своим первым вычислителем серии Z, имеющим память и (пока ограниченную) возможность программирования. Созданная, в основном, на механической основе, но уже на базе двоичной логики, модель Z1, завершённая в 1938 году, так и не заработала достаточно надёжно, из-за недостаточной точности выполнения составных частей. Ввод команд и данных осуществлялся при помощи клавиатуры, а вывод, -- с помощью маленькой панели на лампочках. Память вычислителя организовывалась при помощи конденсатора.

В 1939 году, Цузе создал второй вычислитель -- Z2, но её планы и фотографии были уничтожены при бомбардировке во время Второй мировой войны, поэтому о ней почти ничего не известно. Z2 работала на электромагнитных переключателях, созданных в 1831 году ученым Джозефом Генри.

Следующая машина Цузе -- Z3, была завершена в 1941 году. Она была построена на телефонных реле и работала вполне удовлетворительно. Тем самым, Z3 стала первым работающим компьютером, управляемым программой. Во многих отношениях Z3 была подобна современным машинам, в ней впервые был представлен ряд новшеств, таких как арифметика с плавающей запятой. Замена сложной в реализации десятичной системы на двоичную, сделала машины Цузе более простыми, а значит, более надёжными; считается, что это одна из причин того, что Цузе преуспел там, где Бэббидж потерпел неудачу.

Программы для Z3 хранились на перфорированной плёнке. Условные переходы отсутствовали, но в 1990-х было теоретически доказано, что Z3 является универсальным компьютером (если игнорировать ограничения на размер физической памяти). В двух патентах 1936 года, Конрад Цузе упоминал, что машинные команды могут храниться в той же памяти что и данные -- предугадав тем самым то, что позже стало известно как архитектура фон Неймана и было впервые реализовано только в 1949 году в британском EDSAC.

Чуть ранее для частично законченного компьютера Z4 Цузе разработал первый в мире высокоуровневый язык программирования, названный им Планкалкюль (нем. Plankalkul исчисление планов).

Война прервала работу над машиной. В сентябре 1950 года Z4 был, наконец, закончен и поставлен в ETH Zurich. В то время он был единственным работающим компьютером в континентальной Европе и первым компьютером в мире, который был продан. В этом Z4 на пять месяцев опередил Марк I и на десять -- UNIVAC. Компьютер эксплуатировался в ETH Zurich до 1955 года, после чего был передан во Французский аэродинамический научно-исследовательский институт недалеко от Базеля, где работал до 1960 года.

Цузе и его компанией были построены и другие компьютеры, название каждого из которых начиналось с заглавной буквы Z. Наиболее известны машины Z11, продававшийся предприятиям оптической промышленности и университетам, и Z22 -- первый компьютер с памятью на магнитных носителях.

Во время Второй мировой войны, Великобритания достигла определённых успехов во взломе зашифрованных немецких переговоров. Код немецкой шифровальной машины «Энигма» был подвергнут анализу с помощью электромеханических машин, которые носили название «бомбы». Такая «бомба», разработанная Аланом Тьюрингом и Гордоном Уэлшманом (англ. Gordon Welchman) . Большинство вариантов приводило к противоречию, несколько оставшихся уже можно было протестировать вручную. Это были электро-механические дешифраторы, работающие методом простого перебора.

Немцы также разработали серию телеграфных шифровальных систем, несколько отличавшихся от «Энигмы». Машина Lorenz SZ 40/42 использовалась для армейской связи высокого уровня. Первые перехваты передач с таких машин были зафиксированы в 1941 году. Для взлома этого кода, в обстановке секретности, была создана машина «Колосс» (Colossus). Спецификацию разработали профессор Макс Ньюман (Max Newman) и его коллеги; сборка Colossus Mk I выполнялась в исследовательской лаборатории Почтового департамента Лондона и заняла 11 месяцев, работу выполнили Томми Флауэрс (Tommy Flowers) и др. Чтобы выполнить задачу расшифровки, Колосс сравнил два потока данных, прочитанных на высокой скорости с перфоленты. Колосс оценивал поток данных, считая каждое совпадение, которое было обнаружено, основываясь на программируемой Булевой функции. Для сравнения с другими данными был создан отдельный поток.

«Колосс» стал первым полностью электронным вычислительным устройством, хотя на нём и нельзя было реализовать любую вычислимую функцию. В «Колоссе» использовалось большое количество электровакуумных ламп, ввод информации выполнялся с перфоленты. Машину можно было настроить на выполнение различных операций булевой логики, но она не являлась тьюринг-полной. Помимо Colossus Mk I, было собрано ещё девять моделей Mk II. Информация о существовании этой машины держалась в секрете до 1970-х гг. Уинстон Черчилль лично подписал приказ о разрушении машины на части, не превышающие размером человеческой руки. Из-за своей секретности, Colossus не был упомянут во многих трудах по истории компьютеров.

1937 году Клод Шеннон показал, что существует соответствие один-к-одному между концепциями булевой логики и некоторыми электронными схемами, которые получили название «логические вентили», которые в настоящее время повсеместно используются в цифровых компьютерах. Работая в МТИ, в своей основной работе он продемонстрировал, что электронные связи и переключатели могут представлять выражение булевой алгебры. Так своей работой A Symbolic Analysis of Relay and Switching Circuits он создал основу для практического проектирования цифровых схем.

В ноябре 1937 года Джорж Стибиц завершил в Bell Labs создание компьютера «Model K» на основе релейных переключателей. В конце 1938 года Bell Labs санкционировала исследования по новой программе, возглавляемые Стибицем. В результате этого, 8 января 1940 года был завершён Complex Number Calculator, умеющий выполнять вычисления над комплексными числами. 11 сентября 1940 года в Дартмутском колледже, на демонстрации в ходе конференции Американского математического общества, Стибиц отправлял компьютеру команды удалённо, по телефонной линии с телетайпом. Это был первый случай когда вычислительное устройство использовалось удалённо. Среди участников конференции и свидетелей демонстрации были Джон фон Нейман, Джон Моучли и Норберт Винер, написавший об увиденном в своих мемуарах.

В 1939 году Джон Винсент Атанасов (John Vincent Atanasoff) и Клиффорд Берри (Clifford E. Berry) из Университета штата Айова разработали Atanasoff-Berry Computer (ABC). Это был первый в мире электронный цифровой компьютер. Конструкция насчитывала более 300 электровакуумных ламп, в качестве памяти использовался вращающийся барабан. Несмотря на то, что машина ABC не была программируемой, она была первой, использующей электронные лампы в сумматоре. Соизобретатель ENIAC Джон Моучли изучал ABC в июне 1941 года, и между историками существуют споры о степени его влияния на разработку машин, последовавших за ENIAC. ABC был почти забыт, до тех пор пока в центре внимания не оказался иск «Хоневелл против Sperry Rand», постановление по которому аннулировало патент на ENIAC (и некоторые другие патенты), из-за того что, помимо других причин, работа Атанасова была выполнена раньше.

В 1939 году в Endicott laboratories в IBM началась работа над Harvard Mark I. Официально известный как Automatic Sequence Controlled Calculator, Mark I был электромеханическим компьютером общего назначения, созданного с финансированием IBM и при помощи со стороны персонала IBM, под руководством гарвардского математика Howard Aiken. Проект компьютера был создан под влиянием Аналитической машины Ч. Бэббиджа, с использованием десятичной арифметики, колёс для хранения данных и поворотных переключатей в дополнение к электромагнитным реле. Машина программировалась с помощью перфоленты, и имела несколько вычислительных блоков, работающих параллельно. Более поздние версии имели несколько считывателей с перфоленты, и машина могла переключаться между считывателями в зависимости от состояния. Тем не менее, машина была не совсем Тьюринг-полной. Mark I был перенесён в Гарвардский университет и начал работу в мае 1944 года.

Американский ENIAC, который часто называют первым электронным компьютером общего назначения, публично доказал применимость электроники для масштабных вычислений. Это стало ключевым моментом в разработке вычислительных машин, прежде всего из-за огромного прироста в скорости вычислений, но также и по причине появившихся возможностей для миниатюризации. Созданная под руководством Джона Мочли и Дж. Преспера Эккерта (J. Presper Eckert), эта машина была в 1000 раз быстрее, чем все другие машины того времени. Разработка «ЭНИАК» продлилась с 1943 до 1945 года. В то время, когда был предложен данный проект, многие исследователи были убеждены, что среди тысяч хрупких электровакуумных ламп многие будут сгорать настолько часто, что «ЭНИАК» будет слишком много времени простаивать в ремонте, и тем самым, будет практически бесполезен. ENIAC содержал 18 000 термоэлектронных ламп, весивший более чем 27 тонн, и потреблявший электроэнергии 25 киловатт в час. ENIAC выполнял 100 000 вычислений в секунду. Изобретение транзистора означало, что неэффективные термоэлектронные лампы могли быть заменены более мелкими и надёжными компонентами. Это было следующим главным шагом в истории вычислений

«ЭНИАК», безусловно, удовлетворяет требованию полноты по Тьюрингу. Но «программа» для этой машины определялась состоянием соединительных кабелей и переключателей -- огромное отличие от машин с хранимой программой, появившихся у Конрада Цузе в 1940 году. Тем не менее, в то время, вычисления, выполняемые без помощи человека, рассматривались как достаточно большое достижение, и целью программы было тогда решение только одной единственной задачи. (Улучшения, которые были завершены в 1948 году, дали возможность исполнения программы, записанной в специальной памяти, что сделало программирование более систематичным, менее «одноразовым» достижением).

Переработав идеи Эккерта и Мочли, а также, оценив ограничения «ЭНИАК», Джон фон Нейман написал широко цитируемый отчёт, описывающий проект компьютера (EDVAC), в котором и программа, и данные хранятся в единой универсальной памяти. Принципы построения этой машины стали известны под названием «архитектура фон Неймана» и послужили основой для разработки первых по-настоящему гибких, универсальных цифровых компьютеров.

Первой работающей машиной с архитектурой фон Неймана стал манчестерский «Baby» -- Small-Scale Experimental Machine (Малая экспериментальная машина), созданный в Манчестерском университете в 1948 году; в 1949 году за ним последовал компьютер Манчестерский Марк I, который уже был полной системой, с трубками Уильямса и магнитным барабаном в качестве памяти, а также с индексными регистрами. Другим претендентом на звание «первый цифровой компьютер с хранимой программой» стал EDSAC, разработанный и сконструированный в Кембриджском университете. Заработавший менее чем через год после «Baby», он уже мог использоваться для решения реальных проблем. На самом деле, EDSAC был создан на основе архитектуры компьютера EDVAC, наследника ENIAC. В отличие от ENIAC, использовавшего параллельную обработку, EDVAC располагал единственным обрабатывающим блоком. Такое решение было проще и надёжнее, поэтому такой вариант становился первым реализованным после каждой очередной волны миниатюризации. Многие считают, что Манчестерский Марк I / EDSAC / EDVAC стали «Евами», от которых ведут свою архитектуру почти все современные компьютеры.

Первый универсальный программируемый компьютер в континентальной Европе был Z4 Конрада Цузе, завершенный в сентябре 1950 года. В ноябре того же года командой учёных под руководством Сергея Алексеевича Лебедева из Киевского института электротехники, УССР, была создана, так называемая «малая электронная счётная машина» (МЭСМ). Она содержала около 6000 электровакуумных ламп и потребляла 15 кВт. Машина могла выполнять около 3000 операций в секунду. Другой машиной того времени была австралийская CSIRAC, которая выполнила свою первую тестовую программу в 1949 году.

В октябре 1947 года директора компании Lyons & Company, британской компании, владеющей сетью магазинов и ресторанов, решили принять активное участие в развитии коммерческой разработки компьютеров. Компьютер LEO I начал работать в 1951 году и впервые в мире стал регулярно использоваться для рутинной офисной работы.

Машина Манчестерского университета стала прототипом для Ferranti Mark I. Первая такая машина была доставлена в университет в феврале 1951 года, и, по крайней мере, девять других были проданы между 1951 и 1957 годами.

В июне 1951 года UNIVAC 1 был установлен в Бюро переписи населения США. Машина была разработана в компании Remington Rand, которая, в конечном итоге, продала 46 таких машин по цене более чем в 1 млн $ за каждую. UNIVAC был первым массово производимым компьютером; все его предшественники изготовлялись в единичном экземпляре. Компьютер состоял из 5200 электровакуумных ламп, и потреблял 125 кВт энергии. Использовались ртутные линии задержки, хранящие 1000 слов памяти, каждое по 11 десятичных цифр плюс знак (72-битные слова). В отличие от машин IBM, оснащаемых устройством ввода с перфокарт, UNIVAC использовал ввод с металлизированной магнитной ленты стиля 1930-х, благодаря чему обеспечивалась совместимость с некоторыми существующими коммерческими системами хранения данных. Другими компьютерами того времени использовался высокоскоростной ввод с перфоленты и ввод/вывод с использованием более современных магнитных лент.

Первой советской серийной ЭВМ стала Стрела, производимая с 1953 на Московском заводе счётно-аналитических машин. «Стрела» относится к классу больших универсальных ЭВМ (Мейнфрейм) с трёхадресной системой команд. ЭВМ имела быстродействие 2000-3000 операций в секунду. В качестве внешней памяти использовались два накопителя на магнитной ленте емкостью 200 000 слов, объём оперативной памяти -- 2048 ячеек по 43 разряда. Компьютер состоял из 6200 ламп, 60 000 полупроводниковых диодов и потреблял 150 кВт энергии.

В 1954 году IBM выпускает машину IBM 650, ставшую довольно популярной -- всего было выпущено более 2000 машин. Она весит около 900 кг, и ещё 1350 кг весит блок питания; оба модуля имеют размер примерно 1,5 ? 0,9 ? 1,8 метров. Цена машины составляет 500000 долл. (около 4 млн долл. в пересчёте на 2011 год) либо может быть взята в лизинг за 3500 долл. в месяц (30000 долл. на 2011 год). Память на магнитном барабане хранит 2000 10-знаковых слов, позже память увеличена до 4000 слов. По мере исполнения программы, инструкции считывались прямо с барабана. В каждой инструкции был задан адрес следующей исполняемой инструкции. Использовался компилятор Symbolic Optimal Assembly Program (SOAP), который размещал инструкции по оптимальным адресам, так чтобы следующая инструкция читалась сразу и не требовалось ждать пока барабан повернётся до нужного ряда.

В 1955 году Морис Уилкс изобретает микропрограммирование, принцип, который позднее широко используется в микропроцессорах самых различных компьютеров. Микропрограммирование позволяет определять или расширять базовый набор команд с помощью встроенных программ (которые носят названия микропрограмма или firmware).

В 1956 году IBM впервые продаёт устройство для хранения информации на магнитных дисках -- RAMAC (Random Access Method of Accounting and Control). Оно использует 50 металлических дисков диаметром 24 дюйма, по 100 дорожек с каждой стороны. Устройство хранило до 5 МБ данных и стоило по 10 000 $ за МБ. (В 2006 году, подобные устройства хранения данных -- жёсткие диски -- стоят около 0,001 $ за Мб.)

Следующим крупным шагом в истории компьютерной техники стало изобретение транзистора в 1947 году. Они стали заменой хрупким и энергоёмким лампам. О компьютерах на транзисторах обычно говорят как о «втором поколении», которое доминировало в 1950-х и начале 1960-х. Благодаря транзисторам и печатным платам было достигнуто значительное уменьшение размеров и объёмов потребляемой энергии, а также повышение надёжности. Например, IBM 1620 на транзисторах, ставшая заменой IBM 650 на лампах, была размером с офисный стол. Однако компьютеры второго поколения по-прежнему были довольно дороги и поэтому использовались только университетами, правительствами, крупными корпорациями.

Компьютеры второго поколения обычно состояли из большого количества печатных плат, каждая из которых содержала от одного до четырёх логических вентилей или триггеров. В частности, IBM Standard Modular System определяла стандарт на такие платы и разъёмы подключения для них. В 1959 году на основе транзисторов IBM выпустила мейнфрейм IBM 7090 и машину среднего класса IBM 1401. Последняя использовала перфокарточный ввод и стала самым популярным компьютером общего назначения того времени: в период 1960--1964 гг. было выпущено более 100 тыс. экземпляров этой машины. В ней использовалась память на 4000 символов (позже увеличенная до 16 000 символов). Многие аспекты этого проекта были основаны на желании заменить перфокарточные машины, которые широко использовались начиная с 1920-х до самого начала 1970-х гг. В 1960 году IBM выпустила транзисторную IBM 1620, изначально только перфоленточную, но вскоре обновлённую до перфокарт. Модель стала популярна в качестве научного компьютера, было выпущено около 2000 экземпляров. В машине использовалась память на магнитных сердечниках объёмом до 60 000 десятичных цифр.

В том же 1960 году DEC выпустила свою первую модель -- PDP-1, предназначенную для использования техническим персоналом в лабораториях и для исследований.

В 1961 году Burroughs Corporation выпустила B5000, первый двухпроцессорный компьютер с виртуальной памятью. Другими уникальными особенностями были стековая архитектура, адресация на основе дескрипторов, и отсутствие программирования напрямую на языке ассемблера.

Компьютер второго поколения IBM 1401, выпускавшийся в начале 1960-х, занял около трети мирового рынка компьютеров, было продано более 10 000 таких машин.

Применение полупроводников позволило улучшить не только центральный процессор, но и периферийные устройства. Второе поколения устройств хранения данных позволяло сохранять уже десятки миллионов символов и цифр. Появилось разделение на жёстко закреплённые (fixed) устройства хранения, связанные с процессором высокоскоростным каналом передачи данных, и сменные (removable) устройства. Замена кассеты дисков в сменном устройстве требовала лишь несколько секунд. Хотя ёмкость сменных носителей была обычно ниже, но их заменяемость давала возможность сохранения практически неограниченного объёма данных. Магнитная лента обычно применялось для архивирования данных, поскольку предоставляла больший объём при меньшей стоимости.

Во многих машинах второго поколения функции общения с периферийными устройствами делегировались специализированным сопроцессорам. Например, в то время как периферийный процессор выполняет чтение или пробивку перфокарт, основной процессор выполняет вычисления или ветвления по программе. Одна шина данных переносит данные между памятью и процессором в ходе цикла выборки и исполнения инструкций, и обычно другие шины данных обслуживают периферийные устройства. На PDP-1 цикл обращения к памяти занимал 5 микросекунд; большинство инструкций требовали 10 микросекунд: 5 на выборку инструкции и ещё 5 на выборку операнда.

«Сетунь» была первым компьютером на основе троичной логики, разработана в 1958 году в Советском Союзе. Первыми советскими серийными полупроводниковыми ЭВМ стали «Весна» и «Снег», выпускаемые с 1964 по 1972 год. Пиковая производительность ЭВМ «Снег» составила 300 000 операций в секунду. Машины изготавливались на базе транзисторов с тактовой частотой 5 МГц. Всего было выпущено 39 ЭВМ.[2]

Лучшей отечественной ЭВМ 2-го поколения считается БЭСМ-6, созданная в 1966 году.

Компьютеры второго поколения доминировали в конце 1950-ых и в начале 1960-ых. Несмотря на использование транзисторов и печатных схем, эти компьютеры были все ещё большими и дорогостоящими. В основном они использовались университетами и правительством. Интегральная схема или чип были развиты Джеком Килби. Благодаря этому достижению он получил Нобелевскую премию по физике.

Изобретение Килби вызвало взрыв в развитии компьютеров третьего поколения. Даже при том, что первая интегральная схема была произведена в сентябре 1958, чипы не использовались в компьютерах до 1963. Историю мейнфреймов - принято отсчитывать с появления в 1964 году универсальной компьютерной системы IBM System/360, на разработку которой корпорация IBM затратила 5 млрд долларов.

Мейнфрейм - это главный компьютер вычислительного центра с большим объёмом внутренней и внешней памяти. Он предназначен для задач, требующих сложные вычислительные операции. Сам термин «мейнфрейм» происходит от названия типовых процессорных стоек этой системы. В 1960-х - начале 1980-х годов System/360 была безоговорочным лидером на рынке. Её клоны выпускались во многих странах, в том числе - в СССР (серия ЕС ЭВМ). В то время такие мэйнфреймы, как IBM 360 увеличили способности хранения и обработки, интегральные схемы позволяли разрабатывать миникомпьютеры, что позволило большому количеству маленьких компаний производить вычисления. Интеграция высокого уровня диодных схем привела к развитию очень маленьких вычислительных единиц, что привело к следующему шагу развития вычислений.

В ноябре 1971 Intel выпустили первый в мире коммерческий микропроцессор, Intel 4004. Это был первый полный центральный процессор на одном чипе и стал первым коммерчески доступным микропроцессором. Это было возможно из-за развития новой технологии кремниевого управляющего электрода. Это позволило инженерам объединить намного большее число транзисторов на чипе, который выполнял бы вычисления на небольшой скорости. Это разработка способствовала появлению компьютерных платформ четвёртого поколения.

Компьютеры четвёртого поколения, которые развивались в это время, использовали микропроцессор, который помещает способности компьютерной обработки на единственном чипе. Комбинируя память произвольного доступа (RAM), разработанную Intel, компьютеры четвёртого поколения были быстрее, чем когда-либо прежде и занимали намного меньшую площадь. Процессоры Intel 4004 были способны выполнять всего 60 000 инструкций в секунду. Микропроцессоры, которые развились из Intel 4004 разрешённые изготовителями для начала развития персональных компьютеров, маленьких достаточно дешёвых, чтобы быть купленными широкой публикой. Первым коммерчески доступным персональным компьютером был MITS Altair 8800, выпущенный в конце 1974. В последствии были выпущены такие персональные компьютеры, как Apple I и II, Commodore PET, VIC-20, Commodore 64, и, в конечном счёте, оригинальный IBM-PC в 1981. Эра PC началась всерьез к середине 1980-ых. В течение этого времени IBM-PC, Commodore Amiga и Atari ST были самыми распространёнными платформами PC, доступными общественности. Даже при том, что микровычислительная мощность, память и хранение данных мощности увеличились намного порядков, начиная с изобретения из Intel 4004 процессоров, технологии чипов интеграции высокого уровня (LSI) или интеграция сверхвысокого уровня (VLSI) сильно не изменились. Поэтому большинство сегодняшних компьютеров все ещё попадает в категорию компьютеров четвёртого поколения.

ЭВМ неймановской архитектуры содержит следующие основные устройства:

· арифметико-логическое устройство (АЛУ);

· устройство управления (УУ);

· запоминающее устройство (ЗУ);

· устройства ввода-вывода (УВВ);

· пульт управления (ПУ).

В современных ЭВМ АЛУ и УУ объединены в общее устройство, называемое центральным процессором. Обобщённая логическая структура ЭВМ представлена на рис. 2.1.

Процессор, или микропроцессор, является основным устройством ЭВМ. Он предназначен для выполнения вычислений по хранящейся в запоминающем устройстве программе и обеспечения общего управления ЭВМ. Быстродействие ЭВМ в значительной мере определяется скоростью работы процессора. Для её увеличения процессор использует собственную намять небольшого объёма, называемую сверхоперативной, что исключает необходимость обращения к запоминающему устройству ЭВМ.

Вычислительный процесс должен быть предварительно представлен для ЭВМ в виде программы - последовательности инструкций, записанных в порядке выполнения. В процессе выполнения программы ЭВМ выбирает очередную команду, расшифровывает её, определяет, какие действия и над какими операндами следует выполнить. Эту функцию осуществляет УУ. Оно же помещает выбранные из ЗУ операнды в АЛУ, где они и обрабатываются. Само АЛУ работает под управлением УУ.

Обрабатываемые данные и выполняемая программа должны находиться в запоминающем устройстве - памяти ЭВМ, куда они помещаются посредством устройства ввода. Ёмкость памяти измеряется байтах. Память представляет собой сложную структуру, построенную по иерархическому принципу, и включает в себя запоминающие устройства различных типов. Функционально она делится: внутреннюю и внешнюю.

Внутренняя, или основная память - это запоминающее устройство, напрямую связанное с процессором и предназначенное для хранения выполняемых программ и данных, непосредственно участвующих в вычислениях. Обращение к внутренней памяти ЭВМ осуществляется с высоким быстродействием, но она имеет ограниченный объём, определяемый системой адресации машины.

Внутренняя память, в свою очередь, делится на оперативную (ОЗУ) и постоянную (ПЗУ) память. Оперативная память, по объёму составляющая большую часть внутренней памяти, служит для приёма, хранения и выдачи информации. При выключении питания ЭВМ содержимое оперативной памяти теряется. Постоянная память обеспечивает хранение и выдачу информации. В отличие от содержимого оперативной памяти, содержимое постоянной заполняется при изготовлении ЭВМ и не может быть изменено в обычных условиях эксплуатации. В постоянной памяти хранятся часто используемые (универсальные) программы, и данные, к примеру, некоторые программы операционной системы, программы тестирования оборудования ЭВМ и др. При выключении питания содержимое постоянной памяти сохраняется.

рис. 2.1. Обобщённая логическая структура ЭВМ

Внешняя память (ВЗУ) предназначена для размещения больших объёмов информации и обмена ею с оперативной памятью. Для построения внешней памяти используют энергонезависимые носители информации (диски и ленты), которые к тому же являются переносимыми. Ёмкость этой памяти практически не имеет ограничений, а для обращения к ней требуется больше времени, чем ко внутренней.

Внешние запоминающие устройства конструктивно отделены от центральных устройств ЭВМ (процессора и внутренней памяти), имеют собственное управление и выполняют запросы процессора без его непосредственного вмешательства. В качестве ВЗУ используют накопители на магнитных и оптических дисках, а также накопители на магнитных лентах. ВЗУ по принципам функционирования разделяются на устройства прямого доступа (накопители на магнитных и оптических дисках) и устройства последовательного доступа (накопители на магнитных лентах). Устройства прямого доступа обладают большим быстродействием, поэтому они являются основными внешними запоминающими устройствами, постоянно используемыми в процессе функционирования ЭВМ. Устройства последовательного доступа используются в основном для архивирования информации. вычислительный компьютерный техника машина

Устройства ввода-вывода служат соответственно для ввода информации в ЭВМ и вывода из неё, а также для обеспечения общения пользователя с машиной. Процессы ввода-вывода протекают с использованием внутренней памяти ЭВМ. Иногда устройства ввода-вывода называют периферийными или внешними устройствами ЭВМ. К ним относятся, в частности, дисплеи (мониторы), клавиатура, манипуляторы типа «мышь», алфавитно-цифровые печатающие устройства (принтеры), графопостроители, сканеры и др. Для управления внешними устройствами (в том числе и ВЗУ) и согласования их с системным интерфейсом служат групповые устройства управления внешними устройствами, адаптеры или контроллеры.

Системный интерфейс - это конструктивная часть ЭВМ, предназначенная для взаимодействия её устройств и обмена информацией между ними. В больших, средних и супер-ЭВМ в качестве системного интерфейса используются сложные устройства, имеющие встроенные процессоры ввода-вывода, именуемые каналами. Такие устройства обеспечивают высокую скорость обмена данными между компонентами ЭВМ.

Отличительной особенностью малых ЭВМ является использование в качестве системного интерфейса системных шин. Различают ЭВМ с многошинной структурой и с общей шиной. В первых - для обмена информацией между устройствами используются отдельные группы шин, во втором случае все устройства ЭВМ объединяются с помощью одной группы шин, в которую входят подмножества шин для передачи данных, адреса и управляющих сигналов. При такой организации системы шин обмен информацией между процессором, памятью и периферийными устройствами выполняется по единому правилу, что упрощает взаимодействие устройств машины.

Пульт управления служит для выполнения оператором ЭВМ или системным программистом системных операций в ходе управления вычислительным процессом. Кроме того, при техническом обслуживании ЭВМ за пультом управления работает инженерно-технический персонал. Пульт управления конструктивно часто выполняется вместе с центральным процессором.

Основные характеристики вычислительной техники

К основным характеристикам вычислительной техники относятся её эксплуатационно-технические характеристики, такие, как быстродействие, ёмкость памяти, точность вычислений и др.

Быстродействие ЭВМ рассматривается в двух аспектах: оно характеризуется количеством элементарных операций, выполняемых центральным процессором в секунду. Под элементарной операцией понимается любая простейшая операция типа сложения, пересылки, сравнения. С другой стороны, быстродействие ЭВМ существенно зависит от организации её памяти. Время, затрачиваемое на поиск необходимой информации в памяти, заметно сказывается на быстродействии ЭВМ.

В зависимости от области применения выпускаются ЭВМ с быстродействием от нескольких сотен тысяч до миллиардов операций в секунду. Для решения сложных задач возможно объединение нескольких ЭВМ в единый вычислительный комплекс с требуемым суммарным быстродействием.

Наряду с быстродействием часто пользуются понятием производительность. Если первое обусловлено, главным образом, используемой в ЭВМ системой элементов, то второе связано с её архитектурой и разновидностями решаемых задач. Даже для одной ЭВМ такая характеристика, как быстродействие, не является величиной постоянной. В связи с этим различают:

· пиковое быстродействие, определяемое тактовой частотой процессора без учёта обращения к оперативной памяти;

· номинальное быстродействие, определяемое с учётом времени обращения к оперативной памяти;

· системное быстродействие, определяемое с учётом системных издержек на организацию вычислительной процесса;

· эксплуатационное, определяемое с учётом характера решаемых задач (состав, операций или их «смеси»).

Ёмкость, или объём памяти определяется максимальным количеством информации, которое можно разместить в памяти ЭВМ. Оперативная память, по своему объёму у различных классов машин различна и определяется системой адресации ЭВМ. Ёмкость внешней памяти из-за блочной структуры и съёмных конструкций накопителей практически неограниченна.

Точность вычислений зависит от количества разрядов, используемых для представления одного числа. Современные ЭВМ комплектуются 32- или 64-разрядными микропроцессорами, что вполне достаточно для обеспечения высокой точности расчётов самых разнообразных приложениях. Однако, если этого мало, можно использовать уд военную или утроенную разрядную сетку.

Система команд - это перечень команд, которые способен выполнить процессор ЭВМ. Система команд устанавливает, какие конкретно операции может выполнять процессор, сколько операндов требуется указать в команде, какой вид (формат) должна имеет команда для её распознания. Количество основных разновидностей команд невелико, с их помощью ЭВМ способны выполнять операции сложения, вычитания, умножения, деления, сравнения, записи в память, передачи числа из регистра в регистр, преобразования из одной системы счисления в другую и т. д. При необходимости выполняется модификация команд, учитывающая специфику вычислений. Обычно в ЭВМ используется от десятков до сотен команд (с учётом их модификации). На современном этапе развития вычислительной техники используются два основных подхода при формировании системы команд процессора. С одной стороны, это традиционный подход, связанный с разработкой процессоров с полным набором команд - архитектура CIS (Complete Instruction Set Computer - компьютер с полным набором команд). С другой стороны, это реализация в ЭВМ сокращённого набора простейших, но часто употребляемых команд, что позволяет упростить аппаратные средства процессора и повысить eго быстродействие - архитектура RISC (Reduced Instruction Set Computer - компьютер сокращенным набором команд).

Стоимость ЭВМ зависит от множества факторов: быстродействия, ёмкости памяти, системы команд и т. д. Большое влияние на стоимость оказывает конкретная комплектация ЭВМ и, в первую очередь, внешние устройства, входящие в состав машины. Наконец, стоимость программного обеспечения ощутимо влияет на стоимость ЭВМ.

Надёжность ЭВМ - это способность машины сохранять свои свойства при заданных условиях эксплуатации в течение определённого промежутка времени. Количественной оценкой надёжности ЭВМ, содержащей элементы, отказ которых приводит к отказу всей машины, могут служить следующие показатели:

· вероятность безотказной работы определённое, заранее заданное время при определённых условиях эксплуатации;

· наработка ЭВМ на отказ;

· среднее время восстановления машины и др.

Для более сложных структур типа вычислительного комплекса или системы понятие «отказ» не имеет смысла. В таких системах отказы отдельных элементов приводят к некоторому снижению эффективности функционирования, а не к полной потере работоспособности в целом.

Важное значение имеют и другие характеристики вычислительной техники, например: универсальность, программная совместимость, вес, габариты, энергопотребление и др. Они принимаются во внимание при оценке конкретных сфер применения ЭВМ.

Перспективы развития вычислительных средств

Появление новых поколений ЭВМ обусловлено расширением сферы их применения, требующей более производительной, дешёвой и надёжной вычислительной техники. В настоящее время стремление к реализации новых потребительских свойств ЭВМ стимулирует работы по созданию машин и последующего поколений. Вычислительные средства пятого поколения, кроме более высокой производительности и надёжности при более низкой стоимости, обеспечиваемых новейшими электронными технологиями, должны удовлетворять качественно новым функциональным требованиям:

· работать с базами знаний в различных предметных областях и организовывать на их основе системы искусственного интеллекта;

· обеспечивать простоту применения ЭВМ путём реализации эффективных систем ввода-вывода информации голосом, диалоговой обработки информации с использованием естественных языков, устройств распознавания речи и изображения;

· упрощать процесс создания программных средств путём автоматизации синтеза программ.

В настоящее время ведутся интенсивные работы как по созданию ЭВМ пятого поколения традиционной (неймановской) архитектуры, так и по созданию и апробации перспективных архитектур и схемотехнических решений. На формальном и прикладном уровнях исследуются архитектуры на основе параллельных абстрактных вычислителей (матричные и клеточные процессоры, систолические структуры, однородные вычислительные структуры, нейронные сети и др.) Развитие вычислительной техники с высоким параллелизмом во многом определяется элементной базой, степенью развития параллельного программного обеспечения и методологией распараллеливания алгоритмов решаемых задач.

Проблема создания эффективных систем параллельного программирования, ориентированных на высокоуровневое распараллеливание алгоритмов вычислений и обработки данных, представляется достаточно сложной и предполагает дифференцированный подход с учётом сложности распараллеливания и необходимости синхронизации процессов во времени.

Наряду с развитием архитектурных и системотехнических решений ведутся работы по совершенствованию технологий производства интегральных схем и по созданию принципиально новых элементных баз, на основе оптоэлектронных принципов.

В плане создания принципиально новых архитектур вычислительных средств большое внимание уделяется проектам нейрокомпьютеров, базирующихся на понятии нейронной сети (структуры на формальных нейронах), моделирующей основные свойства реальных нейронов. В случае применения био- или оптоэлементов могут быть созданы соответственно биологические или оптические нейрокомпьютеры. Многие исследователи считают, что в следующем веке нейрокомпьютеры в значительной степени вытеснят современные ЭВМ, используемые для решения трудно формализуемых задач. Последние достижения в микроэлектронике и разработка элементной базы на основе биотехнологий дают возможность прогнозировать создание биокомпьютеров.

Важным направлением развития вычислительных средств пятого и последующих поколений является интеллектуализация ЭВМ, связанная с наделением её элементами интеллекта, интеллектуализацией интерфейса с пользователем и др. Работа в данном направлении, затрагивая, в первую очередь, программное обеспечение, потребует и создания ЭВМ определённой архитектуры, используемых в системах управления базами знаний - компьютеров баз знаний, а так же других подклассов ЭВМ. При этом ЭВМ должна обладать способностью к обучению, производить ассоциативную обработку информации и вести интеллектуальный диалог при решении конкретных задач.

Размещено на Allbest.ru

...

Подобные документы

  • Программное обеспечение языков программирования, их виды и общая структура каждого поколения. Понятие архитектуры ЭВМ, ее структура и принципы функционирования. Основные характеристики вычислительной техники. Перспективы развития вычислительных средств.

    реферат [105,1 K], добавлен 05.02.2011

  • Аппаратные средства вычислительной техники. Центральный процессор. Память как составляющая компьютера, ее типичная иерархическая структура. Устройства ввода-вывода, шины. История развития средств вычислительной техники. Характеристика систем на основе Р6.

    реферат [251,3 K], добавлен 08.02.2014

  • История развития вычислительной техники, основные характеристики. Основное отличие вычислительной системы от компьютера, виды архитектур. Классификация уровней программного параллелизма. Главные особенности векторной, матричной обработки регистров.

    курсовая работа [36,0 K], добавлен 21.07.2012

  • История развития системы исчисления, первые специальные приборы для реализации простейших вычислительных операций. Первые поколения компьютеров, принцип работы, устройство и функции. Современный этап развития вычислительной техники и ее перспективы.

    презентация [2,1 M], добавлен 28.10.2009

  • Разработка информационно-аналитической системы анализа и оптимизации конфигурации вычислительной техники. Структура автоматизированного управления средствами вычислительной техники. Программное обеспечение, обоснование экономической эффективности проекта.

    дипломная работа [831,1 K], добавлен 20.05.2013

  • Ранние приспособления и устройства для счета. Появление перфокарт, первые программируемые машины, настольные калькуляторы. Работы Джона Фон Неймана по теории вычислительных машин. История создания и развития, поколения электронно-вычислительных машин.

    реферат [37,7 K], добавлен 01.04.2014

  • Примеры счетно-решающих устройств до появления ЭВМ. Суммирующая машина Паскаля. Счетная машина Готфрида Лейбница. "Аналитическая машина" Чарльза Бэббиджа, развитие вычислительной техники после ее создания. Поколения электронно-вычислительных машин.

    презентация [1,2 M], добавлен 10.02.2015

  • Изучение зарубежной, отечественной практики развития вычислительной техники, а также перспективы развития ЭВМ в ближайшее будущее. Технологии использования компьютеров. Этапы развития вычислительной индустрии в нашей стране. Слияние ПК и средств связи.

    курсовая работа [82,0 K], добавлен 27.04.2013

  • История развития и основные направления использования вычислительной техники как в России, так и за рубежом. Понятие, особенности и развитие операционной системы. Содержание и структура файловой системы. Системы управления базами данных и их применение.

    контрольная работа [81,4 K], добавлен 06.04.2011

  • Средства вычислительной техники появились давно, так как потребность в различного рода расчетах существовала еще на заре развития цивилизации. Бурное развитие вычислительной техники. Создание первых ПК, мини-компьютеров начиная с 80-х годов ХХ века.

    реферат [32,3 K], добавлен 25.09.2008

  • Автоматизация обработки данных. Информатика и ее практические результаты. История создания средств цифровой вычислительной техники. Электромеханические вычислительные машины. Использование электронных ламп и ЭВМ первого, третьего и четвертого поколения.

    дипломная работа [1,1 M], добавлен 23.06.2009

  • Ручной этап развития вычислительной техники. Позиционная система счисления. Развитие механики в XVII веке. Электромеханический этап развития вычислительной техники. Компьютеры пятого поколения. Параметры и отличительные особенности суперкомпьютера.

    курсовая работа [55,7 K], добавлен 18.04.2012

  • Анализ истории развития вычислительной техники. Сравнительные характеристики компьютеров разных поколений. Особенности развития современных компьютерных систем. Характеристика компиляторов с общей семантической базой. Этапы развития компьютерной техники.

    презентация [2,5 M], добавлен 15.11.2012

  • Устройство и принцип работы персонального компьютера (ПК). Диагностика работоспособности ПК и определение неисправностей. Задачи технического обслуживания средств вычислительной техники. Разработка методик поддержания техники в работоспособном состоянии.

    курсовая работа [274,5 K], добавлен 13.07.2011

  • История развития вычислительной техники до появления ЭВМ. Поколения ЭВМ, описание, краткая характеристика, принципы фон Неймана в их построении. Представление информации в ЭВМ, ее разновидности: числовая, текстовая, графическая, видео и звуковая.

    контрольная работа [23,1 K], добавлен 23.01.2011

  • Определение перспектив, направлений и тенденций развития вычислительных систем как совокупности техники и программных средств обработки информации. Развитие специализации вычислительных систем и проблема сфер применения. Тенденции развития информатики.

    реферат [19,5 K], добавлен 17.03.2011

  • Понятие и характеристика персонального компьютера, его основные части и их предназначение. Средства обучения информатики и особенности организации работы в кабинете вычислительной техники. Оборудование рабочих мест и применение программного обеспечения.

    реферат [29,0 K], добавлен 09.07.2012

  • Периодизация развития электронных вычислительных машин. Счетные машины Паскаля и Лейбница. Описаний эволюционного развития отечественных и зарубежных пяти поколений электронных вычислительных машин. Сущность внедрения виртуальных средств мультимедиа.

    доклад [23,6 K], добавлен 20.12.2008

  • Характеристика систем технического и профилактического обслуживания средств вычислительной техники. Диагностические программы операционных систем. Взаимосвязь систем автоматизированного контроля. Защита компьютера от внешних неблагоприятных воздействий.

    реферат [24,4 K], добавлен 25.03.2015

  • В презентации представлена информация по истории вычислительной техники, о пионерах в этой области, об истории компьютерных фирм. Перечень необходимых сведений, необходимых любому ученику и учителю для получения знаний о развитии вычислительной техники.

    презентация [611,0 K], добавлен 19.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.