Моделі та алгоритми комплектації в системах з багатоваріантними технологіями

Необхідність розробки інструментарія моделювання і оптимізації у вигляді науково-методологічних положень, математичних моделей, алгоритмів, програм. Системний аналіз рівня планування і управління підприємствами з багатоваріантними структурами виробництва.

Рубрика Программирование, компьютеры и кибернетика
Вид автореферат
Язык украинский
Дата добавления 18.11.2013
Размер файла 58,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ХЕРСОНСЬКИЙ ДЕРЖАВНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ

Моргунова Тетяна Іванівна

УДК 681.32.06

Моделі та алгоритми комплектації в системах з багатоваріантними технологіями

Спеціальність 05.13.06 - Автоматизовані системи управління та прогресивні інформаційні технології

АВТОРЕФЕРАТ

дисертації на здобуття наукового

ступеня кандидата технічних наук

Херсон 1998

Дисертацією є рукопис

Робота виконана в Херсонському державному технічному університеті Науковий керівник кандидат технічних наук, доцент Рогальський Франц Борисович, Херсонський державний технічний університет, зав. кафедрою інформатики та обчислювальної техніки.

Науковий консультант кандидат економічних наук, професор Труш Володимир Євдокимович, Херсонський державний технічний університет, зав. кафедрою обліку та аудиту

Офіційні опоненти:

- доктор технічних наук, професор Петров Едуард Георгійович, Харківський державний технічний університет радіоелектроніки, завідувач кафедри системотехніки

- кандидат технічних наук, доцент Шерстюк Володимир Григорович, Херсонський державний технічний університет, кафедра програмного забезпечення ЕОМ.

Провідна установа: Державний аерокосмічний університет ім. М.Є. Жуковського “ХАІ”

Захист відбудеться “15” січня 1999 р. о 13 годині на засіданні спеціалізованої вченої ради К 67.052.01 при Херсонському державному технічному університеті за адресою, Херсон, Бериславське шосе, 24

З дисертацією можна ознайомитись у бібліотеці Херсонського державного технічного університету за адресою: м. Херсон, Бериславське шосе, 24.

Автореферат розісланий __________ 1998 р.

Вчений секретар спеціалізованої вченої ради Костін В.О.

ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ

Тенденції переходу до “постіндустріального суспільства” дозволяють помітити в промисловості виробництва предметів вжитку паростки переходу від масового виробництва до індивідуалізованих замовлень, але на основі високих технологій. в нових умовах безперервні і досить істотні зміни в потребах клієнтів (замовників, споживачів продукції) і викликані цим модифікації технологій виробництва стають звичайним явищем, отже, підприємства, прагнучи вижити і зберегти конкурентоздатність, змушені безперервно перебудовувати технології, виробництво, стратегію і тактику. Тому набувають важливого значення питання функціонування, використання інформаційних технологій на підприємствах з багатоваріантними схемами виробництва, багатоваріантними технологічними лініями, складальними конвеєрами, що дозволять забезпечувати упереджуюче задоволення різноманітних і зростаючих потреб клієнтів. Все це і викликає необхідність розробки ряду теоретичних положень, розробки нових методів, моделей, алгоритмів, програм, нових інформаційних технологій.

Мета досліджень. Метою даного дисертаційного дослідження є доопрацювання елементів прикладної теорії і проблемно-орієнтованого інструментарію моделювання задач комплектації виробничих систем (ВС) з багатоваріантними схемами виробництва у вигляді математичних методів, моделей, алгоритмів, програм, інформаційних технологій, що допускають оцінку величини модифікацій планових завдань комплектуючих. Ці елементи теорії і інструментарій орієнтовані на розв'язання задач опису множини допустимих варіантів комплектації виробів, прийняття рішень з питань ресурсів на основі прогнозних оцінок, прийняття рішень з використанням елементів штучного інтелекту, розробки стійких алгоритмів прийняття рішень.

Задачі наукового дослідження. Поставлена мета визначила наступні задачі: дослідження засобів опису множини варіантів комплектації виробів; розробку математичних моделей комплектації для систем з багатоваріантними технологічними схемами; аналіз задач і характерних особливостей цільових функцій техніко-економічного планування (ТЕП); розробку процедур прийняття рішень для задач комплектації; розробку багатоваріантних моделей комплектації з широкими можливостями перекомплектації; розробку процедур прийняття рішень при плануванні ресурсів на основі прогнозних оцінок; апробацію розроблених математичних моделей, алгоритмів і програм в інформаційних виробничих системах і підсистемах АСУ підприємств.

Зв'язок роботи з науковими програмами. Мета роботи, її основні задачі відповідають державним науково-технічним програмам: 6. - інформатика, автоматизація і приладобудування. 6.2.2. - перспективні інформаційні технології і системи. 6.2.1. - інтелектуалізація процесів прийняття рішень, а також планам найважливіших науково-технічних робіт по Міністерству освіти України, Міністерству економіки, Херсонському державному технічному університету.

Наукова гіпотеза полягає в тому, що своєчасного і навіть упереджуючого задоволення попиту клієнтів можна досягнути, використовуючи математичні моделі та інформаційні технології при комплектації виробів виробничих систем з багатоваріантними технологіями.

Методи досліджень. Для розв'язання поставлених задач в роботі використовуються математичний апарат теорії ймовірностей, теорії нечітких множин, теорії оптимального управління, теорії формалізації, прямі спостереження, статистичне моделювання, засоби лінійного програмування.

Наукова новизна дисертаційної роботи полягає в наступному: 1) На основі проведеного аналізу основних задач управління і комплектації в ВС з багатоваріантними схемами виробництва і методів їхнього моделювання показано, що ці задачі формулюються як багатокритеріальні, розв'язуються в умовах невизначеності мети, нестабільності показників системи, умов функціонування і дій зовнішнього середовища. 2) Доопрацьовані елементи прикладної теорії і проблемно-орієнтованого інструментарію моделювання задач комплектації виробничих систем з багатоваріантними схемами виробництва у вигляді математичних моделей, алгоритмів, програм, інформаційних технологій, які допускають можливість отримати оцінку величини модифікацій планових завдань, дозволяючих проводити різні види перекомплектації. 3) Розроблені засоби опису множини варіантів комплектації виробів. 4) Розроблені способи завдання множини варіантів комплектації виробів. 5) Розроблено моделі комплектації виробів виробничих систем, багатоваріантну модель комплектації, яка відрізняється тим, що має додаткові можливості зміни комплектації. 6) Розроблена модель прийняття рішень в задачах комплектації з елементами штучного інтелекту. 7) Розроблені процедури прийняття рішень для задач планування за сукупністю техніко-економічних показників.

Практична цінність роботи полягає в наступному: проведені теоретичні дослідження стали основою для розробки ряду пакетів прикладних програм, підсистем, наукових рекомендацій при розв'язанні задач комплектації. Розроблені засоби, математичні моделі, алгоритми, інформаційні технології дозволяють вирішувати широке коло проблем комп'ютеризації задач ТЕП ВС. Використання наукових положень, інформаційних технологій, рекомендацій, математичних моделей дозволяє прискорити процес розробки оптимальних планів, скоротити терміни проектування, створювати багатоваріантні системи планування, знизити організаційні труднощі процесу планування.

Реалізація результатів роботи. Результати роботи у вигляді підсистем, пакетів прикладних програм впроваджені на ряді підприємств: Ново-Каховскому заводі “Південелектромаш”, Херсонському заводі карданних валів, дослідному заводі обласного підприємства “Побутрадіотехніка”, АТ “Херсонські комбайни”. Теоретичні і практичні результати роботи використовувались також при виконанні ряду госпдоговірних науково-дослідних робіт на факультеті економіки Херсонського державного технічного університету. Наукові положення, висновки, рекомендації дисертаційної роботи використовувались в навчальному процесі при підготовці навчальних курсів “АРМ економіста”, “Автоматизація виробництва і АСУ”, “Інформаційні системи в економіці”.

Особистий внесок пошукувача. Всі положення, які виносяться на захист, належать особисто автору і не містять результатів, ідей або розробок, що належать співавторам, разом з якими опубліковані наукові праці.

Апробація роботи. Основні результати дисертаційної роботи доповідалися на семінарах ради НАН України з проблем “Кібернетика”, “Прикладні проблеми інформатики” (Херсон, 1993-1998р.), Другої національної конференції “Інформатика: Теорія, Технологія, Техніка - ІТТТ-95” (Одеса, 1995 р.), науково-практичної конференції з міжнародною участю “Регіональні інформаційні ресурси” (Херсон, 1997 р.), міжнародної конференції “Світові інформаційні ресурси“ (Яремча, 1996 р.), міжнародної конференції “Створення, інтеграція використання інформаційних ресурсів інноваційного розвитку“ (Київ, 1997 р.), науково-методичної конференції “Проблеми реформування освіти в вищих навчальних закладах” (Херсон, 1998 р.), Міжнародній конференції з математичного моделювання (Херсон, 1998 р.). Публікації. Результати виконаної роботи розкриті в 9 друкованих роботах.

Структура і обсяг роботи. Дисертаційна робота складається із вступу, п'яти розділів, висновків, містить 149 сторінок тексту, список літератури з 215 найменувань, 14 малюнків, 14 таблиць і додатків.

ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступі обгрунтована актуальність і необхідність розробки математичних моделей, алгоритмів і програм комплектації виробничих систем з багатоваріантними технологіями, як доопрацювання елементів теорії і проблемно-орієнтованого інструментарію моделювання і організації задач ТЕП. Сформульовані мета, задачі, визначені межі досліджень, показана наукова новизна, практична цінність роботи, отримані результати.

В першому розділі дано аналіз стану робіт в області комп'ютеризації задач комплектації і управління виробничих систем в перехідний період, розглянуто об'єкт досліджень і стан задач, що досліджуються, виконано системний аналіз рівня планування і управління підприємствами з багатоваріантними структурами виробництва, обгрунтовано актуальність проведених досліджень, показано необхідність розробки інструментарія моделювання і оптимізації у вигляді науково-методологічних положень, математичних моделей, алгоритмів і програм.

Використання інформаційних технологій, моделей комплектації з багатоваріантними схемами виробництва може дозволити реалізувати упереджуюче задоволення потреб споживачів продукції.

Наведена характеристика видів і особливостей комплектації в виробничих системах. Подано аналіз засобів моделювання і оптимізації техніко-економічного планування виробництва. Проаналізовані основні типи моделей оптимального планування. Найбільш адекватними реальним процесам є багатокритеріальні моделі. Виконано також аналіз засобів прийняття рішень задач комплектації.

Сформульована мета, поставлені задачі досліджень, визначені межі досліджень.

В другому розділі розглядаються задачі і моделі планування та комплектації. Це передусім розрахунок оптимальної виробничої програми.

Задача оптимального техніко-економічного планування може бути представлена так: визначити компоненти вектору Y={yi}, iI, що дозволяють отримати екстремальне значення векторного критерію якості {Fj(Y)}, при дотриманні умов ресурсних обмежень і обмежень на область допустимих рішень. Тут Yi - обсяг випуску і-го виробу, і - індекс продукції, що випускається, ? - підмножина видів виробів, включених в номенклатуру оптимальної програми підприємства. Математична модель задачі ТЕП складається з трьох структурних елементів: цільової вектор-функції, ресурсних і параметричних обмежень. Цільова вектор-функція містить наступні компоненти, що дозволяють об'єктивно оцінити якість прийнятого рішення і найбільш залежні від факторів управління:

;

;

;

;

.

де F1(t, y) - обсяг замовлення продукції на планований період;

F2(t, y) - обсяг заробітної плати виробничого персоналу;

F3(t, y) - затрати на комплектуючі вироби і матеріали; F4(t, y) - прибуток;

F5(t, y) - обсяг нормативно чистої продукції;

Р1і.…Р5і - відповідні питомі показники.

Символ t означає, що задача розв'язується для деякого заданого інтервалу часу.

Обмеження на область допустимих розв'язків мають вид: ai yi bi;

,

де a i і b i - нижній і верхній обсяг і-го виду виробу в планованому періоді.

Обмеження на знак варійованих змінних yi?0, .

Множина ресурсних обмежень задається системою співвідношень:

де |T| - матриця коефіцієнтів; Q(y) - вектор обмежень (ресурсів); yg,, yн - вектори обов'язкових і додаткових вимог.

Ресурсні обмеження можуть бути записані у вигляді:

де tij - трудомісткість виготовлення одиниці і-го виробу по j-му виду робіт.

До числа першочергових задач ТЕП відносять розрахунок обсягу замовлень на планований період F1(t, y), обсягу заробітної плати F2(t, y), обсягу затрат на комплектуючі вироби F3(t, y).

З цією метою необхідно попередньо розв'язувати задачу комплектації, основою якої є визначення обсягу комплектуючих вузлів і агрегатів, відповідних оптимальним плановим завданням. Розрахунок комплектації визначається обсягом випуску кінцевої продукції підприємства, що задаються вектором N(t). В свою чергу вектор N(t) визначається двома складовими: Nзад(t) - обов'язкової до виконання (незмінної) частини вектору N(t) і Noпт(t) - оптимізуємої (змінної) частини. Ввівши коефіцієнт (ступінь) задоволення завдання Y(t) по випуску оптимізуємої частини кінцевої продукції - ?K(t), маємо: N(t)=Nзад(t)+?К(t)?Nопт(t).

Далі будемо вважати, що задача комплектації, як складова ТЕП вирішується для деякого заданого інтервалу часу t. Виробничі потужності П підприємства, що розглядається, визначені і вважаються відомими. Така задача виникає передусім при ТЕП, при поточному плануванні або, коли розглядаються різноманітні варіанти розвитку, або модернізації потужностей комплексів і для кожного варіанту оцінюються можливі випуски кінцевої продукції за роки планового періоду, або при вирішенні питання про вибір найкращої комбінації технологій виробництва кінцевої продукції за замовленнями клієнтів. узагальнена задача комплектації сформульована у вигляді:

K(t) опт, x(t) G(t), x(t)={xi(t)}, i I

Тут t - номер планового відрізка, що розглядається; G(t) - область можливих випусків в номенклатурі підприємств; х(t) - вектор випусків в номенклатурі підприємств; , m M - випуск m-го кінцевого виробу по ?-ій технологічній схемі; N(t) - вектор випуску кінцевої продукції; Yр(t) - деталізований випуск кінцевої продукції; , i I, m M, rm - матриця комплектації деталізованого вектора кінцевої продукції Yр(t) елементами кінцевих заводських випусків. Матриця С(t) складається з І рядків і стовпчиків. Елемент дорівнює витраті і-го комплектуючого виробу на виробництво одного виробу , а стовпчик , i?I матриці С(t) показує витрату елементів з списку заводської продукції при виробництві m-го кінцевого виробу, що створюється по ?-ій технологічній схемі, М1(t) - множина незмінних компонент N(t), безумовних для виконання, М2(t) - множина оптимізуємих компонент вектора N(t), за якими розв'язується задача оптимізації і визначається величина випуску у вигляді вектора {Nопт m(t)}. Матриця має вигляд таблиці.

Межі модифікації оптимального розв'язку задачі комплектації при проведенні на (k+1)-му кроці ітерації комбінованого корегування визначаються нерівністю:

У третьому розділі розглядаються оцінки зміни оптимальних розв'язків, взаємодії з моделями та багатоваріантні моделі комплектації. Задача зміни комплектації відрізняється від задачі комплектації введенням додаткових можливостей перекомплектації. Запишемо її у вигляді:

Zопт,

де С1 - матриця комплектації вектора кінцевої продукції N елементами заводських випусків xi , яка задає єдиний варіант комплектації по кожному кінцевому вектору; - величина, що дорівнює числу i-х комплектуючих виробів, які заміщуються одним -м комплектуючим виробом в m-му кінцевому виробу; - кількість -х комплектуючих виробів; G - область можливих випусків продукції.

В результаті розв'язання задачі одержують оптимальні значення Кнов, і величини , рівні обсягу заміщення одних комплектуючих виробів іншими в кінцевій заводській продукції. На основі цієї інформації обчислюється нове оптимальне значення , визначається вектор Nопт=КновNнов і випуску N=Nзад+КновNнов.

Кількість комплектуючих виробів , iI, mM, необхідних для випуску одного m-ого кінцевого виробу з урахуванням отриманої перекомплектації, може бути визначена таким чином

де m=1, якщо mM1 і m=Kнов, якщо mM2, Аi - множина номерів верхівок графа перекомплектації Г, в який входять дуги з i - вершини, а Вi - множина номерів вершин графа Г, з яких в i-у вершину входять дуги.

Моделі комплектації дозволяють здійснювати корегування параметрів моделі.

Корегування планів з комплектації може здійснюватися одночасною зміною структури векторів Nзад і Nопт

Допустимі заміщення одних комплектуючих виробів іншими в кінцевих виробах можуть задаватися у вигляді графа, в якому вершині з номером і відповідає і-й комплектуючий виріб, а дуга графа, що іде від вершини і до вершини І, означає, що І-й виріб може бути замінений і-м в кінцевих виробах. Кожній вершині графа може бути співставлений вираз

що визначає вагу вершини і.

Для визначення комбінації варіантів комплектації m-го кінцевого виробу розв'язується задача

Zопт, .

В результаті визначаються оптимальні випуски кінцевих виробів з кожного варіанту комплектації.

В четвертому розділі розглядаються задачі прийняття рішень. Це задача прийняття однієї з кінцевої множини рішень fі,  за даними спостережень x, що належать до довільного вибіркового простору, на якому визначені n можливих ймовірнісних мір Pk, . Значення m і n, в загальному випадку, можуть знаходитися в довільному співвідношенні. Наслідки від прийняття рішення fi визначаються функцією втрат g(fi,, k) =gi k, котра залежить від того, яке з рішень відносно розподілу ймовірностей x має місце. В загальному випадку, правило прийняття рішення задається векторною функцією (x)={1(x),…,m(x)} з компонентами i(x)0,

де i(x) - ймовірність прийняття рішення fi при даному значенні x. При розв'язуванні задач оптимального планування необхідно отримати оптимальні значення декількох цільових функцій

F1(x), F2(x),..., Fn (x).

Задача оптимізації розглядається у вигляді:

,

спочатку розв'язується задача виявлення області компромісів (рішень оптимальних за Парето). Приймаючи до уваги, що має місце протиріччя між локальними критеріями, з усієї області можливих рішень , виділяємо область компромісів ХС і виключаємо з розгляду область згоди ХS, в якій критерії непротирічні. Порівняння окремих розв'язків в області компромісів і вибір оптимального з них можливий на основі деякої схеми компромісів. Вибір схеми компромісу проводиться в припущенні рівності пріоритетів окремих локальних критеріїв. Схема компромісу виглядає таким чином: мінімізувати критерій Q, що характеризує мінімум суми відхилень окремих критеріїв від своїх оптимальних значень

де Fj(x0) - оптимальне значення j-го критерію, ; Fj (x) - поточне значення головного критерію.

Реалізація вибраної схеми компромісу використовує виділення головного критерію: шукається екстремум одного критерію F1(x)?extr, а інші розглядаються як обмеження виду

де Fj(xN)= Fj(xN)-Fj(xN-1) - приріст j-го критерію на N-му кроці пошуку; Fj(x0) - оптимальне значення j-го критерію в точці Х0.

Для будь-якої точки xX, наприклад Хc+Х,

де .

Виконання цієї умови є обов'язковою умовою переміщення системи з будь-якої точки в компромісну.

Модель ТЕП включає показники рентабельності, собівартості, екстремальне значення яких визначаються при оптимізації дробово-лінійних функцій. Задача подається таким чином: знайти екстремальне значення

де F - цільова функція (собівартість); Q1 - загальна витрата в грошовому виразі; Q2 - обсяг продукції, що випускається; C - виробничі витрати в одиницю часу по j-му технологічному циклу при завданні xi одиниць часу по кожному з них; C - число одиниць продукції.

Процес прийняття планових рішень подається послідовністю кроків: формування множини допустимих альтернативних варіантів плану; вибір найбільш прийнятного варіанту корегування плану.

Задача планування ресурсів в роботі представлена завданням кінцевого орієнтованого графа без контурів і петель, що відображає процес виконання робіт виробничої програми. Для кожної роботи (дуги) задані обсяг ресурсів, необхідних для її виконання, мінімальні і максимальні інтенсивності споживання ресурсів, терміни початку і закінчення виконання всієї програми. Нехай - вектор потрібної кількості ресурсів (комплект), необхідних для реалізації програми на етапі [Trs, Ts]. Припустимо, що співвідношення ресурсів , що споживаються в процесі виконання робіт, пропорційно вектору , тобто

де k - ступінь задоволення потреб в ресурсах. Тоді лімітуючий ресурс виділеного комплекту, визначається співвідношенням

Наявність у виділеному комплекті Qrs зазначеного ресурсу означає, що інші ресурси, для яких k>kmin є надлишковим, рівним , можуть бути використані для виконання інших робіт.

Кожна робота Pij повинна розпочинатися, коли завершуються всі роботи P(i-1)j. Якщо робота Pij не належить до критичного шляху, то можлива деяка затримка початку її виконання, що не впливає на час виконання всієї програми. Тривалості виконання роботи і час її закінчення визначаються співвідношеннями

Мінімальний час ij min початку роботи Pij і максимальний час ?ij max початку, що не викликає збільшення часу повної реалізації програми визначається співвідношеннями

Максимально можливий і мінімально допустимий обсяг споживання -го виду ресурсу в період часу Trs, необхідний для завершення програми в намічений термін

де

На основі та визначається максимальний та мінімальний комплект ресурсів для реалізації програми в період Trs.

Розглядаються процедури і алгоритми прийняття рішень на основі ДСМ-методу. Використовуються множини причин С={c1,c2,…,cn} і наслідків A={a1,a2,…,an}.

Гіпотеза-вираз виду

де - спеціальний ідентифікатор оцінки обгрунтованості (вірогідності) про те, що сi - є причина а1. Існують позитивні і негативні гіпотези , в яких обгрунтованістю вважається, що сі не є причиною а1. Значення і утворюють матриці J+ і J-. Основна процедура методу полягає в знаходженні нових гіпотез, тобто елементів матриць і , вимірність яких в процесі роботи методу збільшується, а також в перерозрахунку елементів цих матриць на основі аналізу підтвердження або відхилення відповідної гіпотези.

Гіпотеза J приймає значення {0, 1/(n-1), 2/(n-1),...,(n-2)/(n-1),1}. Множина {ij}={ciaj} розбивається на (n+1) підмножину. У підмножину ?0 входять ті елементи, для яких оцінка обгрунтованості рівна 0.

В підмножину 1 входять абсолютно вірогідні гіпотези. В підмножину i/(n-1), де i=2,3,...,n-2 входять гіпотези, для яких ступінь обгрунтованості дорівнює числу, рівному індексу їх підмножин. Процедура пошуку завершується, якщо нові гіпотези не породжуються і якщо не відбувається модифікація оцінки обгрунтованості раніше знайдених гіпотез.

Характерною рисою механізмів пошуку і міркувань по аналогії є широке смислове тлумачення результатів міркуваннь, що забезпечується мінімальною кількістю обмежень. Головна причина необхідності використання процедури оцінки результатів висновків полягає в наданні можливості інтерпретувати фіксоване подання того або іншого об'єкту. Основною метою інтерпретації висновків по аналогії є одержання оцінки ступеня правдоподібності конкретного заключення при відомих основі і посиланнях. Формальним змістом процедури інтерпретації висновків міркування можна вважати здійснення перетворення віртуального об'єкту Av, тобто перехід від Av до Ai.

П'ятий розділ присвячений викладенню результатів практичної реалізації розроблених методів і алгоритмів. Оптимізація виробничої програми передбачає вибір критеріїв оптимальності, синтез економіко-математичної моделі і розробку алгоритму оптимізації. Модель формування оптимальної річної виробничої програми буде мати вигляд:

Знайти екстремум функції

;

де F1 (x,t), F2 (x,t), F3 (x,t) - відповідно функції, що характеризують прибуток, рівень рентабельності, обсяг заробітної плати.

При розв'язанні задачі комплектації розглядається список комплектуючих по кожному кінцевому виробу Знаходиться коєфіцієнт ?K:

,

повний виробничий випуск

та випуск виробів по кожній технологічній схемі

Модель комплектації виробів реалізована програмно з використанням середовища Delphi. Вхідними даними для моделі є: плановий відрізок, вектор строго обов'язкової (директивної) кінцевої продукції, вектор оптимізуємої частини кінцевої продукції, матриця комплектації, технологічна матриця підприємства, фінансові можливості підприємства і т.д.

Розроблені пакети програм моделі довгострокового планування, моделі експертної системи підтримки прийняття організаційних рішень. Показані результати використання в навчальному процесі вищого навчального закладу.

Розроблені програмні комплекси впроваджені на Херсонському заводі карданних валів, АТ “Херсонські комбайни”, Ново-Каховському заводі “Південелектромаш”, дослідному заводі обласного об'єднання “Побутрадіотехніка” (м. Херсон).

ВИСНОВКИ

Дисертаційне дослідження присвячене вивченню, дослідженню і розробці методів, математичних моделей, алгоритмів, програм, прогресивних інформаційних технологій розв'язання оптимізаційних задач комплектації і управління у виробничих системах з багатоваріантними схемами виробництва.Напрямок дослідження зумовлено важливістю цих задач в сучасних умовах, коли безперервні і істотні модифікації в технологіях виробництва і потребах клієнтів стали звичайним явищем на підприємствах і фірмах, які прагнучи вижити і зберегти конкурентоздатність, змушені безперервно перебудовувати своє виробництво, стратегію і тактику.

В результаті розв'язання поставлених задач в роботі отримані такі основні результати:

1) На основі проведеного аналізу основних задач планування і управління в ВС і методів їх моделювання в сучасних умовах показано, що ці задачі формулюються як багатокрітеріальні, розв'язуються в умовах невизначеності, нестабільності показників системи, умов функціонування і дії зовнішнього середовища.

2) Розроблені і доповнені елементи прикладної теорії і проблемно-орієнтованого інструментарію моделювання задач комплектації виробничих систем з багатоваріантними схемами виробництва у вигляді математичних моделей, алгоритмів, програм, інформаційних технологій, що допускають оцінку величини модифікації планових завдань.

3) Розроблені засоби опису множини варіантів комплектації виробів в задачах комплектаціі.

4) Розроблено моделі комплектації виробів виробничих систем, багатоваріантну модель комплектації, яка відрізняється тим, що має додаткові можливості зміни комплектації.

5) Розроблені процедури прийняття рішень при плануванні за сукупністю техніко-економічних показників.

6) Розроблені процедури прийняття рішень при плануванні ресурсів на основі прогнозних оцінок.

7) Апробація розроблених методів, математичних моделей, алгоритмів і програм підтверджує їх ефективність за рахунок підвищення оперативності і якості рішень, що приймаються (збільшення прибутку, підвищення рентабельності). Алгоритми реалізовані практично і є інваріантними по відношенню до виду і якості рішень, що приймаються.

Математичні моделі і алгоритми розв'язання оптимізаційних задач техніко-економічного планування і раціонального використання матеріальних ресурсів впроваджені у виді пакетів прикладних програм. Результати досліджень також знайшли відображення в навчальному процесі Херсонського державного технічного університету.

Довідки, акти та інші документи, що підтверджують результативність дисертаційної роботи наведені в додатку.

математичний алгоритм планування багатоваріантний

РОБОТИ ПО ТЕМІ ДИСЕРТАЦІЇ

Основний зміст дисертації відображений в наступних роботах:

1. Ходаков В.Е., Удовиченко Л.В., Моргунова Т.И. Учет неопределенности в задачах планирования // Вестник ХГТУ - 1997, №1, с. 53-56.

2. Моргунова Т.И., Удовиченко Л.В. Формализация процедур принятия решений в задачах технико-экономического планирования // Вестник ХГТУ 1997, №2, с. 348-351.

3. Моргунова Т.И., Удовиченко Л.В. Определение оптимальной комплектации выпускаемой продукции // Вестник ХГТУ. - 1997, №2, с. 352 353

4. Рогальский Ф.Б., Моргунова Т.И. Моделирование процесса стратегического управления многовариантной производственной системой Физико-технические приложения математического моделирования. Сб. научн. тр. / НАН Украины. Ин-т математики. - Киев, 1998. с. 217-220.

5. Моргунова Т. И. Автоматизация подготовки и принятия решений // П-я Национальная конференция “Информатика, теория, технология, техника - ИТТТ-95”. - Одесса, 1995, с. 59.

6. Моргунова Т.И. Проблема оцінки матеріальних цінностей в сучасних умовах господарювання // Тези доповідей конференції “Розвиток економічної науки в Україні та викладання економічних дисциплін”. Херсон, 1996, с.71.

7. Моргунова Т.И. Показатели компьютеризации учета на современном этапе // Материалы международной научно-практической конференции Экономика переходного периода: проблемы и решения”. - Херсон, 1996, с.71.

8. Моргунова Т. И. Модель принятия решений на основе ДСМ-метода // Научно-техническая конференция “Информационные ресурсы ” - Херсон, 1997, с. 78-79.

9. Труш В.Є., Моргунова Т.І. Облік операцій давальницької сировини за умов ринкової економіки // Технологія, автоматизації та економіка в переробній галузі: Збірник наукових праць / За заг. ред. Л.А.Чурсіної та А.Ф.Скорченко. - К. - ІЗМН, 1998, с.120-122.

АНОТАЦІЯ

Моргунова Т.І. Моделі та алгоритми комплектації в системах з багатоваріантними технологіями.

Дисертація на здобуття наукового ступеня кандидата технічних наук по спеціальності 05.13.06 - Автоматизовані системи управління і прогресивні інформаційні технології, Херсонський державний технічний університет, 1999р.

Запропоновані і розроблені математичні моделі, алгоритми і програми комплектації виробів як доповнення елементів конструктивної теорії і проблемно-орієнтованого інструментарію моделювання задач планування і управління в виробничих системах з багатоваріантними схемами виробництва. Досліджені особливості функціонування програмних комплексів, що реалізують моделі, визначені характерні особливості, умови перекомплектації, умови, що забезпечують ефективний режим діалогової роботи. Розглянуті і запропоновані моделі прийняття рішень при комплектації.

Ключові слова: планування, управління, комплектація, техніко-економічне планування, автоматизована система управління, особа, що приймає рішення, математична модель.

АННОТАЦИЯ

Моргунова Т.И. Модели и алгоритмы комплектации в системах с многовариантными технологиями.

Диссертация на соискание учетной степени кандидата технических наук по специальности 05.13.06 - автоматизированные системы управления и прогрессивные информационные технологии, Херсонский государственный технический университет, 1999 г.

На нынешнем этапе развития общества наметилась тенденция перехода к постиндустриальному обществу, для которого характерно движение от массового производства, массовых заказов к индивидуализированным, выполняемым на основе высоких технологий. Постоянные изменения в потребностях заказчиков и вызываемые этим изменения в технологиях производства становятся объективным явлением, поэтому хозяйственные субъекты (фирмы, предприятия, акционерные общества и др.) стремясь сохранить конкурентоспособность, вынуждены перестраивать производство, стратегию и тактику, внедрять многовариантные технологии. В этой связи важное значение приобретают вопросы функционирования и использования информационных технологий на предприятиях с многовариантными технологиями.

Одной из важнейший подсистем в АСУ является подсистема технико-экономического планирования. Отсюда возникают задающие воздействия и исходные данные для других подсистем. К числу первоочередных задач технико-экономического планирования можно отнести расчет объема заказов на планируемый период, объема заработной платы, объемов затрат на комплектующие изделия и материалы. Невыполнение поставок комплектующих приводит к срыву выполнения плана-заказа, что влечет за собой нарушение по всей линии “конвейера потребления”, которой является любая современная производственная система. С этой целью необходимо решать задачу комплектации, основой которой является определение объема и номенклатуры комплектующих, соответствующих оптимальным плановым заданиям. При разработке математической модели учитывалось, что расчет комплектации ведется, исходя из объемов и номенклатуры выпуска конечной продукции. Объем выпуска определяется двумя составляющими: обязательной к выполнению части ( госзаказа или другого директивного задания) и оптимизируемой части, исходя из собственных интересов предприятия и заказов клиентов. Разработаны математические модели комплектации производственных систем с многовариантными технологиями. Для решения задач комплектации используется информация о том, какие технологические линии, схемы подходят для производства тех или иных изделий, и о величинах выпусков изделий по каждой используемой в оптимальном решении технологии. На основании этого принимаются решения об использовании тех или иных линий, о перестройке технологического процесса или переналадке оборудования. При определении оптимальной производственной программы возникает задача оценки пределов изменения комплектации, которая решается на модели. Модель позволяет целенаправленно планировать изменение параметров задачи комплектации, оценивать результаты корректировок и упреждать негативные последствия при выполнении производственных заданий. Задачи комплектации являются задачами дробно-линейного программирования.

Обоснован способ описания вариантности комплектации конечной продукции комплектующими изделиями и процессами сборки, основой которого является графовая модель комплектации. Исследованы возможности организации взаимодействия с моделью путем использованием графа при планировании задач технико-экономического планирования.

Исследованы модели принятия решений в процессе планирования и комплектации. Задачи принятия решений для оценки комплектации являются многокритериальными. Разработаны процедуры многокритериальной оптимизации и предложен алгоритм, позволяющий путем выделений главного критерия и ограничений второго рода сокращать количество оптимизационных процедур. Исследованы возможности использования элементов искусственного интеллекта в системах принятия решений по ресурсам. Исследованы возможности применения ДСМ-метода порождения гипотез для принятия решений. Разработан алгоритм реализации метода.

Апробированы и исследованы особенности функционирования программных комплексов, реализующих исследуемые модели.

Разработка и исследование методов, математических моделей, информационных технологий осуществлена как дополнение элементов конструктивной теории и проблемно-ориентированного инструментария моделирования задач планирования и комплектации в производственных системах с многовариантными технологиями.

Ключевые слова: планирование, управление, комплектация, технико-экономическое планирование, автоматизированная система управления, лицо, принимающее решение, математическая модель.

ТHE SUMMARY

Morgunova T.I. Models and algorithms of a complete set in systems with multialternative process technologies.

Thesis for scientific degree of the candidate of engineering science on a speciality 05.13.06, Kherson, 1999.

Mathematical models, algorythms and products collection are created and offered to complement the constructivist theory elements and also the “toolkit” related to modeling planning problems and maltivariant schemes production systems manedgement. Programming complexes functions are developed to realize models. Specific features and conditions related to the complex changes that effect a dialogue mode. Decision making models related to creating complexes are offered for consideration.

Key word at a complete set: planning, control, complete set, technological planning, automated control system; a person receiving the solution; mathematical model.

Размещено на Allbest.ur

...

Подобные документы

  • Політичне прогнозування як процес розробки науково обгрунтованого судження про ймовірносний розвиток політичних подій, шляхи і терміни його здійснення. Можливості комп'ютерного моделювання - системний підхід. Моделі та методи моделювання, їх використання.

    контрольная работа [26,0 K], добавлен 13.03.2013

  • Спосіб завдання алгоритмів функціонування автоматів циклічної дії у вигляді циклограм. Розробка абстрактної моделі паралельного логічного контролера, структурної схеми. HDL-модель і комп’ютерне моделювання паралельного логічного контролера циклічної дії.

    курсовая работа [190,0 K], добавлен 24.06.2011

  • Побудова блок-схем алгоритмів програм. Створення блок схем алгоритмів за допомогою FCEditor. Експорт блок-схеми в графічний файл. Огляд програмних та апаратних засобів. Мови програмування високого рівня. Цикли та умовний оператор IF з лічильником.

    дипломная работа [1,4 M], добавлен 15.12.2013

  • Створення системи експериментального дослідження математичних моделей оптимізації обслуговування складних систем. Визначення критеріїв оптимізації обслуговуваних систем та надання рекомендацій щодо часу проведення попереджувальної профілактики.

    дипломная работа [3,0 M], добавлен 22.10.2012

  • Пакети і комплекси програм, які реалізують метод скінчених елементів. Femlab 3.3 - потужне інтерактивне середовище для моделювання і розв'язування наукових і технічних проблем. Вибір варіаційного принципу. Чисельна реалізація математичних моделей.

    дипломная работа [1,8 M], добавлен 11.09.2014

  • Практичні прийоми відтворення на ЕОМ математичних моделей типових нелінійностей. Параметри блоків Sine Wave, XY Graph та Saturation. Побудова статичних і динамічних характеристик математичних моделей. Визначення кроку та інтервалу часу моделювання.

    лабораторная работа [1,5 M], добавлен 17.05.2012

  • Алгоритми розв’язання задач у вигляді блок–схем. Використання мови програмування MS VisualBasic for Application для написання програм у ході вирішення задач на одномірний, двовимірний масив, порядок розв’язання задачі на використання символьних величин.

    контрольная работа [742,9 K], добавлен 27.04.2010

  • Поняття моделювання як процесу, що полягає у відтворенні властивостей тих чи інших предметів і явищ за допомогою абстрактних об’єктів та описів у вигляді зображень, планів, алгоритмів. Системи масового обслуговування. Модель роботи видавничого центру.

    курсовая работа [255,8 K], добавлен 15.09.2014

  • Розвиток виробництва і широке використання промислових роботів. Алгоритми методів, блок-схеми алгоритмів розв'язку даного диференційного рівняння. Аналіз результатів моделювання, прямий метод Ейлера, розв’язок диференціального рівняння в Mathcad.

    контрольная работа [59,1 K], добавлен 30.11.2009

  • Особливості складання (у вигляді електронної таблиці) оптимального плану виробництва (для максимізації прибутку). Створення XML-документу, з включенням даних табличної моделі. Характеристика розробки DTD-документу, описуючого структуру XML-документа.

    контрольная работа [2,6 M], добавлен 19.02.2010

  • Загальні відомості про обчислювальний кластер. Розробка імітаційної схеми кластера, моделі обчислювальної системи, керуючої системи, обчислювального завантаження потоком задач. Схема роботи алгоритмів планування. Результати експериментального дослідження.

    курсовая работа [2,0 M], добавлен 06.09.2011

  • Побудова математичної моделі екосистем. Вхідні та вихідні змінні. Модель поширення забруднення підземних вод за моделлю Фелпса-Стрітера. Вибір програмного продукту. Аналіз результатів моделювання. Оптимальне управління функціонуванням екосистеми.

    курсовая работа [1,1 M], добавлен 11.04.2015

  • Розгляд принципів моделювання для дослідження роботи гідроакумулятора в системах водопостачання. Опис математичної моделі для підбору гідроакумулятора. Створення графічної моделі процесу вмикання та вимикання насосу, комп’ютерної в середовищі Delphi.

    курсовая работа [392,4 K], добавлен 08.12.2015

  • Аналіз технічного забезпечення, вибір інструментального програмного забезпечення та середовища розробки програм. Створення класів для реалізації необхідних функцій для роботи програмного засобу. Розробка інтерфейсу для користувача та лістинг програми.

    курсовая работа [343,9 K], добавлен 24.08.2012

  • Висвітлення та розкриття поняття 3д-моделювання, його видів та особливостей. Аналіз основних видів моделювання, їхнє практичне використання, переваги та недоліки кожного виду. Розгляд найпоширеніших програм для створення 3-д зображень та їх функції.

    статья [801,7 K], добавлен 18.08.2017

  • Модель – це прообраз, опис або зображення якогось об'єкту. Класифікація моделей за способом зображення. Математична модель. Інформаційна модель. Комп'ютерна модель. Етапи створення комп'ютерної моделі.

    доклад [11,7 K], добавлен 25.09.2007

  • Визначення найкращого режиму роботи системи обробки повідомлень. Представлення моделі у вигляді системи масового обслуговування. Визначення структури моделі. Обмеження на зміну величин. Програмна реалізація імітаційної моделі. Оцінка адекватності.

    курсовая работа [153,9 K], добавлен 29.01.2013

  • Розробка програми для реалізації системи, що забезпечує автоматичне управління та моделювання зміни музичних програм на радіостанції з використанням засобів Microsoft Visual. Програмна реалізація інтерфейсу та процесу моделювання роботи системи.

    курсовая работа [1,7 M], добавлен 08.01.2012

  • Використання комп'ютерного моделювання. Особливості проектування моделі автоматичної системи управління технологічним процесом. Визначення кількості пропущених через відмову даних та часу знаходження системи в загальмованому стані. Опис алгоритму моделі.

    контрольная работа [501,7 K], добавлен 13.01.2014

  • Огляд та варіантний аналіз чисельних методів моделювання, основні поняття і визначення. Опис методів моделювання на ЕОМ, метод прямокутників і трапецій. Планування вхідних та вихідних даних, аналіз задач, які вирішуються при дослідженні об’єкта на ЕОМ.

    курсовая работа [373,6 K], добавлен 30.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.