Средства работы с растровой графикой
Разрешение экранного изображения. Разрешение печатного изображения и понятие линиатуры. Растрирование с амплитудной модуляцией. Качество воспроизведения тоновых изображений. Создание компьютерной двумерной живописи. Устройства, входящие в IBM PC.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 12.12.2013 |
Размер файла | 39,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Средства работы с растровой графикой
Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выражающее количество точек, приходящихся на единицу длины. При этом следует различать:
- разрешение оригинала;
- разрешение экранного изображения;
- разрешение печатного изображения.
Разрешение оригинала
Разрешение оригинала измеряется в точках на дюйм и зависит от требований к качеству изображения и размеру файла, способу оцифровки или методу создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требования к качеству, тем выше должно быть разрешение оригинала.
Разрешение экранного изображения
Для экранных копий изображения элементарную точку растра принято называть пикселом. Размер пиксела варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных значений), разрешения оригинала и масштаба отображения.
Мониторы для обработки изображений с диагональю 20-21 дюйм (профессионального класса), как правило, обеспечивают стандартные экранные разрешения 640x480, 800x600, 1024x768, 1280x1024, 1600x1200, 1600x1280, 1920x1200, 1920x1600 точек. Расстояние между соседними точками люминофора у качественного монитора составляет 0,22-0,25 мм.
Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150-200 dpi, для вывода на фотоэкспонирующем устройстве 200-300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода. В случае, если твердая копия будет увеличена по сравнению с оригиналом, эти величины следует умножить на коэффициент масштабирования.
Разрешение печатного изображения и понятие линиатуры
Размер точки растрового изображения как на твердой копии (бумага, пленка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растрировании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется числом линий на дюйм и называется линиатурой.
Размер точки растра рассчитывается для каждого элемента и зависит от интенсивности тона в данной ячейке. Чем больше интенсивность, тем плотнее заполняется элемент растра. То есть, если в ячейку попал абсолютно черный цвет, размер точки растра совпадет с размером элемента растра. В этом случае говорят о 100% заполняемое™. Для абсолютно белого цвета значение заполняемости составит 0%. На практике заполняемость элемента на отпечатке обычно составляет от 3 до 98%. При этом все точки растра имеют одинаковую оптическую плотность, в идеале приближающуюся к абсолютно черному цвету. Иллюзия более темного тона создается за счет увеличения размеров точек и, как следствие, сокращения пробельного поля между ними при одинаковом расстоянии между центрами элементов растра.
Такой метод называют растрированием с амплитудной модуляцией (AM).
Существует и метод растрирования с частотной модуляцией (ЧМ), когда интенсивность тона регулируется изменением расстояния между соседними точками одинакового размера. Таким образом, при частотно-модулированном растрировании в ячейках растра с разной интенсивностью тона находится разное число точек.
Изображения, растрированные ЧМ-методом, выглядят более качественно, так как размер точек минимален и во всяком случае существенно меньше, чем средний размер точки при AM-растрировании. Еще более повышает качество изображения разновидность ЧМ-метода, называемая стохастическим растрированием. В этом случае рассчитывается число точек, необходимое для отображения требуемой интенсивности тона в ячейке растра. Затем эти точки располагаются внутри ячейки на расстояниях, вычисленных квазислучайным методом (на самом деле используется специальный математический алгоритм). То есть регулярная структура растра внутри ячейки, как и на изображении в целом, вообще отсутствует. Поэтому при стохастическом ЧМ-растрировании теряет смысл понятие линиатуры растра, имеет значение лишь разрешающая способность устройства вывода. Такой способ требует больших затрат вычислительных ресурсов и высокой точности полиграфического оборудования; он применяется в основном для художественных работ, при печати с числом красок, превышающим четыре.
Интенсивность тона (так называемую светлоту) принято подразделять на 256 уровней. Большее число градаций не воспринимается зрением человека и является избыточным. Меньшее число ухудшает восприятие изображения (минимально допустимым для качественной полутоновой иллюстрации принято значение 150 уровней). Нетрудно подсчитать, что для воспроизведения 256 уровней тона достаточно иметь размер ячейки растра 256 = 16 х 16 точек.
Между разрешением оригинала, частотой растра и градацией уровней существует зависимость.
При выводе копии изображения на принтере или полиграфическом оборудовании линиатуру растра выбирают, исходя из компромисса между требуемым качеством, возможностями аппаратуры и параметрами печатных материалов. Для лазерных принтеров рекомендуемая линиатура составляет 65-100 Ipi, для газетного производства -- 65-85 Ipi, для книжно-журнального -- 85-133 Ipi, для художественных и рекламных работ -- 133-300 Ipi.
При печати изображений с наложением растров друг на друга, например многоцветных, каждый последующий растр поворачивается на определенный угол. Традиционными для цветной печати считаются углы поворота: 105 градусов для голубой печатной формы, 75 градусов для пурпурной, 90 градусов для желтой и 45 градусов для черной. При этом ячейка растра становится косоугольной, и для воспроизведения 256 градаций тона с линиатурой 150 Ipi уже недостаточно разрешения 16x150=2400 dpi. Поэтому для фотоэкспонирующих устройств профессионального класса принято минимальное стандартное разрешение 2540 dpi, обеспечивающее качественное растрирование при разных углах поворота растра. Таким образом, коэффициент, учитывающий поправку на угол поворота растра, для цветных изображений составляет 1,06.
Динамический диапазон. Качество воспроизведения тоновых изображений принято оценивать динамическим диапазоном (D). Это оптическая плотность, численно равная десятичному логарифму величины, обратной коэффициенту пропускания т (для оригиналов, рассматриваемых «на просвет», например слайдов) или коэффициенту отражения р (для прочих оригиналов, например полиграфических отпечатков).
Для оптических сред, пропускающих свет, динамический диапазон лежит в пределах от 0 до 4. Для поверхностей, отражающих свет, значение динамического диапазона составляет от 0 до 2. Чем выше динамический диапазон, тем большее число полутонов присутствует в изображении и тем лучше качество его восприятия.
Связь между параметрами изображения и размером файла
Средствами растровой графики принято иллюстрировать работы, требующие высокой точности в передаче цветов и полутонов. Однако размеры файлов растровых иллюстраций стремительно растут с увеличением разрешения. Фотоснимок, предназначенный для домашнего промотра (стандартный размер 10x15 см, оцифрованный с разрешением 200-300 dpi, цветовое разрешение 24 бита), занимает в формате TIFF с включенным режимом сжатия около 4 Мбайт. Оцифрованный с высоким разрешением слайд занимает 45-50 Мбайт. Цветоделенное цветное изображение формата А4 занимает 120-150 Мбайт.
Масштабирование растровых изображений. Одним из недостатков растровой графики является так называемая пикселизация изображений при их увеличении (если не приняты специальные меры). Раз в оригинале присутствует определенное количество точек, то при большем масштабе увеличивается и их размер, становятся заметны элементы растра, что искажает саму иллюстрацию. Для противодействия пикселизации принято заранее оцифровывать оригинал с разрешением, достаточным для качественной визуализации при масштабировании. Другой прием состоит в применении стохастического растра, позволяющего уменьшить эффект пикселизации в определенных пределах. Наконец, при масштабировании используют метод интерполяции, когда увеличение размера иллюстрации происходит не за счет масштабирования точек, а путем добавления необходимого числа промежуточных точек[1].
Программные средства создания растровых изображений
Среди программ, предназначенных для создания компьютерной двумерной живописи, самыми популярными считаются Painter компании Fractal Design, Freehand компании Macromedia, и Fauve Matisse. Пакет Painter обладает достаточно широким спектром средств рисования и работы с цветом. В частности, он моделирует различные инструменты (кисти, карандаш, перо, уголь, аэрограф и др.), позволяет имитировать материалы (акварель, масло, тушь), а также добиться эффекта натуральной среды. В свою очередь, последние версии программы FreeHand обладают богатыми средствами редактирования изображений и текста, содержат библиотеку спецэффектов и набор инструментов для работы с цветом, в том числе средства многоцветной градиентной заливки.
Среди программ для создания изображений на платформе Macintosh стоит отметить пакет для редактирования растровой живописи и изображений PixelPaint Pro компании Pixel Resources.
Среди программ компьютерной живописи для графических станций Silicon Graphics (SGI) особое место занимает пакет StudioPaint 3D компании Alias Wavefront, который позволяет рисовать различными инструментами («кистями») в режиме реального времени прямо на трехмерных моделях. Пакет работает с неограниченным количеством слоев изображения и предоставляет 30 уровней отмены предыдущего действия (undo), включает операции цветокоррекции и «сплайновые кисти», «мазок» которых можно редактировать по точкам как сплайновую кривую. StudioPaint 3D поддерживает планшет с чувствительным пером, что дает возможность художнику сделать традиционный эскиз от руки, а затем позволяет перенести рисунок в трехмерные пакеты для моделирования или анимации и построить по эскизу трехмерную модель. растровая графика разрешение амплітуда.
Аппаратные средства получения растровых изображений.
К аппаратным средствам получения цифровых растровых оригиналов в основном относятся сканеры и цифровые фотокамеры. Другие устройства, например цифровые видеокамеры, адаптеры захвата телевизионных кадров, в компьютерной графике играют чаще вспомогательную роль. Для создания изображений «от руки» предназначены графические планшеты, на которых рисуют специальным электронным пером.
Сканеры по способу восприятия изображения делятся на две группы: устройства с электронными фотоумножителями (ФЭУ) и устройства на приборах с зарядовой связью (ПЗС, английская аббревиатура CCD). Сканеры с фотоумножителями называют барабанными -- внутри аппарата помещен прозрачный барабан, на который крепится оригинал (отражающий или просветный). Затем барабан начинает вращаться с большой скоростью. Сканирующая головка имеет мощный источник света с фокусированным лучом и ФЭУ, которые движутся вдоль продольной оси барабана. Отраженный или проходящий световой поток попадает на ФЭУ (обычно имеется по одному ФЭУ на каждый канал) через прецизионную зеркальную систему развертки. Накопленный ФЭУ заряд преобразуется в цифровое значение аналого-цифровым преобразователем высокой разрядности. Так как процесс до этого момента по сути аналоговый, удается добиться очень высоких значений динамического диапазона. То есть, оригинал правильно оцифровывается и в светлых, и в темных участках. Выходное разрешение оригинала достигает 5000-6000 точек на дюйм. За совершенное качество приходится платить -- барабанные сканеры чрезвычайно дорогостоящи и требовательны к условиям эксплуатации[2].
Прочие сканеры относятся к устройствам на ПЗС. В отличие от ФЭУ, приборы с зарядовой связью представляют собой фотоприемник, выполненный на кремниевых элементах, объединенных в линейку. Каждый светочувствительный элемент обладает способностью накапливать заряды пропорционально числу попавших на него фотонов. За время экспозиции возникает матрица зарядов, пропорциональных яркости исходного изображения. По вертикали развертка осуществляется передвижением либо всей линейки ПЗС с помощью шагового электродвигателя, либо перемещением оригинала. Разрешающая способность определяется числом оптических элементов на единицу длины. В устройствах бытового класса это 300-600 элементов на дюйм, профессионального -- 1200-3000. Программная интерполяция оптического разрешения никакого реального повышения качества оцифровки не дает. Динамический диапазон устройств на ПЗС ниже, чем у ФЭУ, потому что кремниевые элементы имеют худшее соотношение сигнал/шум.
В высокоточных сканерах на ПЗС дополнительно применяются: система зеркальной развертки по обоим координатам с компенсацией искажений по краям оригинала, несколько линеек ПЗС, стабильные по цветовой температуре осветительные лампы, многоразрядные цифро-аналоговые преобразователи, элементы, выполненные на СМ05-пластинах. Такие устройства по качеству оцифровки приближаются к барабанным сканерам, а по стоимости значительно доступнее.
Конструктивно барабанные сканеры выполняют с вертикальным или горизонтальным барабаном, съемным или несъемным. Сканеры на ПЗС бывают листовые, планшетные, проекционные, ручные и так называемые слайдовые (для сканирования оригиналов «на просвет»).
Для целей компьютерной графики важно не столько разрешение сканера (оно может не превышать 300 dpi), сколько хороший динамический диапазон. Для сканирования в отраженном свете желательно иметь динамический диапазон не ниже 2, «на просвет» -- не ниже 3,5.
Основой цифровых фотокамер служит матрица ПЗС, состоящая из двумерного массива элементов. Для целей электронной публикации и непрофессионального применения достаточное число элементов на матрице около 1,5 миллионов. Полупрофессиональные камеры должны иметь разрешение матрицы не ниже 2 миллионов элементов, профессиональные аппараты -- 2,5-3 миллиона. Оцифрованные с их помощью изображения можно использовать для подготовки полиграфических публикаций. Оптическая система цифровых камер профессионального класса должна обеспечивать разрешение не ниже 110-120 пар линий на дюйм[3].
Графические планшеты представляют собой координатную двумерную электронную сетку, каждый элемент которой способен воспринимать и передавать ряд сигналов от электронного пера. К таковым сигналам относятся: координаты точки контакта пера с планшетом, сила нажима, угол наклона, скорость прохода (то есть время экспозиции) и ряд других. Затем за счет программного преобразования полученные данные отображаются на экране в виде линий, мазков и других художественных средств создания изображений. Обладая достаточным навыком работы с графическим планшетом, удается очень точно имитировать различную живописную технику -- письмо маслом, рисунок углем, аэрографом, карандашом и т. д.
Устройства, входящие в IBM PC
IBM PC -- первый массовый персональный компьютер производства фирмы IBM, выпущенный в 1981 году. Состоял из горизонтального корпуса с размещённой в нём основной (материнской) платой с приблизительно 45 микросхемами малой и средней степени интеграции, 10 СБИС -- микропроцессором i8088, контроллером прямого доступа к памяти i8237, контроллером прерываний i8259A, таймером i8254, контроллером параллельного порта i8255A, микросхемой постоянного запоминающего устройства с BIOS, четырьмя такими же микросхемами с интерпретатором BASIC, и от 9 до 36 микросхем динамического ОЗУ 4116. В правом заднем углу корпуса находился блок питания с импульсным преобразователем, а в правой передней части было отведено место для размещения одного или двух дисководов на гибких магнитных дисках формфактора 5 1/4 дюйма.
Следует выделять 3 основных блока:
системный блок;
монитор (дисплей) - для изображения текстовой и графической информации.
устройства ввода: клавиатура и мышь, позволяющие вводить символы в компьютер;
Состав системного блока
По расположению устройств компьютерной системы их делят на внешние и внутренние. Внешние устройства (периферийные устройства) подключаются к системному блоку с помощью кабелей и разъемов. Внешние устройства выполняют функции ввода и вывода информации. Внутренние устройства предназначены для хранения и обработки информации.
Устройства, входящие в состав системного блока:
блок питания, преобразующий электропитание сети в постоянный ток низкого напряжения;
процессор - микросхема, непосредственно выполняющая вычисления над числами, представленными в двоичной системе;
оперативная память - предназначена для временного хранения программ и данных;
накопители (или дисководы) для гибких магнитных дисков, используемые для чтения и записи на дискеты;
накопитель на жестком магнитном диске, предназначенный для чтения и записи на жесткий магнитный диск (винчестер);
накопитель DVD-ROM - устройство для чтения программ и данных с лазерных носителей (при наличии звуковой карты и специального программного обеспечения может воспроизводить музыкальные компакт-диски);
видеокарта - обеспечивает взаимодействие между системным блоком и монитором, а также выполняет ряд других функций;
звуковая карта - предназначена для обработки звуковой информации и сопряжения с внешними устройствами ввода/вывода звука (микрофоном, звуковыми колонками, усилителем и т.д.).
Все перечисленные устройства либо устанавливаются, либо подключаются к материнской плате с помощью разъемов. В состав системного блока также входят специальные устройства, называемыми шинами. Шины - это системы проводников и логических элементов, связывающие основные устройства компьютера и синхронизирующие их работу.
Клавиатура (QWERTY)- это устройство для ввода пользователем ПК информации. Стандартная клавиатура для компьютеров платформы IBM PC имеет 101 или 102 клавиши (сегодня можно встретить клавиатуру со 104 клавишами).
Назначение разных клавиш не постоянно. Действие той или иной клавиши зависит от программы, с которой работает пользователь.
Эта группа клавиш используется для ввода букв, цифр, знаков препинания и т.п.
На клавиатуре работают с английской и русской (как правило, красный цвет букв) раскладкой.
Мышь - устройство управления в операционной системе Windows. Мышь, как правило, содержит две кнопки. Левая кнопка для выделения объектов и текста, перетаскивания объектов, запуска программ и т.д. Правая кнопка служит для вызова контекстного меню.
Монитор подключается к видеокарте и работает под управлением операционной системы компьютера.
Размеры экрана мониторов измеряются в дюймах по диагонали.
Допустимая частота регенерации экрана
Частота регенерации экрана - частота кадров. Частота регенерации экрана может оказывать влияние на самочувствие человека при длительной работе с компьютером.
Частота регенерации экрана измеряется в герцах (Гц) и не должна быть меньше 60 Гц. Комфортная работа достигается при частотах 85 Гц и выше.
Дополнительные устройства
Кроме монитора и клавиатуры к системному блоку, через специальные разъемы подключаются:
принтер - устройство для вывода на печать
плоттер (графопостроитель) - устройство для вывода на бумагу чертежей. Обычный плоттер использует листы форматом А1;
сканнер - устройство для ввода текстовых и графических изображений;
стример - устройство для хранения данных на магнитной ленте;
модем (МОдулятор - ДЕМодулятор) - устройство для соединения и обмена информацией с другими компьютерами.ZyXel,D-Link.
Список использованной литературы
экранный изображение растрирование
1. Информатика. Базовый курс. Симонович и др_2003 - 640 с.doc.
2. Информатика. Учебник. Курносов А.П., Кулев С.А., Улезько А.В., Камалян А.К., Чернигин А.С., Ломакин С.В.: под ред. А.П. Курносова Воронеж, ВГАУ, 1997 -- 238 с.
3. Симонович С., Евсеев Г., Алексеев А. Специальная информатика: Уч. пос. - М.: АСТ-ПРЕСС: Информком-Пресс, 1998. - 480 с.
4. Волков С.И., Романов А.Н. Организация машинной обработки экономической информации. Учебник -2-е изд., перераб. и доп. - М.: Финансы и статистика, 1988.
5. Першиков В.И., Савинков В.М. Толковый словарь по информатике. - М.: Финансы и статистика, 1991.
6. Фигурнов В.Э. IBM PC для пользователя. Изд. 7-е. - М.: Инфра, 1997.
Размещено на Allbest.ru
...Подобные документы
Механизм графического представления данных. Виды компьютерной графики: фрактальная, трехмерная, растровая, векторная. Разрешение экранного изображения, понятие линиатуры. Связь между параметрами изображения и размером файла. Динамический диапазон.
реферат [38,6 K], добавлен 27.12.2012Виды графических компьютерных изображений, принципы их формирования и типы форматов. Пиксель как основной элемент экранного изображения. Основные проблемы при работе с растровой графикой. Сравнительная характеристика растровой и векторной графики.
презентация [521,5 K], добавлен 16.01.2012Компьютерная графика. Пиксели, разрешение, размер изображения. Типы изображений. Черно-белые штриховые и полутоновые изображения. Индексированные цвета. Полноцветные изображения. Форматы файлов. Цвет и его модели. Цветовые модели: RGB, CMYK, HSB.
реферат [18,1 K], добавлен 20.02.2009История создания GIMP и особенности программы. Сравнение векторной и растровой графики. Определение основных понятий: цветовые модели, разрешение изображения и его размер. Возможности использования GIMP для открытия файлов и загрузки изображений.
курсовая работа [756,5 K], добавлен 10.11.2011- Определение величины дисторсии цифровых изображений, формируемых системами технического зрения (СТЗ)
Оснащение робототехнических комплексов систем технического зрения. Математическая модель и векторная диаграмма дисторсии изображения. Создание эталонного изображения тестового объекта. Определение основных погрешностей формирования изображения.
курсовая работа [1,4 M], добавлен 14.06.2014 Виды компьютерной графики. Photoshop – программа для создания и обработки растровой графики. Пакет программ для работы с векторной графикой CorelDraw. Обработка растровых изображений с использованием Photoshop. Этапы создания коллажа на тему "Музыка".
курсовая работа [2,3 M], добавлен 27.12.2014Суть принципа точечной графики. Изображения в растровой графике, ее достоинства. Обзор наиболее известных редакторов векторной графики. Средства для работы с текстом. Программы фрактальной графики. Форматы графических файлов. Трехмерная графика (3D).
дипломная работа [764,7 K], добавлен 16.07.2011Разработка приложения, целью которого ставится преобразование черно-белых полутоновых изображений в цветные. Обзор методики обработки изображения, способов преобразования изображения с помощью нейронной сети. Описания кластеризации цветового пространства.
дипломная работа [6,3 M], добавлен 17.06.2012Методы создания двумерных и трехмерных изображений. Классификация средств компьютерной графики и анимации. Системы для работы с видео и компоновки. Обзор программных продуктов для создания презентаций, двумерной и трехмерной анимации, 3D-моделирования.
реферат [30,5 K], добавлен 25.03.2015Средства и способы создания и обработки графических изображений при помощи компьютерной техники. Растровая, векторная, трёхмерная и фрактальная графика, отличия принципов формирования изображения при отображении на экране монитора. Програмные средства.
реферат [436,4 K], добавлен 26.03.2010Растровая графика, составление графических изображений из отдельных точек (пикселей). Растровые графические редакторы. Векторная графика - построение изображения из простых объектов. Достоинства, недостатки и применение растровой и векторной графики.
презентация [7,8 K], добавлен 06.01.2014Определение понятий видеопиксела, разрешения изображения и разрешения монитора. Шаг точки (зерно) и размер пятна от луча. Сравнение разрешения изображения и шага точки. Характеристика цветовых моделей: модель RGB, вычитающая модель и модель HSB.
презентация [78,2 K], добавлен 06.01.2014Описание этапов создания анимированного GIF изображения мультипликационного героя "Винни-Пуха" в программе Adobe Photoshop CS6. Создание дубликата слоя изображения и подготовка кадров для GIF анимации. Настройка эффектов анимации и результат GIF-файла.
лабораторная работа [1,2 M], добавлен 05.03.2015Графические режимы и пространственное разрешение экрана монитора. Измерение глубины цвета. Обзор палитры цветов в системах цветопередачи. Выбор графического режима в операционных системах. Палитра цветов, используемая при печати изображений на принтерах.
презентация [521,4 K], добавлен 16.03.2015Типы изображений (черно-белые, полутоновые, цветные) и их форматы. Устройства, создающие цифровые изображения, и их параметры. Применение и характеристики методов сжатия изображений. Поиск по содержимому в базах данных изображений. Структуры баз данных.
презентация [360,4 K], добавлен 11.10.2013Средства для работы с растровой графикой. Источники получения растровых изображений, их преимущества и недостатки. Растровые графические редакторы: Paint, Microsoft Picture-It, Adobe PhotoDeluxe, Paint Shop Pro, Microsoft PhotoDraw, Adobe Photoshop.
презентация [9,1 M], добавлен 12.02.2014Представление графической информации в компьютере. Понятие пикселя и растрового изображения. Редактор растровой графики Photoshop. Инструменты выделения. Механизм выделения областей. Геометрические контуры выделения. Эффект растровой графики шум.
контрольная работа [1,4 M], добавлен 01.02.2009Форматы и характеристики цифрового видео: частота кадра, экранное разрешение, глубина цвета, качество изображения. Типовый технологический процесс производства видеокомпонентов для мультимедиа продуктов с использованием программы miroVIDEO Capture.
лекция [2,7 M], добавлен 30.04.2009Информация о графических форматах. Хранение изображения в программе. Очередь как вспомогательная структура данных. Загрузка изображения из двоичного файла. Операции с изображением. Уменьшение разрешающей способности. Увеличение размера изображения.
курсовая работа [1,1 M], добавлен 29.06.2013Задачи цифровой обработки изображений. Методы пороговой сегментации. Создание программы представления рисунка в виде матрицы и применения к нему пороговой обработки. Разработка интерфейса программы загрузки и фильтрации изображения с выбранным порогом.
курсовая работа [2,0 M], добавлен 12.11.2012