История развития оперативной памяти

Сущность оперативной памяти как энергозависимой среды, в которую загружаются и в которой находятся прикладные программы и данные в момент. Основные способы оптимизации передаваемой информации. Процесс изобретения SDRAM и Rambus, их преимущества.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 27.11.2013
Размер файла 540,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. История развития оперативной памяти

1.1 Быстрая память

1.2 Новая высота -- SDRAM

1.3 Rambus

1.4 Развитие DDR SDRAM

2. Устройство и принцип функционирования оперативной памяти

3. Перспектива развития

3.1 FeRAM

3.2 Ovonic Unified Memory (OUM)

3.3 Наноструктуры

Заключение

Список литературы

Введение

Оперативная память является одной из важнейших составляющих любого компьютера. Название «оперативная» эта память получила благодаря своему быстродействию, ведь памяти процессора практически не приходится ждать при чтении или записи данных память. Оперативная память - это энергозависимая среда, в которую загружаются и в которой находятся прикладные программы и данные в момент, пока пользователь с ними работает. Когда работа закончена, информация удаляется из оперативной памяти. Если необходимо обновление соответствующих дисковых данных, они перезаписываются. Это может происходить автоматически, но часто требует команды от пользователя. При выключении компьютера вся информация из оперативной памяти стирается.

От объема установленной в ПК оперативной памяти напрямую зависит, с какими программами и приложениями пользователь сможет на нем работать, а так же скорость работы компьютера, ведь помимо программного обеспечения с которым мы работаем, существуют и фоновые программы, также потребляющие оперативную память. При малом объеме оперативной памяти многие программы либо не будут работать вовсе, либо станут работать очень медленно. В связи с этим трудно недооценить значение оперативной памяти. Однако до недавнего времени эта область компьютерной индустрии практически не развивалась. Взять хотя бы видео -, аудиоподсистемы, производительность процессоров и. т. д. Усовершенствования были, но они не соответствовали темпам развития других компонентов, и сама технология производства оставалась прежней, исчерпавшей свой ресурс. Память становилась узким местом компьютера, а, как известно, быстродействие всей системы определяется быстродействием самого медленного из элементов. Ее усовершенствование позволило значительно снизить на нее цену и значительно увеличить ее объем.

Модернизация оперативной памяти необходима, так как растут требования к программному обеспечению. В настоящее время новые типы памяти разрабатываются намного быстрее, чем ранее, и каждый тип имеет свой ключ несовместимый с разъемами для других типов памяти.

Объектом данной курсовой работы является оперативная память.

Предметом, в свою очередь, является изучение принципа работы и сравнительный анализ разных типов оперативной памяти.

Цель курсовой работы состоит в изучении функционирования основных типов оперативной памяти, а так же параметров применяемых в системных платах персонального компьютера.

Для достижения данной цели были поставлены следующие задачи:

1. рассмотреть этапы развития оперативной памяти;

2. изучить типы оперативной памяти;

3. составить сравнительную характеристику наиболее популярных типов памяти;

4. оценить перспективу развития;

5. изучить подобранную техническую литературу по данной теме.

память прикладной программа sdram

1. История развития оперативной памяти

Оперативная память - это одна из трех (оперативная, постоянная и внешняя) разновидностей памяти, которые используются в современных компьютерах. Она больше предназначена для обработки, чем для хранения информации. История появления и развития оперативной памяти тесно связана с развитием ЭВМ, так как постоянно развивающаяся элементарная база требовала все больше памяти для производимых ЭВМ операций, да и сами конструкции вычислительных машин разных поколений имели существенные отличия, и оперативная память предыдущих поколений была не совместима с более новыми поколениями.

Свое начало ЭВМ берет с 1834 года, когда Чарльз Бэббидж начал разработку Аналитической машины. Одна из важных частей этой машины называлась «Склад», и предназначалась для хранения промежуточных результатов вычислений. Результаты запоминались с использованием валов и шестерней.

ЭВМ первого поколения можно считать ещё экспериментальными, поэтому в них использовалось множество разновидностей запоминающих устройств: на ртутных линиях задержки, электронно-лучевых и электростатических трубках. В качестве оперативной памяти использовался также магнитный барабан: он обеспечивал достаточное для компьютеров тех времён быстродействие, и использовался в качестве основной памяти для хранения программ и вводимых данных.

Второе поколение требовало более технологичных в производстве схем оперативной памяти. Наиболее распространённым видом памяти была память на магнитных сердечниках. Так было до тех пор, пока объем памяти был невелик, и для размещения ее элементов не требовалось большого пространства. Только тогда, когда возникла потребность в оперативной памяти большего объема, удовлетворить которую было невозможно с помощью обычных модулей, для реализации элементов памяти прибегли к интегральным технологиям.

Начиная с третьего поколения большинство узлов компьютеров, стали выполнять на интегральных микросхемах, в том числе и оперативную память.

Современные персональные компьютеры в соответствии с принятой классификацией надо отнести к ЭВМ четвертого поколения, т.е. это поколение компьютерной техники, разработанное после 1970 года. Именно в тот год молодая компания Intel выпустила первый модуль DRAM (Dynamic Random Access Memory, динамическая память со случайным доступом) памяти, под номером 1103. В основе этой памяти лежал очень маленький транзистор и конденсатор, а ее изобретателем был Robert H. Dennard, работавший в исследовательском центре IBM. Вся оперативная память, используемая в персональных компьютерах, является памятью со случайным доступом (RAM). Это значит, что процессор может обращаться к любому байту памяти по номеру столбца и строки, не затрагивая остальные байты. Всего существует два основных вида RAM: динамическая (DRAM) и статическая (SRAM). Различия заключается в том, что динамическая память нуждается в частом обновлении содержимого (этим занимается контроллер памяти) иначе конденсатор разряжается, и информация в памяти теряется. В статической памяти вместо конденсатора использовался триггер на биполярных транзисторах. Получив один раз заряд, такая ячейка способна хранить информацию, пока есть питание. Но когда питание отключается, оба типа памяти все «забывают». Статическая память быстрее динамической, однако, стоит значительно дороже, поэтому она нашла свое применение в кэш-памяти процессора, где сейчас и используется.

На первых персональных компьютерах вся оперативная память была представлена одним блоком микросхем памяти. Причем память работала с той же частотой что и процессор. С появлением 286 и 386 процессоров ситуация изменилась: память перестала успевать поставлять процессору данные - так появилось понятие временных задержек. Процессор ждал несколько тактов, пока память передавала ему информацию. Первая память имела время доступа не менее 100 нс. Схема доступа к такой памяти выглядела как 5-5-5-5, то есть запись/чтение из памяти осуществлялись каждый пятый такт. Напряжение питания ОЗУ составляло 5 В.

1.1 Быстрая память

Поскольку память стала «узким местом» в компьютере, были придуманы несколько способов оптимизации передаваемой информации - специальная быстрая память - FPM. Суть FPM заключалась в том, что существовала область ОЗУ, к которой процессор мог обращаться без циклов ожидания (там использовались специальные микросхемы памяти). Принцип работы был следующий: если требовалось записать или прочитать информацию из определенной страницы памяти, и предыдущая команда по работе с памятью использовала информацию с той же страницы, цикла ожидания не требовалось. Однако когда программа обращалась к другой странице памяти, циклы ожидания все равно были. Стандартное время доступа к такой памяти было 60-70 нс. В FPM также использовалась другая схема доступа: 5-3-3-3, работающая даже с частотой системной шины 66 МГц. Постраничная адресация памяти и ее различные разновидности использовались до 1994 года.

В 1994 году появилась новая архитектура памяти: EDO (Extended Data Output). По сути, это просто усовершенствованный вид FPM. EDO частично совмещала такты чтения, за счет чего появилась возможность считывания следующей порции данных не дожидаясь окончательной передачи предыдущих. Схема чтения у EDO была уже 5-2-2-2. Она могла работать даже с частотой шины 75 МГц. Память этого типа использовалась в системных платах до Intel 430 FX, то есть и в 486 компьютерах.

VIA Technologies, пытаясь отвоевать часть рынка материнских плат у Intel, предложила свою реализацию технологии EDO - BEDO (burst EDO - EDO с пакетной пересылкой данных). Особенностью этой памяти было то, что при первом обращении считывалось сразу несколько последовательных слов. BEDO работает по схеме 5-1-1-1 (всего 8 тактов вместо 20, как у простого DRAM). Этот тип RAM поддерживался чипсетами Intel 430 HX и VIA 580VP/590VP. Однако такая память не получила широкого распространения, и ее сменила SDRAM.

1.2 Новая высота -- SDRAM

Так как Pentium был «революционным» процессором, ему нужна была новая «революционная» память. В 1997 году на смену EDO приходит SDRAM (Synchronous DRAM). Впервые поддержка этой памяти была реализована в чипсетах Intel TX и VX. Чипы SDRAM использовали новейшие технологии, применявшиеся при изготовлении кэш памяти. За счет этого они работали по схеме 5-1-1-1, такой же, как в BEDO. Первоначально SDRAM разрабатывалась для видеокарт, однако с удешевлением стоимости производства памяти она «перекочевала» в ОЗУ. Главной особенностью SDRAM стала синхронизация работы с процессором. До этого вся память работала асинхронно, то есть, обращаясь к памяти, процессор «не знал», сколько времени потребуется памяти для ответа, и ему ничего не оставалось, как ждать. С появлением синхронной памяти процессор уже «знал», сколько тактов ему ждать, и он мог начать выполнять следующую операцию, не дожидаясь ответа RAM, при условии, что последующая операция не использует результаты предыдущей команды. Первоначально память работает на частоте 66 МГц.

Но и этого вскоре оказалось мало, и тогда Samsung, представил спецификацию SDRAM II или DDR SDRAM (Double Data Rate SDRAM). Ничего идеологически нового в DDR памяти не появилось, но она стала обеспечивать удвоенную пропускную способность за счет работы на обеих границах тактового сигнала (подъем и спад). Питание такой памяти было 2.5 В..

1.3 Оперативная память от компании Rambus

Компания Rambus еще в 1995 году разработала новый вид памяти, который начал применяться в высокопроизводительных видеокартах и в приставке Nintendo 64. Память получила название RDRAM (Rambus DRAM). Год спустя Intel подписывает соглашение с Rambus, и в 1999 году начинается продвижение новой памяти. Intel решила, что от DDR SDRAM добиться больших скоростей довольно сложно и для нового процессора Pentium IV требуется другая память. Но DDR не исчез с рынка, ее поддержкой активно занялись AMD, VIA и другие производители.

Можно выделить три основных отличия этой памяти от памяти предыдущих поколений:

увеличение тактовой частоты за счет сокращения разрядности шины;

одновременная передача номеров строки и столба ячейки;

увеличение количества банков для усиления параллелизма.

Повышение тактовой частоты вызывает резкое усиление всевозможных помех и в первую очередь электромагнитной интерференции, интенсивность которой в общем случае пропорциональна квадрату частоты. Это обстоятельство налагает чрезвычайно жесткие ограничения на топологию и качество изготовления печатных плат модулей микросхемы, что значительно усложняет технологию производства и себестоимость памяти. С другой стороны, уровень помех можно значительно понизить, если сократить количество проводников, т.е. уменьшить разрядность микросхемы. Именно по такому пути компания Rambus и пошла, компенсировав увеличение частоты уменьшением разрядности шины данных до 16 бит (плюс два бита на ECC). Таким образом, Direct RDRAM обгоняет DDR по частоте, но во столько же раз отстает от нее в разрядности. Но при этом себестоимость DDR заметно дешевле.

Рис. 1 Rambus DRAM

Второе преимущество RDRAM - одновременная передача номеров строки и столбца ячейки - при ближайшем рассмотрении оказывается вовсе не преимуществом, а конструктивной особенностью. Это не уменьшает латентности доступа к произвольной ячейке (т.е. интервалом времени между подачей адреса и получения данных), т.к. она, латентность, в большей степени определяется скоростью ядра, а RDRAM функционирует на старом ядре.

Большое количество банков позволяет (теоретически) достичь идеальной конвейеризации запросов к памяти. Для потоковых алгоритмов последовательной обработки памяти это хорошо, но во всех остальных случаях RDRAM не покажет никаких преимуществ перед DDR-SDRAM. Производительность памяти реально ощущается лишь при обработке гигантских объемов данных, например редактировании изображений полиграфического качества в PhotoShop.

Главным недостатком RDRAM было чрезвычайно требовательное к качеству производство и сложность изготовления микросхем из-за уменьшения размера элементов. Производители не спешили начинать выпускать память Rambus, производить DDR было гораздо выгоднее, так как требовалось платить большие отчисления в Rambus для получения лицензии и менять производственные линии. А покупатели не горели желанием приобретать Rambus из-за дороговизны и необходимости покупать модули парами. Первые модули Rambus были 16-разрядными и работали на удвоенной частоте шины: 800 МГц (РС800) с пропускной способностью 1.6 ГБ/с и 1066 МГц (РС1066). Затем появились 32-разрядные модули с эффективными частотами 800 МГц и 1066 МГц, которые получили название DR DRAM (Direct Rambus DRAM), где возросла скорость передачи данных, и изменился протокол.

В это время VIA и AMD вполне успешно продолжали развитие DDR, а Intel испытывала серьезные трудности с чипсетом i820, который так и не смог нормально работать с памятью Rambus. Корпорации пришлось развивать поддержку медленной памяти SDRAM. И только в середине 2000 года на свет появился чипсет i815, официально поддерживающий PC133 SDRAM, а позднее появился чипсет i845 для Pentium 4, поддерживающий оба типа памяти.

1.4 Развитие DDR SDRAM

На тот момент в большинстве компьютеров использовался DDR SDRAM, однако Intel не успокоилась и принялась за стандарт DDR2, который уже в том году был реализован в чипсетах i915/i925. Учтя опыт работы с Rambus, Intel уже не делает ставку только на DDR2, и новые чипы по-прежнему будут поддерживать обычную DDR. Модули DDR2 памяти несколько отличаются по конструкции и требуют меньшее питание. AMD и VIA пока что не планируют переход к новой памяти и продолжают использовать DDR.

У DDR3 уменьшено на 40% потребление энергии по сравнению с модулями DDR2, что обусловлено пониженным напряжением питания ячеек памяти. Снижение напряжения питания достигается за счёт использования 90-нм техпроцесса при производстве микросхем и применения транзисторов с двойным затвором Dual-gate.

Модули DIMM с памятью DDR3, имеющие 240 контактов, не совместимы с модулями памяти DDR2 электрически и механически. Ключ расположен в другом месте, поэтому модули DDR3 не могут быть установлены в слоты DDR2, сделано это с целью предотвращения ошибочной установки одних модулей вместо других и их возможного повреждения вследствие несовпадения электрических параметров. В переходный период производители выпускали материнские платы, которые поддерживали установку и модулей DDR2, и DDR3, имея соответствующие разъёмы (слоты) под каждый из двух типов, но одновременная работа модулей разных типов не допускалась.

Передача данных по-прежнему осуществляется по обоим полупериодам синхросигнала на удвоенной «эффективной» частоте относительно собственной частоты шины памяти.

JEDEC представила информацию о DDR4 на конференции MemCon в Токио. По заявлению производителей она должна иметь повышенную частоту (от 2133 до 4266 МГц) и пониженное напряжение (от 1,1 до 1,2 В) по сравнению с предыдущими стандартами, предполагаемый техпроцесс -- 32 и 36 нм. Массовое производство намечалось на 2015 год, а первые образцы для создания контроллеров памяти и совместимых платформ -- на 2011 год. В январе 2011 компания Samsung впервые представила модуль DDR4. Техпроцесс составил 30 нм, объём памяти 2 Гб, а напряжение 1,2 В. Позднее Hynix представила свой первый модуль DDR4, который превзошёл модуль Samsung по частоте (2400 МГц вместо 2133). Hynix заявила о 80%-м увеличении производительности памяти по сравнению с DDR3-1333. Как и предыдущие версии DDR4 не совместима с DDR3.

2. Устройство и принципы функционирования оперативной памяти

Ядро микросхемы динамической памяти состоит из множества ячеек, каждая из которых хранит всего один бит информации. На физическом уровне ячейки объединяются в прямоугольную матрицу, горизонтальные линейки которой называются строками, а вертикальные - столбцами, или страницами.

Линейки представляют собой обыкновенные проводники, на пересечении которых находится ячейки - несложное устройство, состоящее из одного транзистора и одного конденсатора.

Конденсатору отводится роль непосредственного хранителя информации. Правда, хранит он очень немного - всего один бит. Отсутствие заряда на обкладках соответствует логическому нулю, а его наличие - логической единице. Транзистор же играет роль "ключа", удерживающего конденсатор от разряда. В спокойном состоянии транзистор закрыт, но, стоит подать на соответствующую строку матрицы электрический сигнал, как спустя мгновение-другое (конкретное время зависит от конструктивных особенностей и качества изготовления микросхемы) он откроется, соединяя обкладку конденсатора с соответствующим ей столбцом.

Чувствительный усилитель (sense amp), подключенный к каждому из столбцов матрицы, реагируя на слабый поток электронов, устремившихся через открытые транзисторы с обкладок конденсаторов, считывает всю страницу целиком. Именно страница является минимальной порцией обмена с ядром динамической памяти. Чтение/запись отдельно взятой ячейки невозможно. Действительно, открытие одной строки приводит к открытию всех, подключенных к ней транзисторов, а, следовательно, - разряду закрепленных за этими транзисторами конденсаторов.

Чтение ячейки деструктивно по своей природе, поскольку sense amp (чувствительный усилитель) разряжает конденсатор в процессе считывания его заряда. Несмотря на использование высококачественных диэлектриков с огромным удельным сопротивлением, заряд стекает очень быстро, ведь количество электронов, накопленных конденсатором на обкладках, относительно невелико. К тому же, ввиду микроскопических размеров, а, следовательно, емкости конденсатора записанная на нем информация хранится крайне недолго, - буквально сотые, а то тысячные доли секунды. Поэтому во избежание потери информации микросхеме памяти вновь приходится перезаписывать считанную строку.

Например, в компьютерах XT/AT регенерация оперативной памяти осуществлялась по таймерному прерыванию каждые 18 мс через специальный канал DMA (контроллера прямого доступа). И всякая попытка остановки аппаратных прерываний на больший срок приводила к потере и/или искажению оперативных данных, да к тому же снижало производительность системы, поскольку во время регенерации память была недоступна. Сегодня же регенератор чаще всего встраивается внутрь самой микросхемы, причем перед регенерацией содержимое обновляемой строки копируется в специальный буфер, что предотвращает блокировку доступа к информации.

В модуле, вместе с микросхемами динамической памяти, обычно установлена и маленькая микросхемка EEPROM (электрически перепрограммируемое постоянное запоминающее устройство) с последовательным доступом, где хранятся настройки для этого модуля. Это микросхема SPD (Serial Presense Detect) - схема последовательного детектирования.

Для устойчивой работы и безошибочного считывания данных из микросхем необходимо выдержать определенные временные параметры (задержки) между различными управляющими сигналами. В программе конфигурации SETUP компьютера имеется возможность настройки параметров памяти -- как автоматически (опция «By SPD»), так и вручную.

В случае автоматической настройки данные считываются из микросхемы SPD, и это гарантирует устойчивую работу модулей. Ручные настройки могут понадобиться при разгоне (оверклокинге) системы. При этом задержки принудительно уменьшаются.

3. Перспектива развития

Итак, несмотря на очевидные достоинства, память имеет серьезные недостатки, препятствующие дальнейшему расширению области ее применения. Поэтому разработчики пытаются найти альтернативные решения в рассматриваемой области. Конечно, их взоры в первую очередь обращены на так называемые наследуемые технологии, то есть на усовершенствование существующих разработок, что не потребует значительных изменений в технологическом процессе производства готовой продукции. Так что можно не сомневаться в том, что фирмы, выпускающие флэш-память, будут стараться использовать весь потенциал этого типа носителей перед переходом на накопители другого типа и продолжат совершенствовать традиционную флэш-технологию.

Однако сегодня на пороге промышленной реализации стоит уже целый ряд альтернативных технологий хранения данных, многие из которых готовы к внедрению и ожидают только благоприятной рыночной ситуации.

3.1 FeRAM

Развитие оперативной памяти, пожалуй, бесконечный процесс, целью которого является увеличение частоты работы, ширины шины, а также уменьшение времени доступа, а, в некоторых случаях, и увеличение устойчивости к воздействиям извне, например, радиации. В настоящий момент требования к памяти не изменились, но к перечисленным добавились новые, удовлетворить которые намного сложнее, чем это было возможно ранее. Среди них одним из важнейших является энергонезависимость и возможность встраивать память огромного объема в процессоры. Движение в этом направлении начато уже достаточно давно, и его результатом стало появление таких перспективных технологий, как флэш-память, FeRAM. Оперативная флэш-память позволяет практически бесконечно хранить записанную информацию без необходимости проведения циклов регенерации, которые необходимы для DRAM. Это может принести пользователям многочисленные преимущества, вплоть до моментальной загрузки операционной системы после включения питания компьютера. Принцип действия этого вида памяти основан на зависимости сопротивления материала от приложенного магнитного поля. FeRAM умело сочетает простоту и надежность в эксплуатации DRAM, энергонезависимость MRAM и времена хранения информации флэш-памяти. Поскольку она включает практически все преимущества перечисленных видов памяти, то по праву может называться будущим современных технологий памяти, на чем, собственно, и делают акцент производители. Процесс производства в настоящее время отличается тем, что от момента разработки технологии до момента массового выпуска продуктов проходит очень маленький период времени. Единственным и, пожалуй, главным движущим фактором в этом процессе является выпуск на рынок конкурентоспособного продукта. В этом стремлении выигрывает тот «игрок», который быстрее своих конкурентов выпустит на рынок готовый продукт, удовлетворяющий требованиям потребителей по доступным ценам. FeRAM не является исключением в этом «соревновании». Производители ферроэлектрической памяти разделились на два конкурирующих между собой лагеря. Одна часть, возглавляемая постоянными партнерами в производстве памяти Infineon Technologies AG и Toshibа, разрабатывает технологию памяти, основанную на производственном процессе 1T/1C (1 транзистор / 1 конденсатор) для рынка мобильных устройств, персональных компьютеров и PDA. Производство основано на классе материалов PZT (Provskite lead zirconate titanate), которые были лицензированы фирмой Toshiba у фирмы Ramtron. Infineon также имеет кросслицензионные соглашения с Ramtron относительно использования разработанной этой фирмой технологии производства FeRAM. Технологию PZT у Ramtron также лицензировали фирмы Hitachi и Rohm. Второй фирмой, которая занималась разработкой ферроэлектрической памяти на основе оксида стронциума-висмута-танталум и оксида стронциума-висмута-ниобия, была Symetrix. Далее лицензионные соглашения были заключены между Symetrix и фирмами Matsushita, NEC, Siemens, Motorola, Hynix и Micron. Эти фирмы, главным образом, занимаются разработкой конкурентоспособных продуктов со встроенной FeRAM для рынка процессоров и микроконтроллеров. Основные игроки этой группы - это NEC и Matsushita, которые ведут разработки на основе технологического процесса 2T/2C. Это более ресурсоемкая технология производства памяти по сравнению с 1T/1C. Введение дополнительного транзистора и конденсатора в ячейку памяти обуславливает большую стабильность работы, но, в то же время, увеличивает площадь микросхемы той же конфигурации и поднимает цену продуктов, произведенных по такому процессу. Сначала давайте рассмотрим наиболее простой процесс 1T/1C, по которому производится львиная доля современной памяти. Ячейка ферроэлектрической памяти похожа на 1T/1C ячейку DRAM. Единственное отличие заключается в том, что в DRAM одна из обкладок конденсатора заземлена, а в FeRAM она подключена к передающей линии (driveline). Запись в ячейку памяти DRAM происходит следующим образом: на линию данных (bitline) выставляется значение сигнала, который следует записать в конденсатор. Для записи 1 на линию данных подается положительное напряжение питания Vdd. После этого на управляющую линию (wordline) подается сигнал, который открывает полевой транзистор. Конденсатор заряжается, и мы имеем сохраненный бит информации. В ячейке FeRAM запись 1 происходит другим образом. Для этого на передающую линию подается положительное напряжение питания, линия данных заземляется, а полевой транзистор находится в открытом состоянии. Бинарной "1" соответствует точка 1 на графике петли гистерезиса Запись "0" происходит подобным образом. В DRAM линия данных подключается к земле, а транзистор открывается. В этом случае конденсатор полностью разряжается, что и соответствует бинарному "0". В FeRAM запись 0 происходит после подачи положительного напряжения питания на линию данных. В этом случае передающая линия подключается к земле, а транзистор держится в открытом состоянии. Подводя итог; под различиями в работе ячеек DRAM и FeRAM, можно сказать, что иной принцип работы ячейки ферромагнитной памяти является результатом того, что бинарным "1" и "0" соответствуют отрицательное и положительное значения поляризации, а не нулевой и единичный заряд конденсатора, как это происходит в случае с DRAM. Значение ячейки памяти FeRAM можно определить после подачи положительного напряжения питания Vdd на передающую линию. Если начальная поляризация ферромагнетика негативная (позитивная), то чтение ячейки возвращает маленькое (большое) значения сигнала на линии данных. Одним из негативных свойств ячейки ферромагнитной памяти является то, что, после чтения содержимого, данные в ней перестают сохраняться. То есть, после чтения ячейки, в ней необходимо обновить значение поляризации.

Ячейка ферромагнитной памяти, производимая по схеме 2T/2C, состоит из двух ячеек 1T/1C. Также как и ячейка 1T/1C, ячейка 2T/2C имеет управляющую линию (WordLine) и передающую линию, но данные с конденсаторов считываются через раздельные линии данных. За счет этого достигается большая надежность хранения информации. А становится возможным это благодаря тому, что данные, хранящиеся в двух конденсаторах всегда противоположные. При этом напряжение между шиной данных и комплиментарной ей всегда будет либо V0 -- V 1 , либо V1 - V0, где

-

V - напряжения на линии данных и комплиментарной ей, C0 и C1 - емкости конденсаторов, из которых состоит ячейка, CBitLine - паразитная емкость шины данных, а Vdd - положительное напряжение питания. Значения напряжения между линиями зависит от того, где хранится "1" в C0 или C1. Сигнал с конденсаторов подается на усилитель, после которого считывается значение ячейки 2T/2C. Существенное увеличение размеров ячейки 2T/2C также играет немаловажную роль. Это приводит к тому, что в настоящий момент не может быть достигнуто высокой интеграции такой памяти. Наибольшие структуры, произведенные по такой технологии, имеют объем 1 мегабит.

С другой стороны, повышенная надежность таких систем позволяет с успехом использовать их в нечеловеческих условиях, в условиях безвоздушного пространства. Данная система смогла бы работать в космосе, так как может выдерживать изрядные доли радиации. FeRAM прекрасно зарекомендовала себя в таких условиях, что открывает неизведанные горизонты для использования этой технологии. Энергонезависимость, а, следовательно, и малое потребление энергии становятся еще одним преимуществом FeRAM в борьбе за лидерство на рынке технологий. В настоящий момент мы наблюдаем процесс коммерциализации космических исследований, суть которого заключается не только в запуске коммерческих космических аппаратов, но и в участии транснациональных корпораций в национальных космических программах.

Итак, о продуктах, выпущенных на рынок производителями. Toshiba совместно с Infineon Technologies выпустила прототип 8-мегабитной микросхемы памяти FeRAM. 32-мегабитная микросхема в начале 2002 года. В настоящий момент ведутся разработки 64-мегабитных и 128-мегабитных микросхем памяти. 32-мегабитные кристаллы будут производится по 0.25-микронному процессу, с последующим переходом на 0.20-микронный процесс. 8-мегабитные кристаллы имеют площадь 76 квадратных миллиметров и цикл записи информации от 100 до 160 нс. Фирмы NEC и Fujitsu, занимающиеся разработками встраиваемой FeRAM для процессоров и микроконтроллеров по процессу 2T/2C, достигли не таких значительных успехов на пути увеличения объема памяти, как фирмы Infineon и Toshiba. Последние достижения NEC в этой области - это 1-мегабитная структура, которая, как ожидается, будет встраиваться в смарт-карты. Структура будет производиться по 0.35-микронному процессу, и иметь площадь 18.7 квадратных миллиметра. Это не значит, что NEC существенно отстала в процессе производства от своих конкурентов, просто размеры ячейки 2T/2C, значительно (практически, в 2 раза) превосходят размеры ячейки 1T/1C, на основе которых производят память Toshiba и Infineon Technologies.

Подводя итог всему вышесказанному, можно выделить то, что FeRAM имеет неоспоримые преимущества над существующими технологиями. С другой стороны, память имеет ряд существенных недостатков. Большинство из них (старение и усталость материала, предпочтение диэлектриком значения сигнала и релаксация) - это результат особых свойств ферромагнитных материалов, и от них в настоящий момент достаточно сложно избавиться. Увеличившаяся сложность производства ферроэлектрической памяти объясняется, скорее, особенностью хранения информации в FeRAM в отличие от DRAM. Производственный процесс 2T/2C позволяет достичь большей надежности памяти, которая может быть применима в условиях космоса, однако в несколько раз усложняет производство памяти по такому процессу и увеличивает цену FeRAM.

3.2 Ovonic Unified Memory (OUM)

Над подобной технологией работает также компания Royal Philips Electronics.

Речь идет о разработке твердотельной памяти на аморфных полупроводниках (Ovonic Unified Memory, OUM). В основу работы такой памяти положена технология фазового перехода, аналогичная принципу записи на перезаписываемые диски CD-RW или DVD-RW, при котором в электрическом поле фазовое состояние вещества изменяется из кристаллического в аморфное, причем изменение структуры сохраняется при отключении тока.

Рис. 2 Ovonic Unified Memory в электрическом поле фазовое состояние

Принципиальное отличие OUM-памяти от традиционной оптической записи заключается в том, что если в оптических носителях применяется нагрев лазером, то в OUM нагрев осуществляется непосредственно электрическим током. Процесс считывания, в свою очередь, основан на разнице отражающей способности вещества в разных состояниях, воспринимаемой датчиком дисковода. По аналогичному принципу действует и память Philips, в которой используется смесь иридия с сурьмой. В предложенной компанией технологии участок материала, выполняющий роль ячейки памяти, окружен слоем диоксида кремния, который, во-первых, обладает малой теплопроводностью, а во-вторых, позволяет предотвратить химические реакции на поверхностях соприкосновения и предоставляет таким образом дополнительную свободу в выборе вещества электродов. Изменение фазового состояния происходит очень быстро, для этого требуется примерно 30 нс. В компании полагают, что благодаря подобным функциональным характеристикам разработка вполне может рассматриваться в качестве альтернативы нынешней DRAM, а в дальнейшем претендовать на роль так называемой унифицированной памяти.

Как заявляют в Intel, в отличие от флэш-памяти, OUM теоретически обладает более высокой надежностью и плотностью хранения данных, а также повышенным быстродействием -- до 100-200 нс. Отметим, что максимальное число циклов записи/стирания в OUM-памяти превышает 10 трлн, что на несколько порядков больше, чем у флэш-памяти. Однако, несмотря на то, что в Intel заявляют пяти лет, промышленное производство таких чипов, по оценкам специалистов, начнется не раньше следующего десятилетия.

Рис. 3 OUM о работах над OUM-памятью уже в течение более

3.3 Наноструктуры

Исследования, проведённые специалистами Университета Пердью (Уэст-Лафайетт, штат Индиана), открывают пути к созданию новых технологий производства памяти. Нанокольца - это новые наноструктуры, открытые в лабораториях университета, которые позволят повысить быстродействие памяти и плотность упаковки информации, при том, что стоимость этих решений будет приемлема для массового рынка. Сегодня разработчики устройств хранения данных, как и вся индустрия электроники, возлагают надежды на достижения нанотехнологий. Миниатюризация компонентов до десятитысячных долей толщины человеческого волоса даёт возможность выпускать все более быстродействующие микросхемы. Но технологический процесс до сих пор находится в стадии разработки, а с уменьшением компонентов растёт стоимость их производства. Химик из Университета Пердью Александр Вэй нашёл поразительно простое и дешёвое решение проблемы хранения данных. Исследовательская группа Вэя разработала метод создания микроскопических, диаметром значительно меньше ста нанометров, колец из частиц кобальта. Эти кольца могут сохранять намагниченность при комнатной температуре и, самое главное, формируются самостоятельно. Кобальтовые частицы представляют собой микромагниты, которые имеют северный и южный полюса. Формирование колец происходит, когда частицы кобальта оказываются в непосредственной близости друг от друга и притягиваются под воздействием магнитных сил. Следовало полагать, что частицы соберутся в цепочку, но при определённых условиях вместо этого образуются кольца.

Рис. 4 Магнитные поля отдельных частиц нанокольца сливаются в единый поток

После образования кольца частицы кобальта ориентируются таким образом, что силовые линии их магнитных полей образуют замкнутую структуру. Таким образом, кольцо не оказывает магнитного влияния на объекты, находящиеся за его пределами, что обещает отсутствие помех для других ячеек будущей памяти. Магнитное поле в кольце может быть ориентировано в двух направлениях по часовой и против часовой стрелки, таким образом, есть возможность кодировать двоичную информацию. Предварительные исследования показали, что влиять на направленность поля можно с помощью внешних магнитных сил. Создатели рассчитывают добиться этого, комбинируя нанокольца с нанопроводниками, с помощью которых возможно создавать чётко локализованные магнитные поля. Разработка исследователей из Университета Пердью может привести к созданию новых устройств долговременного хранения информации, а также энергонезависимой оперативной памяти. Большой плюс разработки кроется в том, что NRAM обладает плотностью, по крайней мере в теории, сходной с DRAM. DRAM состоит из некоторого числа конденсаторов, представляющие собой по сути две небольших металлических пластины с тонким слоем диэлектрика между ними. NRAM в этом схожа, обладая клеммами и электродами приблизительно такого же размера, что и пластины в DRAM, а нанотрубки между ними существенно меньших размеров, поэтому их размер никак не влияет на общий размер ячейки. Однако, существует минимальный размер, при котором можно создавать DRAM-чипы, ниже которого просто не будет хватать заряда, который ячейка сможет сохранить для чтения. NRAM судя по всему ограничен лишь современными техническими достижениями в литографии. Это означает, что NRAM может достичь большей плотности по сравнению с DRAM, что подразумевает удешевление производства, если станет возможным контролировать области нанесения углеродных нанотрубок по той же схеме, что и полупроводниковая промышленность контролирует размещение компонентов на кремнии.

Более того, в отличие от DRAM, NRAM не требует энергии для «обновления» данных, и будет удерживать данные даже после отключения питания. Дополнительное питание, требуемое для записи информации, гораздо ниже, чем у DRAM, накапливающей заряд на пластинах. Это означает, что NRAM будет конкурировать с DRAM не только за счет стоимости, но и благодаря меньшему потреблению энергии для запуска, и в итоге будет существенно быстрее (производительность операций записи в основном определяется необходимостью накопления полного заряда). NRAM теоретически может достичь производительности, сходной с SRAM, которая быстрее DRAM, но обладает значительно меньшей плотностью размещения, из-за чего и стоит гораздо дороже.

Заключение

В этой курсовой работе были решены все поставленные автором задачи. Я убедилась, что эта память является одним из важнейших компонентов компьютера. Ведь именно от нее во многом зависит быстродействие компьютера, а также программное обеспечение, которое мы сможем использовать. Не следует забывать и о том, что быстродействие оперативной памяти не зависит напрямую от её частоты, а скорее от структуры. В настоящее время разработано много видов оперативной памяти: высокоскоростной и более медленной, дорогой и подешевле. Какую память следует устанавливать на компьютер, должен решать сам пользователь, в зависимости от того, какие потребности он имеет. Но следует помнить, что быстроразвивающаяся компьютерная отрасль, в том числе программное обеспечение, предъявляют все большие требования к компьютерам, в том числе и к оперативной памяти.

Итак, подведём итоги сравнения оперативной памяти:

Самой быстродействующей является RDRAM (Rambus DRAM), она работает быстрее SDRAM приблизительно в три раза. Но, не смотря на это RDRAM уступила противостояние DDR RAM. Все дело в цене производства, стабильности, тепловыделении и главное, в размерах лицензионных выплат, которые шли в доход Rambus, что делало RDRAM все менее и менее привлекательной для производителей компьютерной памяти и системных чипсетов. В настоящее время подобная память преимущественно используется в игровых приставках PlayStation 2 и PlayStation 3. Исходя из того, что стоимость оперативной памяти RDRAM велика, проведем сравнительную характеристику памяти DRAM и SRAM.

Память DRAM:

Преимущества:

малое число элементов на одну ячейку, откуда высокая плотность

упаковки, большой объем памяти на одном кристалле;

малое потребление мощности.

Недостатки:

необходимость периодического перезаряда элементов памяти, а это:

уменьшает быстродействие, усложняет схемы обслуживания памяти;

при отсутствии питания стирается вся информация.

Память SRAM:

Преимущества:

высокое быстродействие.

отсутствие регенерации.

Недостатки:

в связи с дороговизной память типа SRAM используется, в основном только как КЭШ L1 и L2.

маленькая плотность упаковки.

Список литературы

1. Михаил Гук Энциклопедия «Аппаратные средства IBM PC», «Питер» Москва 2003г.

2. Фигурнов В.Э «IBM PC для пользователя», «Инфра-М», Москва, 1998г.

3. Скотт Мюллер «Модернизация и ремонт ПК», «Вильямс», Москва 2000г.

4. Крис Касперски, книга «Техника оптимизации программ. Эффективное использование памяти»

5. www.citforum.ru

6. www.ixbt.com

7. www.nix-sys.ru/repair/78-memory.html

8. ru.wikipedia.org/wiki/оперативная_память

9. www.fcenter.ru/online.shtml?articles/hardware/motherboards/34724

10. www.compress.ru/article.aspx?id=17939&iid=831

Размещено на Allbest.ru

...

Подобные документы

  • Простейшая схема взаимодействия оперативной памяти с ЦП. Устройство и принципы функционирования оперативной памяти. Эволюция динамической памяти. Модуль памяти EDO-DRAM BEDO (Burst EDO) - пакетная EDO RAM. Модуль памяти SDRAM, DDR SDRAM, SDRAM II.

    реферат [16,1 K], добавлен 13.12.2009

  • Классификация компьютерной памяти. Использование оперативной, статической и динамической оперативной памяти. Принцип работы DDR SDRAM. Форматирование магнитных дисков. Основная проблема синхронизации. Теория вычислительных процессов. Адресация памяти.

    курсовая работа [1,5 M], добавлен 28.05.2016

  • История появления и развития оперативной памяти. Общая характеристика наиболее популярных современных видов оперативной памяти - SRAM и DRAM. Память с изменением фазового состояния (PRAM). Тиристорная память с произвольным доступом, ее специфика.

    курсовая работа [548,9 K], добавлен 21.11.2014

  • Улучшение параметров модулей памяти. Функционирование и взаимодействие операционной системы с оперативной памятью. Анализ основных типов, параметров оперативной памяти. Программная часть с обработкой выполнения команд и размещением в оперативной памяти.

    курсовая работа [99,5 K], добавлен 02.12.2009

  • Причины возникновения остаточной информации. Уничтожение информации как часть процесса обеспечения информационной безопасности. Метод воздействия магнитным полем и анализ устройств ликвидации информации. Ликвидация информации в оперативной памяти.

    реферат [124,3 K], добавлен 05.12.2012

  • Применение программы-имитатора динамического распределения оперативной памяти, выполнение ее на ОС Windows 7 в интегрированной среде. Разработка приложений с графическим интерфейсом Delphi XE3. Автоматическая загрузка, исполнение и добавление процессов.

    курсовая работа [284,7 K], добавлен 12.01.2015

  • Стратегии размещения информации в памяти. Алгоритмы распределения адресного пространства оперативной памяти. Описание характеристик модели и ее поведения, классов и элементов. Выгрузка и загрузка блоков из вторичной памяти. Страничная организация памяти.

    курсовая работа [708,6 K], добавлен 31.05.2013

  • Изучение свойств оперативной памяти, являющейся функциональной частью цифровой вычислительной машины, предназначенной для записи, хранения и выдачи информации, представленных в цифровом виде. Характеристика объема разных видов оперативной памяти.

    реферат [24,0 K], добавлен 30.12.2010

  • Обобщение основных видов и назначения оперативной памяти компьютера. Энергозависимая и энергонезависимая память. SRAM и DRAM. Триггеры, динамическое ОЗУ и его модификации. Кэш-память. Постоянное запоминающее устройство. Флэш-память. Виды внешней памяти.

    курсовая работа [1,7 M], добавлен 17.06.2013

  • Понятие и функциональные особенности запоминающих устройств компьютера, их классификация и типы, сравнительная характеристика: ROM, DRAM и SRAM. Оценка преимуществ и недостатков каждого типа оперативной памяти, направления и пути их использования.

    презентация [118,1 K], добавлен 20.11.2013

  • Хранение различной информации как основное назначение памяти. Характеристика видов памяти. Память типа SRAM и DRAM. Кэш-память или сверхоперативная память, ее специфика и области применения. Последние новинки разработок в области в оперативной памяти.

    презентация [2,1 M], добавлен 01.12.2014

  • Распределение оперативной памяти фиксированными, динамическими и перемещаемыми разделами. Распределение с использованием внешней памяти. Принципы рaботы матричного принтера. Проектирование символов и разработка программы, реализующей их вывод на печать.

    курсовая работа [241,3 K], добавлен 01.07.2011

  • Общая характеристика и функциональные особенности микросхем динамической памяти SDRAM, их классификация и типы, внутреннее устройство. Основные требования к конструкции корпусов. Отношение между тактовым сигналом и циклами передачи данных памяти RDRAM.

    презентация [277,4 K], добавлен 27.08.2013

  • Блок-схема, отражающая основные функциональные компоненты компьютерной системы в их взаимосвязи. Устройства ввода-вывода информации. Определение объема оперативной памяти. Применение карт памяти и flash-дисков для долговременного хранения информации.

    презентация [5,3 M], добавлен 28.01.2015

  • Описание нового вида памяти, в которой данные записываются по всему объему памяти при помощи различных углов наклона лазера. Техническое описание принципа работы голографической памяти. Основные части, обеспечивающие голографическое хранение информации.

    курсовая работа [3,1 M], добавлен 17.01.2010

  • Виды персональных компьютеров. Сущность понятия "процессор". Типы оперативной памяти. Особенности различных модулей SDRAM. Характеристики CD-R и CD-RW дисководов. Устройства управления ПЭВМ. Типы видеокарт: PCI, AGP. Звук в персональном компьютере.

    реферат [22,8 K], добавлен 10.11.2009

  • Базовая система ввода-вывода информации. Базовые функции интерфейса и настройки оборудования. Основные понятия и функционирование BIOS. Сведения о системной BIOS компьютера. Затенение ROM-памяти. Самотестирование процессора, модулей оперативной памяти.

    реферат [21,7 K], добавлен 12.12.2011

  • Использование микросхем SRAM при высоких требованиях к быстродействию компьютера для кеширования оперативной памяти и данных в механических устройствах хранения информации. Изучение устройства матрицы и типов (синхронная, конвейерная) статической памяти.

    реферат [71,0 K], добавлен 06.02.2010

  • Типовая структура ПЭВМ. Основные элементы системного блока персонального компьютера, их функциональное назначение. Управление обменом информации. Назначение оперативной памяти ПК, схема и принцип работы. Основные характеристики микросхем памяти.

    презентация [1,6 M], добавлен 01.05.2012

  • Разработка компьютерного устройства RAM-диск, позволяющего считывать, записывать и хранить информацию в модулях динамической памяти типа SDRAM под управлением микроконтроллера. Составление структурной и принципиальной схемы устройства, листинг программы.

    курсовая работа [3,9 M], добавлен 24.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.