Экспертные системы

Назначение и работа экспертных систем. Создание универсальных программ. Исследования в области искусственного интеллекта. Методы представления и алгоритмы управления ходом решения задачи. Способы формулирования проблемы. Автоматизация деятельности людей.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 09.12.2013
Размер файла 702,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Владимирский государственный университет имени А.Г. и Н.Г. Столетовых» (ВлГУ)

Кафедра информационных систем и программной инженерии

Реферат

по дисциплине «Современные образовательные технологии»

Экспертные системы

Выполнил:

ст. гр. Клб-110

Шустрова Н.В.

Принял:

Профессор кафедры ИСПИ

Хорошева Е.Р.

Владимир, 2013

Оглавление

искусственный интеллект автоматизация программа

Введение

Глава 1. Назначение и работа экспертных систем

1.1 Назначение экспертных систем

1.2 Структура и принципы работы экспертных систем

Глава 2. Разработка экспертных систем

2.1 Технология создания экспертных систем

2.2 Преимущество использования экспертных систем

2.3 Области применения экспертных систем

2.4 Описание экспертной системы версии ES 4.0 для высокочастотного помехозащищенного датчика

Заключение

Библиографический список

Приложение

Введение

В 1950 году английский математик Тьюринг поставил вопрос «могут ли машины думать?». В те времена предположение «да, через 50 лет» Тьюрингу показалось вполне осуществимым.

Стремительное развитие компьютеров и методов программирования, начиная со второй половины 20-го века, постоянно расширяет область применения вычислительной техники. Сейчас уже никого не удивляет стремление заменить человека машиной. Практически во всех областях деятельности, от простейших технологических операций на конвейерном производстве до экспертного анализа и принятия решений, автоматические системы работают не хуже средней руки специалиста. Более того, машина не подвержена так называемому «человеческому фактору» - допускаемыми людьми ошибкам, которые невозможно формализовать и предсказать.

Не исключением стала и интеллектуальная деятельность человека. С момента зарождения кибернетики разработчики компьютерных программ пытались воспроизвести механизм мышления человека или, иначе говоря, ставилась задача научить компьютер «думать». Начало исследованиям в области создания и использования интеллектуальных систем положили работы «отца кибернетики» Норберта Винера и Г.С. Альтшуллера.

Первые попытки создания интеллектуальных систем сводились к разработке программ, решающих задачи с помощью разнообразных эвристических методов, основанных на свойственном человеческому мышлению обобщении, использованию универсальных подходов к решению различных задач. То есть усилия были направлены на создание универсальных программ. Результатами этой работы явились такие программы, как ЛОГИК-ТЕОРЕТИК, предназначенная для доказательства теорем в исчислении высказываний, и ОБЩИЙ РЕШАТЕЛЬ ЗАДАЧ, созданные Ньюэллом, Саймоном и Шоу, занимавшихся исследованием процессов решения различных задач. Также следует отметить всевозможные игровые программы и вычислительные системы.

Так, например, были созданы кибернетические игрушки типа «электронной мыши» Клода Шеннона, которая управлялась сложной релейной схемой. Эта мышка могла «исследовать» лабиринт, и находить выход из него. Впоследствии, помещенная в уже известный ей лабиринт, она не пыталась искать выход заново, а, используя накопленную информацию, сразу же выходила из лабиринта, не заглядывая в тупиковые ходы.

Американский кибернетик А. Самуэль разработал программу, играющую в шашки. Причем в ходе игры машина обучалась, совершенствуя свою игру на основе накопленного опыта. В 1962 г. эта программа сразилась с Р. Нили, сильнейшим шашистом в США и победила. Такой высокий результат машине удалось достичь благодаря вычислению на каждом шагу игры некоторой оценочной функции, числового показателя, оценивающего качество хода. Эта функция была основана на сочетаниях (в виде линейной комбинации с экспериментально подбираемыми коэффициентами или более сложным образом) знаний о правилах игры, стратегиях и приемах выигрывания (например, как в шашках, и так и в шахматах обычно невыгодно терять свои фигуры, и, напротив, выгодно брать фигуры противника; подвижность фигур и право выбора ходов позволяет держать под боем большое число полей на доске и пр.), а также знаниях, относящихся к отдельным стадиям игры - дебюту, миттэндшпилю, эндшпилю. Сравнивая между собой показатели эффективности различных возможных на данном шаге ходов, машина выберет ход, соответствующий наибольшему показателю. Совершенствование игры состоит в подстройке параметров (коэффициентов) оценочной функции на основе анализа совершенных ходов и игр с учетом их исхода. Следует отметить, что все эти элементы интеллекта заложены в программу ее автором. И хотя машина и совершенствует свою стратегию игры в процессе самообучения, способность выигрывать основана на вычислительной мощности ее процессора. К примеру, компьютер фирмы IBM, победивший в шахматы мирового чемпиона Каспарова, имел 256 процессоров, каждый из которых имел 4 Гб дисковой памяти и 128 Мб оперативной. Весь этот комплекс мог просчитывать более 100 000 000 ходов в секунду.

Еще одним примером является программа американского математика Хао Ванга. Эта программа за 3 минуты работы IBM-704 вывела 220 относительно простых лемм и теорем из фундаментальной математической монографии, а затем за 8.5 минут выдала доказательства еще 130 более сложных теорем, часть их которых еще не была выведена математиками. Правда, до сих пор ни одна программа не вывела и не доказала ни одной теоремы, которая была бы принципиально новой.

Однако, несмотря на некоторые интересные достижения, попытки создания универсальных программ не привели к существенным открытиям и их промышленному использованию. Разработка таких программ оказалась слишком трудным и, в конечном счете, бесплодным делом. Чем шире класс задач, которые может решать одна программа, тем беднее оказываются ее возможности при решении конкретной частной проблемы.

Дальнейшие исследования в области искусственного интеллекта были сосредоточены не на универсальных алгоритмах решения задач, а на общих методах и приемах программирования, пригодных для создания специализированных программ. Разрабатывались методы представления задачи - способы формулирования проблемы таким образом, чтобы ее можно было легко решить, и методы поиска - эффективные алгоритмы управления ходом решения задачи. Однако значительного продвижения вперед удалось достигнуть в 70-х годах, когда специалисты начали понимать, что эффективность программы при решении задач зависит не только от формализмов и алгоритмов вывода решения, которые она использует, но в первую очередь от знаний, которые в нее заложены. Новая концепция построения интеллектуальных систем привела к развитию специализированных программ со сходной архитектурой, каждая из которых предназначена для решения задач в некоторой узкой предметной области. Эти программы получили название экспертные системы (ЭС).

Глава 1. Назначение и работа экспертных систем

1.1 Назначение экспертных систем

Экспертная система, прежде всего, является программным продуктом, и ее назначение - автоматизация деятельности человека. Однако, принципиальным отличием ЭС от других программ является то, что она выступает не в роли «ассистента», выполняющего за человека часть работы, а в роли «компетентного партнера» - эксперта-консультанта в какой-либо конкретной предметной области. ЭС аккумулируют в себе и тиражируют опыт и знания высококвалифицированных специалистов, позволяют пользоваться этими знаниями пользователям «неспециалистам» в данной предметной области. То есть, ЭС не призваны заменить собою эксперта в его непосредственной деятельности, а, напротив, расширяют возможную сферу применения знаний авторитетных специалистов. Кроме того, способности ЭС решать поставленные перед ними задачи не ослабевают со временем и не забываются при отсутствии практики, легко распространяются, так как являются компьютерной программой, прекрасно документированы, а значит и аргументированы, при многократном решении одной и той же задачи ЭС выдают одно и тоже решение в отличие от человека, который подвержен эмоциональным факторам. Плюс ко всему эксплуатация ЭС значительно дешевле, чем оплата труда человека - эксперта.

Хотя указанные преимущества и очевидны, следует отметить, что ЭС не обладают интуицией и общими знаниями о мире, их ход и метод решения проблемы не может выйти за рамки тех знаний, что в них заложены. ЭС также будут бессильны при решении проблемы в изменяющихся условиях, например, при смене методики решения или появлении нового оборудования. Эксперты могут непосредственно воспринимать весь комплекс входной сенсорной информации, будь то визуальная, звуковая, осязательная или обонятельная. ЭС воспринимает только символы, которыми представлены знания. Поэтому сенсорную информацию необходимо проанализировать и преобразовать в символьную форму, пригодную для машинной обработки. При преобразовании человеком сенсорной информации неизбежно возникают искажения и потери, но классифицировать весь поток информации на значимое и второстепенное или абсурдное способен только человек. Так, например, любой человек сразу же выразит свое недоумение, если его попросят найти номер телефона Аристотеля, но едва ли найдется программа, которая скажет, что древнегреческие философы не пользовались телефонами.

Таким образом, назначением экспертных систем является консультирование по узкоспециальным вопросам при принятии решений человеком. То есть ЭС используются для усиления и расширения профессиональных возможностей их пользователей. Информационный отдел СПбГУ ИТМО[Электронный ресурс] Интернет лекция в рамках научной школы Третий конференции молодых ученых: http://faculty.ifmo.ru/info.

Традиционными областями применения экспертных систем являются следующие:

Интерпретация данных. Это одна из традиционных задач для экспертных систем. Под интерпретацией понимается определение смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных.

Диагностика. Под диагностикой понимается обнаружение неисправности в некоторой системе. Неисправность - это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии. Важной спецификой является необходимость понимания функциональной структуры ("анатомии") диагностирующей системы.

Мониторинг. Основная задача мониторинга - непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы - "пропуск" тревожной ситуации и инверсная задача "ложного" срабатывания. Сложность этих проблем в размытости симптомов тревожных ситуаций и необходимость учета временного контекста.

Проектирование. Проектирование состоит в подготовке спецификаций на создание "объектов" с заранее определенными свойствами. Под спецификацией понимается весь набор необходимых документов чертеж, пояснительная записка и т. д. Основные проблемы здесь - получение четкого структурного описания знаний об объекте и проблема "следа". Для организации эффективного проектирования и, в еще большей степени, перепроектирования необходимо формировать не только сами проектные решения, но и мотивы их принятии. Таким образом, в задачах проектирования тесно связываются два основных процесса, выполняемых в рамках соответствующей ЭС: процесс вывода решения и процесс объяснения.

Прогнозирование. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В прогнозирующей системе обычно используется параметрическая динамическая модель, в которой значения параметров "подгоняются" под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками.

Планирование. Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких ЭС используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности.

Обучение. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения. Они аккумулируют знания о гипотетическом "ученике" и его характерных ошибках, затем в работе способны диагностировать слабости в знаниях обучаемых и находить соответствующие средства для их ликвидации. Кроме того, они способны планировать обучение ученика в зависимости от его успехов. Введение в технологию экспертных систем: уч. Пос./ под ред. Д.И. Муромцева. - СПб: СПб ГУ ИТМО, 2005. - 93 с.

1.2 Структура и принцип работы экспертных систем

Все ЭС имеют сходную архитектуру. В основе этой архитектуры лежит разделение знаний, заложенных в систему, и алгоритмов их обработки. Так, например, программа решающая квадратное уравнение, несомненно, использует знание о том, как следует решать этот вид, уравнений. Но это знание «зашито» в текст программы и его нельзя не прочитать, не изменить, если исходные тексты программы недоступны. Программы подобного класса весьма удобны для тех, кто решает квадратные уравнения целыми днями. Однако если пользователь хочет решить другой тип уравнения ему не обойтись без программиста, который сможет написать ему новую программу. Теперь, предположим, задача поставлена несколько иначе: программа должна считывать при запуске тип уравнения и способ его решения из текстового файла, и пользователь должен иметь возможность самостоятельно вводить новые способы решения уравнений, например, чтобы сравнить их эффективность, точность и пр. Формат этого файла должен быть одинаково «понятен» как компьютеру, так и пользователю. Такой способ организации программы позволит изменять ее возможности без помощи программиста. Даже если пользователь решает только один тип уравнений новый подход предпочтительней прежнего хотя бы потому, что понять принцип решения уравнений, можно просто изучив входной текстовый файл. Данный пример, несмотря на свою простоту и нетипичность предметной области для применения технологии ЭС (для решения математических уравнений обычно используют специализированные пакеты программ, а не экспертные системы), хорошо иллюстрирует особенность архитектуры ЭС - наличие в ее структуре базы знаний, которую пользователь может просмотреть непосредственно или с помощью специального редактора. Базу знаний можно также редактировать, что позволяет изменять работу ЭС без ее перепрограммирования. Питер Джексон Введение в экспертные системы = Introduction to Expert Systems. -- 3-е изд. -- М.: Вильямс, 2001. -- 624 с.

Реальные ЭС могут иметь сложную, разветвленную структуру модулей, но для любой ЭС необходимо наличие следующих основных блоков (Рисунок 1. Обобщенная структура ЭС):

БЗ - база знаний - наиболее ценный компонент ядра ЭС, совокупность знаний о предметной области и способах решения задач, записанная в форме, понятной неспециалистам в программировании: эксперту, пользователю и др. Обычно знания в БЗ записываются в форме, приближенной к естественному языку. Форма записи знаний получила название язык представления знаний (ЯПЗ). В различных системах могут использоваться различные ЯПЗ. Параллельно такому "человеческому" представлению БЗ может существовать во внутреннем "машинном" представлении. Преобразование между различными формами представления БЗ должно осуществляться автоматически, так как редактирование БЗ не подразумевает участие программиста - разработчика.

МВ - машина вывода - блок, моделирующий ход рассуждений эксперта на основании знаний, заложенных в БЗ. Машина вывода является неизменной частью ЭС. Однако большинство реальных ЭС имеют встроенные средства управлением ходом логического вывода с помощью так называемых метаправил, записываемых в БЗ.

Р - редактор базы знаний - предназначен для разработчиков ЭС. С помощью этого редактора в БЗ добавляются новые знания или редактируются существующие.

И - интерфейс пользователя - блок, предназначенный для взаимодействия ЭС с пользователем, через который система запрашивает необходимые для ее работы данные, и выводит результат. Система может иметь «жесткий» интерфейс, ориентированный на определенный способ ввода и вывода информации , или может включать средства проектирования специализированных интерфейсов для более эффективного взаимодействия с пользователем.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рисунок 1. Обобщенная структура ЭС.

С точки зрения изучения технологии экспертных систем наибольший интерес представляют база знаний и машина вывода, различные аспекты, реализации которых будут рассмотрены ниже.

В процессе функционирования ЭС считывает информацию из своей базы знаний и пытается осуществить логический вывод решения поставленной перед ней задачи. В базе знаний могут храниться два основных вида записей: факты, описывающие состояние предметной области, составляющие ее объекты и их свойства, а также правила, описывающие способы решения задачи. Все правила БЗ имею одинаковую форму записи и состоят из двух частей: условие и действие. Предварительным этапом работы ЭС является сбор исходных фактов, описывающих проблему на языке представления знаний. Эти факты могут поступать в систему различными способами: в режиме диалога через интерфейс пользователя, посредством файлов или баз данных, от внешних датчиков или приборов. После считывания исходной информации машина вывода начинает просмотр базы знаний и последовательно сопоставляет описание задачи с записями БЗ, описывающими ход решения. Если условие текущего правила БЗ подтверждается множеством исходных фактов, то система выполняет действие, записанное в данном правиле, добавляя в БЗ новые, производные факты. Информационный отдел СПбГУ ИТМО[Электронный ресурс] Интернет лекция в рамках научной школы Третий конференции молодых ученых: http://faculty.ifmo.ru/info.

На первый взгляд процесс вывода кажется достаточно простым - выполняются однотипные операции по перебору записей БЗ и сравнении их с имеющимися фактами, пока не будет найдено решение или некий целевой факт. Однако, управление процессом вывода, независящее отконтекста проблемы не практике мало эффективно. При решении реальных задач человек крайне редко прибегает к перебору данных. Вместо этого, люди пользуются эвристическими правилами, которые значительно ограничивают пространство поиска решения и позволяет быстро и эффективно решать задачи. Эвристические знания имеют эмпирическую природу, то есть формируются на базе опыта и интуиции эксперта. Ярким примером превосходства эвристического подхода перед алгоритмическим (основанным на полном или частичном переборе) является игра в шахматы. В начале игры «белые» имеют возможность сделать любой из 20 допустимых ходов, в ответ на который «черные» могут также совершить один из 20 ходов. Нетрудно посчитать, что следующий ход «белых» может быть выбран уже из 400 возможных различных состояний партии. Далее, по мере развития игры возникает неуправляемый комбинаторный взрыв. Особенно остро подобная проблема стоит в эндшпиле. Имея по нескольку фигур на доске, каждый из игроков располагает более чем 50 вариантами возможных ходов. Очевидно, шахматные мастера при всем желании не смогли бы осуществлять перебор ходов, для поиска лучшего варианта. Вместо этого они используют краткосрочные и долгосрочные стратегии. Каждая конкретная стратегия выбирается в соответствии с текущей ситуацией на игровой доске.

В реальных системах, как правило, используется комбинация из прямого и обратного вывода. А для управления всем процессом логического вывода предназначены метаправила - специальный вид правил БЗ, представляющие собой директивы машины вывода. Используя метаправила можно упорядочить применение знаний в зависимости от конкретных значений фактов и текущего состояния БЗ. Введение в технологию экспертных систем: уч. Пос./ под ред. Д.И. Муромцева. - СПб : СПб ГУ ИТМО, 2005. - 93 с.

Глава 2. Разработка экспертных систем

2.1 Технология создания экспертных систем

Как уже было отмечено выше, архитектура различных ЭС, с точки зрения входящих в нее программных модулей, идентична практически для любых задач. Детали реализации модулей, конечно, могут сильно отличаются в различных проектах, но их базовый состав и взаимодействие четко определено. Таким образом, при создании ЭС основные усилия должны быть сконцентрированы на проектировании БЗ, в рамках которого выбирается язык представления знаний, способы логического вывода и пр. То есть, несмотря на то, что по своей сути ЭС это программный продукт, разработка новой ЭС сильно отличается от написания новой программы. В случае же если в качестве инструментального средства используется оболочка ЭС, этап программирования вообще исключается из процедуры создания ЭС.

Учитывая вышесказанное, технологию разработки ЭС можно представить схемой, включающей следующие этапы:

Предварительный этап - этот этап включает деятельность предшествующую решению о разработке новой ЭС. В рамках этого этапа осуществляются конкретизация задачи, подбор экспертов в данной предметной области для совместной работы, выбор подходящих инструментальных средств. Главной особенностью этого этапа является то, что может быть принято решение о нецелесообразности разработки ЭС для выбранной задачи.

Этап прототипирования - в ходе этого этапа создается прототип ЭС, предназначенный проверки правильности выбранных средств и методов разработки новой ЭС. К прототипу системы не предъявляются высокие требования. Основная его задача состоит в иллюстрации возможностей будущей системы для специалистов, непосредственно участвующих в разработке, а также для потенциальных пользователей. На этом этапе может быть осуществлена корректировка проекта, уточнены время, стоимость и необходимые ресурсы для завершения работы.

Этап доработки - это по сути основной, наиболее рутинный и продолжительный этап работы над ЭС. Все компоненты многократно тестируются и доводятся до соответствия требованиям проекта. Наибольшую сложность вызывает доработка и доказательство адекватности и эффективности БЗ, так как количество записей в ней может быть на порядок больше, чем в прототипе.

На практике граница между этапами может быть размыта, а сам процесс проектирования является достаточно неформальным, так как связан с исследованием и попыткой копирования деятельности человека. Большое количество применяемых эвристик, интуитивный подход к решению задач экспертами делают процесс создания ЭС творческим. Впрочем, формализация технологии ЭС, разработка в ее рамках математических методов и алгоритмов формирования и обработки знаний - это и есть суть современной теории ЭС. Еще одной особенностью разработки ЭС является поэтапное ее внедрение. Первые версии новой ЭС начинают эксплуатироваться в ограниченном объеме уже на этапе прототипирования. Джозеф Джарратано, Гари Райли «Экспертные системы: принципы разработки и программирование»: Пер. с англ. -- М.: Издательский дом «Вильямс», 2006. -- 1152 стр. с ил.

2.2 Преимущество использования экспертных систем

Возникает вопрос: "Зачем разрабатывать экспертные системы? И не лучше ли обратиться к человеческому опыту, как это было в прошлом?". Отметим лишь основные преимущества, которые дают использование ЭС. Преимуществами и положительными качествами искусственной компетенции являются:

Ее постоянство. Человеческая компетенция ослабевает со временем. Перерыв в деятельности человека-эксперта может серьезно отразиться на его профессиональных качествах.

Легкость передачи или воспроизведения. Передача знаний от одного человека другому - долгий и дорогой процесс. Передача искусственной информации - это простой процесс копирования программы или файла данных.

Устойчивость и воспроизводимость результатов. Эксперт-человек может принимать в тождественных ситуациях разные решения из-за эмоциональных факторов. Результаты ЭС - стабильны. Стоимость. Эксперты, особенно высококвалифицированные обходятся очень дорого. ЭС, наоборот, сравнительно недороги. Их разработка дорога, но они дешевы в эксплуатации. Вместе с тем разработка ЭС не позволяет полностью отказаться от эксперта-человека. Хотя ЭС хорошо справляется со своей работой, тем не менее, в определенных областях человеческая компетенция явно превосходит искусственную. Однако и в этих случаях ЭС может позволить отказаться от услуг высококвалифицированного эксперта, оставив эксперта средней квалификации, используя при этом ЭС для усиления и расширения его профессиональных возможностей. Джозеф Джарратано, Гари Райли «Экспертные системы: принципы разработки и программирование»: Пер. с англ. -- М.: Издательский дом «Вильямс», 2006. -- 1152 стр. с ил.

2.3 Области применения экспертных систем

Области применения систем, основанных на знаниях, могут быть сгруппированы в несколько основных классов: медицинская диагностика, контроль и управление, диагностика неисправностей в механических и электрических устройствах, обучение.

а) Медицинская диагностика.

Диагностические системы используются для установления связи между нарушениями деятельности организма и их возможными причинами. Наиболее известна диагностическая система MYCIN, которая предназначена для диагностики и наблюдения за состоянием больного при менингите и бактериальных инфекциях. Ее первая версия была разработана в Стенфордском университете в середине 70-х годов. В настоящее время эта система ставит диагноз на уровне врача-специалиста. Она имеет расширенную базу знаний, благодаря чему может применяться и в других областях медицины.

б) Прогнозирование.

Прогнозирующие системы предсказывают возможные результаты или события на основе данных о текущем состоянии объекта. Программная система “Завоевание Уолл-стрита” может проанализировать конъюнктуру рынка и с помощью статистических методов алгоритмов разработать для вас план капиталовложений на перспективу. Она не относится к числу систем, основанных на знаниях, поскольку использует процедуры и алгоритмы традиционного программирования. Хотя пока еще отсутствуют ЭС, которые способны за счет своей информации о конъюнктуре рынка помочь вам увеличить капитал, прогнозирующие системы уже сегодня могут предсказывать погоду, урожайность и поток пассажиров. Даже на персональном компьютере, установив простую систему, основанную на знаниях, вы можете получить местный прогноз погоды.

в) Планирование.

Планирующие системы предназначены для достижения конкретных целей при решении задач с большим числом переменных. Дамасская фирма Informat впервые в торговой практике предоставляет в распоряжении покупателей 13 рабочих станций, установленных в холле своего офиса, на которых проводятся бесплатные 15-минутные консультации с целью помочь покупателям выбрать компьютер, в наибольшей степени отвечающий их потребностям и бюджету. Кроме того, компания Boeing применяет ЭС для проектирования космических станций, а также для выявления причин отказов самолетных двигателей и ремонта вертолетов. Экспертная система XCON, созданная фирмой DEC, служит для определения или изменения конфигурации компьютерных систем типа VAX и в соответствии с требованиями покупателя. Фирма DEC разрабатывает более мощную систему XSEL, включающую базу знаний системы XCON, с целью оказания помощи покупателям при выборе вычислительных систем с нужной конфигурацией. В отличие от XCON система XSEL является интерактивной.

г) Интерпретация.

Интерпретирующие системы обладают способностью получать определенные заключения на основе результатов наблюдения. Система PROSPECTOR, одна из наиболее известных систем интерпретирующего типа, объединяет знания девяти экспертов. Используя сочетания девяти методов экспертизы, системе удалось обнаружить залежи руды стоимостью в миллион долларов, причем наличие этих залежей не предполагал ни один из девяти экспертов. Другая интерпретирующая система- HASP/SIAP. Она определяет местоположение и типы судов в тихом океане по данным акустических систем слежения.

д) Контроль и управление.

Системы, основанные на знаниях, могут применяться в качестве интеллектуальных систем контроля и принимать решения, анализируя данные, поступающие от нескольких источников. Такие системы уже работают на атомных электростанциях, управляют воздушным движением и осуществляют медицинский контроль. Они могут быть также полезны при регулировании финансовой деятельности предприятия и оказывать помощь при выработке решений в критических ситуациях.

е) Диагностика неисправностей в механических и электрических устройствах.

В этой сфере системы, основанные на знаниях, незаменимы как при ремонте механических и электрических машин (автомобилей, дизельных локомотивов и т.д.), так и при устранении неисправностей и ошибок в аппаратном и программном обеспечении компьютеров.

ж) Обучение.

Системы, основанные на знаниях, могут входить составной частью в компьютерные системы обучения. Система получает информацию о деятельности некоторого объекта (например, студента) и анализирует его поведение. База знаний изменяется в соответствии с поведением объекта. Примером этого обучения может служить компьютерная игра, сложность которой увеличивается по мере возрастания степени квалификации играющего. Одной из наиболее интересных обучающих ЭС является разработанная Д. Ленатом система EURISCO, которая использует простые эвристики. Эта система была опробована в игре Т. Тревевеллера, имитирующая боевые действия. Суть игры состоит в том, чтобы определить состав флотилии, способной нанести поражение в условиях неизменяемого множества правил. Система EURISCO включила в состав флотилии небольшие, способные провести быструю атаку корабли и одно очень маленькое скоростное судно и постоянно выигрывала в течение трех лет, несмотря на то, что в стремлении воспрепятствовать этому правила игры меняли каждый год.

Большинство ЭС включают знания, по содержанию которых их можно отнести одновременно к нескольким типам. Например, обучающая система может также обладать знаниями, позволяющими выполнять диагностику и планирование. Она определяет способности обучаемого по основным направлениям курса, а затем с учетом полученных данных составляет учебный план. Управляющая система может применяться для целей контроля, диагностики, прогнозирования и планирования. Система, обеспечивающая сохранность жилища, может следить за окружающей обстановкой, распознавать происходящие события (например, открылось окно), выдавать прогноз (вор-взломщик намеревается проникнуть в дом) и составлять план действий (вызвать полицию).

з) Экспертные системы в логистике.

Под экспертными системами в логистике понимают специальные компьютерные программы, помогающие специалистам принимать решения, связанные с управлением материальными потоками. Экспертная система может аккумулировать знания и опыт нескольких специалистов-экспертов, работающих в разных областях.

Труд высококвалифицированных экспертов стоит дорого, однако, как правило, требуется не повседневно. Возможность получить совет экспертов по разным вопросам посредством обращения к компьютеру позволяет квалифицированно решать сложные задачи, повышает производительность труда персонала и в то же время не требует затрат на содержание штата высокооплачиваемых специалистов.

Применение экспертных систем позволяет:

-- принимать быстрые и качественные решения в области управления материальными потоками;

-- готовить опытных специалистов за относительно более короткий промежуток времени. Обращение с экспертными программами за короткий промежуток времени формирует опытного специалиста. В то же время, задача повышения обучающих возможностей экспертных систем является сегодня актуальной, так как большинство программ не объясняют пользователю причины рекомендуемых решений.

-- сохранять «ноу-хау» компании, так как персонал, пользующийся системой, не может вынести за пределы компании опыт и знания, содержащиеся в экспертной системе;

-- использовать опыт и знания высококвалифицированных специалистов на непрестижных, опасных, скучных и тому подобных рабочих местах.

К недостаткам экспертных систем следует отнести ограниченную возможность использования «здравого смысла». Логистические процессы включают множество операций с разнообразными грузами. Учесть все особенности в экспертной программе невозможно. Поэтому, чтобы не поставить коробку весом в сто килограммов на коробку весом в пять килограммов здравым смыслом, дополняющим знания экспертной системы, должен обладать пользователь.

Экспертные системы применяются на различных стадиях логистического процесса, облегчая решение проблем, требующих значительного опыта и затрат времени. Например, на складе, при принятии решения о пополнении запасов, когда менеджеру необходимо оценить большой объем разнообразной информации: ожидаемые цены в разрезе закупаемых товаров, тарифы на доставку, необходимость одновременного пополнения запасов по разным позициям ассортимента и т.д. Информационный отдел СПбГУ ИТМО[Электронный ресурс] Интернет лекция в рамках научной школы Третий конференции молодых ученых: http://faculty.ifmo.ru/info.

2.4 Описание экспертной системы версии ES 4.0 для высокочастотного помехозащищенного датчика

Экспертная система ES 4.0 помогает врачу оценить степень выраженности тепловых изменений. Результат экспертной системы не следует воспринимать как окончательный вердикт по проведенному обследованию. Заключение делает врач, опираясь на результаты экспертной системы, поле температур, термограммы, и на, имеющуюся у врача, дополнительную информацию.

Программа сравнивает результаты проведенных исследований с гистологически верифицированными данными, полученными во время клинических испытаний, и делает заключение, насколько показатели обследуемого пациента близки к «группе риска». Результаты экспертной системы можно принимать во внимание при выполнении следующих условий:

* Измерения проводились опытным экспертом, имеющим опыт РТМ диагностики, и прошедшим обучение по использования прибора РТМ-01-РЭС для диагностики заболеваний молочных желез, и имеющим соответствующий сертификат.

* Измерения проводились в соответствии с методическими рекомендациями по проведению РТМ диагностики молочных желез.

* Все составные части прибора РТМ-01-РЭС исправны, не имеют механических повреждений. Прибор имеет свидетельство о поверке, полученный не ранее 3 лет назад.

* Температура в помещении, где проводятся измерения, находится в пределах 20-24 є С.

* Перед началом обследований пациентка в течение 7-10 минут адаптировалась к температуре окружающей среды.

* Обследование проведено согласно методическим рекомендациям с 6 по 12 день менструального цикла.

* Пациентке ранее не проводились хирургическое лечение молочных желез.

* На момент обследование пациентка не имела простудных или других заболеваний, сопровождающихся повышением общей температуры тела.

Если температура в помещении выходит за пределы указанного интервала или пациентке ранее проводилось хирургическое лечение молочных желез, программа не отображает результаты экспертной системы.

Программа дает количественную оценку двух параметров:

* «Обобщенный показатель тепловой активности» тканей в различных точках молочной железы.

* «Результирующий показатель экспертной системы».

Программа обобщает результаты измерения внутренний температуры и температуры кожи и формирует «Обобщенный показатель тепловой активности» (ОПТ) (далее уровень тепловой активности), характеризующий выраженность тепловых изменения в различных точках молочной железы и риск малигнизации.

В отличие от предыдущих версий экспертной системы, в которых программа характеризовала уровень тепловой активности одним числом для каждой из молочных желез, в новой экспертной системе Версии ES 4.0 программа рассчитывает уровень тепловой активности и показатель экспертной системы для каждой точки молочной железы. Таким образом, программа не просто информирует врачу о наличии патологии, но и показывает, какие области, с точки зрения программы, являются подозрительными.

Для того чтобы познакомиться с результатами экспертной системы необходимо нажать на кнопку «Диагностика» в нижнем углу основного окна (Рис. 1 Приложение).

В верхней части окна располагается гистограмма обобщенного показателя тепловой активности (ОПТ) для правой и левой молочной железы. Правая железа, как и в термограмме обозначена кружочком, левая крестиком. Зона риска обозначена синим светом. Пороговый уровень соответствует границе между белым и синим цветом. Чем выше значение тепловой активности, тем больше красных оттенков имеет столбец, ее отображающий.

Разница между уровнем тепловой активности и «пороговым уровнем» называется «Показатель экспертной системы». Положительное значение показателя экспертной системы означает повышенный уровень тепловой активности в этой области. Максимальное значение показателя экспертной системы для левой и для правой молочной железы называется «Результат экспертной системы» и отображаются в левом нижнем углу главного окна «РТМ Диагностика» (См. приложение рис. 1) и в окне «Показания датчика температуры кожи» отдельно для правой и левой молочной железы.

Непосредственно под гистограммой «Уровня тепловой активности» располагается совмещенная термограмма и врач может сравнивать значения тепловой активности с результатами измерения внутренней и кожной температуры.

Кроме представления тепловой активности в виде гистограммы, в программе имеется возможность визуализировать тепловую активность тканей в виде поля обобщенного показателя тепловой активности.

Для этого необходимо нажать на пиктограмму ОПТ в левом верхнем углу окна «Диагностика». В этом случае вместо термограммы появляется поле обобщенного показателя тепловой активности, которое позволяет нагляднее визуализировать область повышенной и пониженной тепловой активности. Более высокие значения тепловой активности окрашиваются в красный и желтый цвет, низкие значения в голубой и синий. Для сравнения врач имеет возможность посмотреть поле внутренних температур и температур кожи. Для того чтобы посмотреть поле внутренних температур необходимо нажать на кнопку В.Т., расположенную в правом верхнем углу окна.

Для визуализации температуры кожи необходимо нажать кнопку К.Т., расположенную под кнопкой В.Т. На совмещенной термограмме имеются две горизонтальные голубые линии и две желтые линии. Голубые линии относятся к внутренней температуре, желтые к температуре кожи. (См. приложение рис. 3).

Известно, что рак сопровождается повышением температуры на проекции опухоли. Задача экспертной системы определить, в каких областях молочной железы имеет место повышение температуры. Если сравнивать температуру в левой и правой молочной железе, то один и тот же результат можно трактовать как повышение температуры в правой железе, или как снижение в левой. Таким образом, для того чтобы сказать, что в какой области имеет место повышение температуры, необходимо определить «Базовый уровень температуры» для этой пациентки и относительно него оценить, является ли та или иная температурная аномалия повышением или понижением. Базовый уровень зависит от многих факторов, и в первую очередь от комплекции, диаметра молочной железы и от возраста. Программа, опираясь на статистические данные, рассчитывает какая внутренняя температура и температура кожи характерна для пациентов данного возраста. Сплошной голубой линией отображается средний уровень внутренней температуры, характерный для пациентов, имеющих такой же диаметр молочной железы и возраст, как и обследуемая пациентка. («Т возраст внутренняя»). Пунктирная голубая линия отображает предлагаемой программой «Базовый уровень внутренней температуры», для обследуемой пациентки. Эта линия во многих случаях может совпадать с «Т возраст внутренняя». По аналогии с внутренней температурой сплошной желтой линией отображается средний уровень температуры кожи, характерный для пациентов, имеющих такой же диаметр молочной железы и возраст, как и обследуемая пациентка. («Т возраст кожная») Пунктирная желтая линия отображает предлагаемой программой «Базовый уровень температуры кожи», обследуемой пациентки. Врач, опираясь на свой опыт и основные принципы определения «Базового уровень температур», может изменить его, перемещая ползунок. При этом будет меняться и «Обобщенный показатель тепловой активности» и результат экспертной системы». Если врач хочет вернуться к уровням Базовой температуры, которые выбрала программа, то необходимо нажать кнопку «Сброс», расположенную в левом нижнем углу. Результаты экспертной системы отображаются в окне «Результаты обследования» и в протоколе обследования.

Заключение

Экспертные системы (ЭС) возникли как значительный практический результат в применении и развитии методов искусственного интеллекта (ИИ)- совокупности научных дисциплин, изучающих методы решения задач интеллектуального (творческого) характера с использованием ЭВМ.

Область ИИ имеет более чем сорокалетнюю историю развития. С самого начала в ней рассматривался ряд весьма сложных задач, которые, наряду с другими, и до сих пор являются предметом исследований: автоматические доказательства теорем, машинный перевод (автоматический перевод с одного естественного языка на другой), распознавание изображений и анализ сцен, планирование действий роботов, алгоритмы и стратегии игр.

ЭС - это набор программ, выполняющий функции эксперта при решении задач из некоторой предметной области. ЭС выдают советы, проводят анализ, дают консультации, ставят диагноз. Практическое применение ЭС на предприятиях способствует эффективности работы и повышению квалификации специалистов.

Главным достоинством экспертных систем является возможность накопления знаний и сохранение их длительное время. В отличии от человека к любой информации экспертные системы подходят объективно, что улучшает качество проводимой экспертизы. При решении задач, требующих обработки большого объема знаний, возможность возникновения ошибки при переборе очень мала.

Библиографический список

1. Введение в технологию экспертных систем: уч. Пос./ под ред. Д.И. Муромцева. - СПб: СПб ГУ ИТМО, 2005. - 93 с. УДК [004.891 + 002.53:004.89] (075.8).

2. Питер Джексон Введение в экспертные системы = Introduction to Expert Systems. -- 3-е изд. -- М.: Вильямс, 2001. -- С. 624. -- ISBN 0-201-87686-8.

3. Джозеф Джарратано, Гари Райли «Экспертные системы: принципы разработки и программирование»: Пер. с англ. -- М.: Издательский дом «Вильямс», 2006. -- 1152 стр. с ил.

4. Информационный отдел СПбГУ ИТМО[Электронный ресурс] Интернет лекция в рамках научной школы Третий конференции молодых ученых: http://faculty.ifmo.ru/info.

Приложение

Рис. 1

Рис. 2

Рис. 3

Размещено на Allbest.ru

...

Подобные документы

  • Определение экспертных систем, их достоинство и назначение. Классификация экспертных систем и их отличие от традиционных программ. Структура, этапы разработки и области применения. Классификация инструментальных средств и технология разработки систем.

    курсовая работа [78,0 K], добавлен 03.06.2009

  • Понятие искусственного интеллекта как свойства автоматических систем брать на себя отдельные функции интеллекта человека. Экспертные системы в области медицины. Различные подходы к построению систем искусственного интеллекта. Создание нейронных сетей.

    презентация [3,0 M], добавлен 28.05.2015

  • История развития искусственного интеллекта. Экспертные системы: их типы, назначение и особенности, знания и их представление. Структура идеальной и инструменты построения экспертных систем. Управление системой продукции. Семантические сети и фреймы.

    реферат [85,7 K], добавлен 20.12.2011

  • Экспертные системы как наиболее значительное практическое достижение в области искусственного интеллекта, их современная известность и применение. Назначение систем и обоснование их важности, структура и обязательные элементы, требования к системам.

    контрольная работа [144,6 K], добавлен 02.09.2009

  • Решение неформализованных задач экспертными системами. Системы искусственного интеллекта, эвристический поиск решения. Особенности работы экспертных систем. Знания о процессе решения задач, используемые интерпретатором. Системы обнаружения неисправности.

    презентация [100,1 K], добавлен 12.02.2014

  • Решение прикладных задач с использованием искусственного интеллекта. Преимущества и недостатки экспертных систем по сравнению с использованием специалистов, области их применения. Представление знаний и моделирование отношений семантическими сетями.

    реферат [260,9 K], добавлен 25.06.2015

  • Области человеческой деятельности, в которых может применяться искусственный интеллект. Решение проблем искусственного интеллекта в компьютерных науках с применением проектирования баз знаний и экспертных систем. Автоматическое доказательство теорем.

    курсовая работа [41,3 K], добавлен 29.08.2013

  • Технология экспертных систем на основе искусственного интеллекта: разработка и внедрение компьютерных программ, способных имитировать, воспроизводить области деятельности человека, требующих мышления, определенного мастерства и накопленного опыта.

    курсовая работа [264,8 K], добавлен 22.12.2008

  • Информация: свойства, измерение, передача; характеристики информационных каналов. Обработка и формы представления информации. Понятие "искусственного интеллекта". Назначение экспертных систем: оценки, фреймы, семантические сети и реляционные графы.

    контрольная работа [74,0 K], добавлен 03.12.2012

  • Экспертные системы как направление исследований в области искусственного интеллекта по созданию вычислительных систем, умеющих принимать решения, схожие с решениями экспертов в заданной предметной области. Принципы построения алгоритма и его оценка.

    курсовая работа [517,2 K], добавлен 12.06.2015

  • Сущность и проблемы определения искусственного интеллекта, его основных задач и функций. Философские проблемы создания искусственного интеллекта и обеспечения безопасности человека при работе с роботом. Выбор пути создания искусственного интеллекта.

    контрольная работа [27,9 K], добавлен 07.12.2009

  • Создание и разработка информационной системы автоматизации учета книг в книжном магазине. Описание предметной области, постановка задачи и обзор методов ее решения. Модели и алгоритмы представления системы. Обоснование технических и программных средств.

    курсовая работа [1,7 M], добавлен 31.03.2012

  • Общая характеристика дисциплины "Основы искусственного интеллекта". Ее предмет, цели и задачи. Особенности и расшифровка ряда понятийных терминов, характеризующих сущность кибернетики. Методы и алгоритмы анализа данных для получения знаний и обучения.

    презентация [10,9 K], добавлен 03.01.2014

  • История создания и основные направления в моделировании искусственного интеллекта. Проблемы обучения зрительному восприятию и распознаванию. Разработка элементов интеллекта роботов. Исследования в области нейронных сетей. Принцип обратной связи Винера.

    реферат [45,1 K], добавлен 20.11.2009

  • Общая характеристика экспертных программ как систем искусственного интеллекта. Описание реализации в реляционной системе управления базами данных. Рассмотрение особенностей интеграции объектных таблиц принятия решения в проект по распознаванию символов.

    дипломная работа [662,5 K], добавлен 20.07.2015

  • Характеристика сущности искусственного интеллекта. Проблема создания искусственного интеллекта. Базовые положения, методики и подходы построения систем ИИ (логический, структурный, эволюционный, имитационный). Проблемы создания и реализация систем ИИ.

    реферат [43,1 K], добавлен 19.07.2010

  • Понятие искусственного интеллекта и интеллектуальной системы. Этапы развития интеллектуальных систем. Модели представления знаний, процедурный (алгоритмический) и декларативный способы их формализации. Построение концептуальной модели предметной области.

    презентация [80,5 K], добавлен 29.10.2013

  • Исторический обзор развития работ в области искусственного интеллекта. Создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека. От логических игр до медицинской диагностики.

    реферат [29,1 K], добавлен 26.10.2009

  • Эволюция систем искусственного интеллекта. Направления развития систем искусственного интеллекта. Представление знаний - основная проблема систем искусственного интеллекта. Что такое функция принадлежности и где она используется?

    реферат [49,0 K], добавлен 19.05.2006

  • Назначение и архитектура экспертных систем, их применение в сфере образования. Экспертные системы тестирования, принципы их функционирования. Инструментальные средства создания приложения и разработка программы тестирования. Описание программы, листинг.

    дипломная работа [706,4 K], добавлен 07.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.