Системы управления данными на предприятии (PDM/PLM)

Понятие о CALS–технологии. Жизненный цикл промышленных изделий. Общее представление об интегрированной информационной среде. Product Data Management как система управления данными об изделии. Общее представление об интегрированной информационной среде.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 17.12.2013
Размер файла 522,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Понятие о CALS - технологии. Жизненный цикл промышленных изделий

CALS-технологии

CALS-технологии (англ. Continuous Acquisition and Life cycle Support - непрерывная информационная поддержка поставок и жизненного цикла) - современный подход к проектированию и производству высокотехнологичной и наукоёмкой продукции, заключающийся в использовании компьютерной техники и современных информационных технологий на всех стадиях жизненного цикла изделия. За счет непрерывной информационной поддержки обеспечиваются единообразные способы управления процессами и взаимодействия всех участников этого цикла: заказчиков продукции, поставщиков/производителей продукции, эксплуатационного и ремонтного персонала. Информационная поддержка реализуется в соответствии с требованиями системы международных стандартов, регламентирующих правила указанного взаимодействия преимущественно посредством электронного обмена данными.

ИПИ (информационная поддержка процессов жизненного цикла изделий) - русскоязычный аналог понятия CALS.

Применение CALS-технологий позволяет существенно сократить объёмы проектных работ, так как описания многих составных частей оборудования, машин и систем, проектировавшихся ранее, хранятся в унифицированных форматах данных сетевых серверов, доступных любому пользователю технологий CALS. Существенно облегчается решение проблем ремонтопригодности, интеграции продукции в различного рода системы и среды, адаптации к меняющимся условиям эксплуатации, специализации проектных организаций и т. п. Предполагается, что успех на рынке сложной технической продукции будет немыслим вне технологий CALS.

Развитие CALS-технологий должно привести к появлению так называемых виртуальных производств, в которых процесс создания спецификаций с информацией для программно управляемого технологического оборудования, достаточной для изготовления изделия, может быть распределён во времени и пространстве между многими организационно-автономными проектными студиями. Среди несомненных достижений CALS-технологий следует отметить лёгкость распространения передовых проектных решений, возможность многократного воспроизведения частей проекта в новых разработках и др.

Построение открытых распределённых автоматизированных систем для проектирования и управления в промышленности составляет основу современных CALS-технологий. Главная проблема их построения - обеспечение единообразного описания и интерпретации данных, независимо от места и времени их получения в общей системе, имеющей масштабы вплоть до глобальных. Структура проектной, технологической и эксплуатационной документации, языки её представления должны быть стандартизированными. Тогда становится реальной успешная работа над общим проектом разных коллективов, разделённых во времени и пространстве и использующих разные CAD/CAM/CAE-системы. Одна и та же конструкторская документация может быть использована многократно в разных проектах, а одна и та же технологическая документация - адаптирована к разным производственным условиям, что позволяет существенно сократить и удешевить общий цикл проектирования и производства. Кроме того, упрощается эксплуатация систем.

Для обеспечения информационной интеграции CALS использует стандарты IGES и STEP в качестве форматов данных. В CALS входят также стандарты электронного обмена данными, электронной технической документации и руководства для усовершенствования процессов. В последние годы работа по созданию национальных CALS-стандартов проводится в России под эгидой ФСТЭК РФ. С этой целью создан Технический Комитет ТК431 «CALS-технологии», силами которого разработан ряд стандартов серии ГОСТ Р ИСО 10303, являющихся аутентичными переводами соответствующих международных стандартов (STEP).

В ряде источников данную аббревиатуру представляют, как Computer Aided Acquisition and Logistic Support. В 1985 году Министерство обороны США объявило планы создания глобальной автоматизированной системы электронного описания всех этапов проектирования, производства и эксплуатации продуктов военного назначения. За прошедшие годы CALS-технология получила широкое развитие в оборонной промышленности и военно-технической инфраструктуре Министерства обороны США. По имеющимся данным это позволило ускорить выполнение НИОКР на 30-40%, уменьшить затраты на закупку военной продукции на 30%, сократить сроки закупки ЗИП на 22%, а также в 9 раз сократить время на корректировку проектов.

Жизненный цикл промышленных изделий

Современные предприятия не смогут выжить во всемирной конкуренции, если не будут выпускать новые продукты лучшего качества, более низкой стоимости и за меньшее время. Поэтому они стремятся использовать огромные возможности памяти компьютеров, их высокое быстродействие и возможности удобного графического интерфейса для того, чтобы автоматизировать и связать друг с другом задачи проектирования и производства, которые раньше были весьма утомительными и не связанными друг с другом. Таким образом, сокращается время и стоимость разработки и выпуска продукции. Для этой цели используются технологии автоматизированного проектирования (computer-aided design - CAD), автоматизированного производства (computer-aided manufacturing - CAM), автоматизированного конструирования (computer-aided engineering - CAE). Чтобы понять значение систем CAD/САМ/САЕ, мы должны рассмотреть различные задачи и операции, которые приходится решать и выполнять в процессе разработки и производства продукта. Все эти задачи, вместе взятые, называются жизненным циклом продукта. Пример жизненного цикла приведен на рисунке 1.

Рисунок 1. Жизненный цикл продукта

Прямоугольники, нарисованные сплошными линиями, представляют два главных процесса, составляющих жизненный цикл продукта: процесс разработки и процесс производства. Процесс разработки начинается с запросов потребителей, которые обслуживаются отделом маркетинга, и заканчивается полным описанием продукта, обычно выполняемым в виде рисунка. Процесс производства начинается с технических требований и заканчивается поставкой готовых изделий.

Операции, относящиеся к процессу разработки, можно разделить на аналитические и синтетические. Как следует из рисунка 1, первичные операции разработки, такие как определение необходимости разработки, формулирование технических требований, анализ осуществимости и сбор важной информации, а также концептуализация разработки, относятся к подпроцессу синтеза. Результатом подпроцесса синтеза является концептуальный проект предполагаемого продукта в форме эскиза или топологического чертежа, отражающего связи различных компонентов продукта. В этой части цикла делаются основные финансовые вложения, необходимые для реализации идеи продукта, а также определяется его функциональность. Большая часть информации, порождаемой и обрабатываемой в рамках подпроцесса синтеза, является качественной, а следовательно, неудобной для компьютерной обработки.

Готовый концептуальный проект анализируется и оптимизируется - это уже подпроцесс анализа. Прежде всего вырабатывается аналитическая модель, поскольку анализируется именно модель, а не сам проект. Несмотря на быстрый рост количества и качества компьютеров, используемых в конструировании, в обозримом будущем отказаться от использования абстракции аналитической модели мы не сможем. Аналитическая модель получается, если из проекта удалить маловажные детали, редуцировать размерности и учесть имеющуюся симметрию. Редукция размерностей, например, подразумевает замена тонкого листа из какого-либо материала на эквивалентную плоскость с атрибутом толщины и т. п. Симметричность геометрии тела и нагрузки, приложенной к нему, позволяет рассматривать в модели лишь часть этого тела. Типичные примеры анализа: анализ напряжений, позволяющий проверить прочность конструкции, контроль столкновений, позволяющий обнаружить возможность столкновений движущихся частей, составляющих механизм, а также кинематический анализ, показывающий, что проектируемое устройство будет совершать ожидаемые движения. Качество результатов, которые могут получены в результате анализа, непосредственно связано с качеством выбранной аналитической модели, которым оно ограничивается.

После завершения проектирования и выбора оптимальных параметров начинается этап оценки проекта. Для этой цели могут изготавливаться прототипы. В конструировании прототипов все большую популярность приобретает новая технология, называемая быстрое прототипирование. Эта технология позволяет конструировать прототип снизу вверх, то есть непосредственно из проекта, поскольку фактически требует только лишь данных о поперечном сечении конструкции. Если оценка проекта на основании прототипа показывает, что проект не удовлетворяет требованиям, описанный выше проект разработки повторяется снова.

Если же оценка проекта оказывается удовлетворительной, начинается подготовка проектной документации. К ней относятся: чертежи, отчеты и списки материалов. Чертежи обычно копируются, а копии передаются на производство.

Как видно из рисунка 1, процесс производства начинается с планирования, которое выполняется на основании полученных на этапе проектирования чертежей, а заканчивается готовым продуктом. Технологическая подготовка производства - это операция, устанавливающая список технологических процессов по изготовлению продукта задающая их параметры. Одновременно выбирается оборудование, на котором будут производиться технологические операции, такие как получение детали нужной формы из заготовки. В результате подготовки производства составляется план выпуска, списки материалов и программы для оборудования. На этом же этапе обрабатываются прочие специфические требования, в частности рассматриваются конструкции зажимов и креплений. Подготовка занимает в процессе производства примерно такое же место, как подпроцесс синтеза в проектировании, требуя значительного человеческого опыта и принятия качественных решений. Такая характеристика подразумевает сложность компьютеризации данного этапа. После завершения технологической подготовки начинается выпуск готового продукта и его проверка на соответствие требованиям. Детали, успешно проходящие контроль качества, собираются вместе, проходят тестирование функциональности, упаковываются, маркируются и отгружаются заказчикам.

2. Системы управления данными на предприятии (PDM/PLM). Общее представление об интегрированной информационной среде

Системы PLM

Product Lifecycle Management (PLM) - технология управления жизненным циклом изделий. Это решение, которое обеспечивает управление данными и информацией об изделии, а так же всех связанных с изделием процессах на всем жизненном цикле от проектирования и производства до завершения эксплуатации. Информация об объекте, содержащаяся в PLM-cистеме, является цифровым макетом этого объекта.

PLM - это современная бизнес-стратегия, применяемая ведущими производственными предприятиями для сокращения времени вывода на рынок новых продуктов за счет использования передовых средств разработки изделий (CAD/CAE) и подготовки производства (CAM/CAPP/MPM), уменьшения стоимости разработки за счет повторного использования инженерных данных и организации совместной работы распределенных коллективов (PDM).

PLM объединяет в комплексную систему передовые подходы и опорные технологии:

- управление данными об изделии;

- организовать совместный доступ к данным, обеспечивая их постоянную актуальность и целостность;

- контролировать права доступа к данным;

- вносить необходимые изменения во все версии изделия;

- модифицировать спецификацию материалов, конфигурировать варианты изделия;

- коллективные разработки;

- визуализация;

- цифровое производство;

- выбор стратегических поставщиков;

- проверка и управление требованиями;

- управление технологическими процессами;

- управление проектами;

- управление качеством и надежностью;

- интеграция с большинством использующимися ECAD/CAD, корпоративными системами.

Одним из преимуществ решения состоит в его масштабируемости, что позволяет внедрять решение поэтапно, начав с локальной задачи, к примеру, один из возможных вариантов с создания электронного архива, и впоследствии наращивая функциональные модули в зависимости от задач предприятия.

Повышая гибкость и оперативность при реагировании на изменяющиеся вызовы рынка и конкурентной среды, PLM помогает компаниям:

- производить инновационные продукты и услуги;

- сокращать издержки, повышать качество и сокращать сроки выведения продукции на рынок, обеспечивая при этом запланированную прибыль на инвестиции;

- формировать всестороннее взаимодействие с потребителями, поставщиками и бизнес-партнерами в режиме коллективных разработок и постоянного совершенствования.

Сфера применения PLM-решений быстро расширяется, охватывая все больше областей, в которых обмен и целенаправленное использование интеллектуальных активов, связанных с изделием, обеспечивают существенное увеличение прибыльности предприятий.

Системы PDM

Product Data Management (PDM) - система управления данными об изделии. Система PDM является неотъемлемой частью PLM-системы.

Задачи системы PDM: управление хранением данных и документами, управление потоками работ и процессами, управление структурой продукта, автоматизация генерации выборок и отчетов, механизмы авторизации.

Технология PDM реализуется программными решениями, позволяющими сохранять данные об изделии в базах данных. К данным об изделии, прежде всего, относят инженерные данные, такие как CAD-модели и чертежи, цифровые макеты, документированные расчеты, спецификации материалов и т. п.

В PDM-системах обобщены такие технологии, как:

- управление инженерными данными (engineering data management - EDM) ;

- управление документами;

- управление информацией об изделии (product information management - PIM) ;

- управление техническими данными (technical data management - TDM) ;

- управление технической информацией (technical information management - TIM) ;

- управление изображениями и манипулирование информацией, всесторонне определяющей конкретное изделие.

Базовые функциональные возможности PDM-систем охватывают следующие основные направления:

- управление хранением данных и документами;

- управление потоками работ и процессами;

- управление структурой продукта;

- автоматизация генерации выборок и отчетов;

- механизм авторизации.

С помощью PDM-систем осуществляется отслеживание больших массивов данных и инженерно-технической информации, необходимых на этапах проектирования, производства или строительства, а также поддержка эксплуатации, сопровождения и утилизации технических изделий. Такие данные, относящиеся к одному изделию и организованные PDM-системой, называются цифровым макетом. PDM-системы интегрируют информацию любых форматов и типов, предоставляя её пользователям уже в структурированном виде (при этом структуризация привязана к особенностям современного промышленного производства). PDM-системы работают не только с текстовыми документами, но и с геометрическими моделями и данными, необходимыми для функционирования автоматических линий, станков с ЧПУ и др., причём доступ к таким данным осуществляется непосредственно из PDM-системы.

С помощью PDM-систем можно создавать отчеты о конфигурации выпускаемых систем, маршрутах прохождения изделий, частях или деталях, а также составлять списки материалов. Все эти документы при необходимости могут отображаться на экране монитора производственной или конструкторской системы из одной и той же БД. Одной из целей PDM-систем и является обеспечение возможности групповой работы над проектом, то есть, просмотра в реальном времени и совместного использования фрагментов общих информационных ресурсов предприятия.

Общее представление об интегрированной информационной среде

управление данные интегрированная информационная среда

Технологии CAD, САМ и САЕ заключаются в автоматизации и повышении эффективности конкретных стадий жизненного цикла продукта. Развиваясь независимо, эти системы еще не до конца реализовали потенциал интеграции проектирования и производства. Для решения этой проблемы была предложена новая технология, получившая название компьютеризованного интегрированного производства (computer-integrated manufacturing - CIM). CIM пытается соединить «островки автоматизации» вместе и превратить их в бесперебойно и эффективно работающую систему. CIM подразумевает использование компьютерной базы данных для более эффективного управления всем предприятием, в частности бухгалтерией, планированием, доставкой и другими задачами, а не только проектированием и производством, которые охватывались системами CAD, САМ и САЕ. CIM часто называют философией бизнеса, а не компьютерной системой.

Сценарий интеграции проектирования и производства посредством общей базы данных

Приведенный ниже сценарий демонстрирует использование систем CAD/CAM/ САЕ в рамках всего жизненного цикла продукта для достижения следующих целей: повышения качества (Q), снижения стоимости (С) и ускорения отгрузки (D). Этот сценарий может показаться несколько упрощенным на фоне современных передовых компьютерных технологий, однако он иллюстрирует направление развития техники. Рассмотрим фазы разработки и производства шкафа для аудиосистемы. Жизненный цикл этого продукта будет похожим на жизненный цикл механической системы или здания, а значит, наш сценарий будет применим и к таким продуктам.

Предположим, что в технических требованиях для разработчика указано, что шкаф должен иметь четыре полки: одну для проигрывателя компакт-дисков, одну для проигрывателя аудиокассет, одну для радиоприемника и одну для хранения ком- пакт-дисков. Вероятно, разработчик сделает множество набросков конструкции, прежде чем придет к какому-либо варианту. На данном этапе он может пользоваться автоматизированной системой разработки рабочих чертежей (если задача решается в двух измерениях) или системой геометрического моделирования (в случае трех измерений). Концептуальный проект может быть отправлен в отдел маркетинга по электронной почте для получения отзыва. Взаимодействие разработчика с отделом маркетинга может происходить и в реальном времени через объединенные в сеть компьютеры. При наличии подходящего оборудования подобное взаимодействие может быть удобным и продуктивным. Информация о готовом концептуальном проекте сохраняется в базе данных. Туда попадают сведения о конфигурации мебели (в нашем случае - вертикальное хранение компонентов аудиосистемы друг над другом), количестве полок, распределении полок по компонентам и тому подобные данные. Другими словами, все особенности проекта, упорядочиваются и помешаются в базу данных с возможностью считывания и изменения в любой последующий момент.

Следующий шаг - определение размеров шкафа. Его габариты должны быть выбраны таким образом, чтобы на каждую полку можно было поставить одну из множества имеющихся на рынке моделей аудиотехники соответствующего класса. Значит, нужно получить сведения об их размерах. Эти сведения можно взять в каталоге или в базе данных производителей или поставщиков. Доступ к базе данных осуществляется аналогично доступу к книгам и их содержимому при подключении к электронной библиотеке. Разработчик может даже скопировать сведения в свою собственную базу данных, если он планирует часто пользоваться ими. Накопление сведений о проекте подобно накоплению форм файлов при работе с текстовыми процессорами. Форма конструкции должна изменяться в соответствии с полученными сведениями.

Затем разработчик должен выбрать материал для шкафа. Он может взять натуральный дуб, сосну, ДСП, сталь или что-нибудь еще. В нашем случае выбор осуществляется интуитивно или исходя из имеющегося у разработчика опыта. Однако в случае продуктов, рассчитанных на работу в жестких условиях, в частности механических устройств, разработчик обязательно учитывает свойства материалов. На этом этапе также полезна база данных, потому что в ней могут быть сохранены свойства множества материалов. Можно воспользоваться даже экспертной системой, которая выберет материал по свойствам, хранящимся в базе данных. Информация о выбранном материале также помещается в базу.

Следующий шаг - определение толщины полок, дверец и боковых стенок. В простейшем случае, который мы рассматриваем, толщина может определяться главным образом эстетическими соображениями. Однако она должна быть по крайней мере достаточной для того, чтобы избежать прогиба под воздействием установленной в шкаф техники. В механических устройствах высокой точности и структурах, рассчитанных на большие нагрузки, такие параметры, как толщина, должны определяться точным расчетом, чтобы избежать деформации. Для расчета деформации структур широко используется метод конечных элементов. Как уже было объяснено, метод конечных элементов применяется к аналитической модели конструкции. В нашем случае аналитическая модель состоит из каркасных сеток, на которые разбивается шкаф, рассматриваемый в приближении листов. Переход к приближению листов может быть выполнен автоматически при помощи алгоритма преобразования к средним осям (medial axis transformation - MAT). Элементы оболочки приближения листов также могут генерироваться автоматически. Параметры нагрузки, которые в нашем случае есть просто веса соответствующих устройств, считываются из базы данных точно так же, как и сведения о размерах. Определяя зависимость прогиба полок от их толщины, разработчик может выбрать подходящее значение этого параметра и сохранить его в базе данных. Этот процесс может быть автоматизирован путем интеграции метода конечных элементов с процедурой оптимизации. Аналогичным образом можно определить толщину боковых стенок и дверец, однако сделать это можно и просто из эстетических соображений.

Затем разработчик выбирает метод сборки полок и боковых стенок. В идеале метод также может быть определен из расчета прочности структуры в целом или при помощи экспертной системы, имеющей сведения о методах сборки.

После завершения этапов концептуализации проекта, его анализа и оптимизации разработчик переходит к работе над проектной документацией, описывающей шкаф с точностью до мельчайших подробностей. Чертежи отдельных деталей (полок, дверец и боковых стенок) изготавливаются в системе разработки рабочих чертежей. На этом этапе разработчик может добавить некоторые эстетические детали, например декоративные элементы на дверцах и боковых стенках. Детальные чертежи помещаются в базу данных для использования в процессе производства.

Изготовление шкафа осуществляется в следующем порядке. Форма каждой детали наносится на необработанный материал (в нашем случае дерево) и вырезается пилой. Количество отходов можно снизить, располагая детали на кусках дерева оптимально. Разработчик может испытывать разные варианты размещения на экране компьютера до тех пор, пока не будет найдена конфигурация с минимальным количеством отходов. Компьютерная программа может помочь в этой работе, рассчитывая количество отходов для каждой конфигурации. Программа более высокого уровня может самостоятельно определить наиболее экономичное размещение деталей на заготовке. В любом случае конечная конфигурация сохраняется в компьютере и используется для расчета траектории движения пилы станка с числовым программным управлением. Более того, программные средства позволяют разработать зажимы и крепления для процедуры выпиливания, а также запрограммировать системы передачи материала. Эти системы могут быть как простыми конвейерами, так и сложными роботами, передающими необработанный материал на распилку и забирающими готовые детали.

Подготовленные детали должны быть собраны вместе. Процесс сборки также может выполняться роботами, которые программируются автоматически на основании описания конечного продукта и его деталей, хранящегося в базе данных. Одновременно проектируются зажимы и крепления для автоматизированной сборки. Наконец, робот может быть запрограммирован на покраску шкафа после сборки. В настоящее время зажимы и крепления для сборки проектируются или выбираются планировщиком процессов, а программирование роботов осуществляется в интерактивном режиме путем перемещения рабочего органа робота вручную.

Общий вид получившегося сценария показан на рис. 2, из которого видно, каким образом база данных позволяет интегрировать системы CAD, САЕ и САМ, что и является конечной целью CIM.

Рисунок 2. Интеграция CAD, CAM, и CAE через базу данных.

Список литературы

1. Ли К. Основы САПР (CAD, CAM, CAE) / К. Ли - СПб. : Питер, 2004. - 560 с. ил.

2. Норенков И. П. Основы автоматизированного проектирования: Учеб. для вузов / И. П. Норенков - 2-е изд., перераб. и доп. - М. : Изд-во МГТУ им. Н. Э. Баумана, 2002. - 336 с.

3.www.irisoft.ru/pdmplm_resenia.html

Размещено на Allbest.ru

...

Подобные документы

  • Определение программы управления корпоративными данными, ее цели и предпосылки внедрения. Обеспечение качества данных. Использование аналитических инструментов на базе технологий Big Data и Smart Data. Фреймворк управления корпоративными данными.

    курсовая работа [913,0 K], добавлен 24.08.2017

  • Анализ современного состояния систем автоматизации управления данными; учет инфраструктуры информационной системы и требования к ресурсам организации. Разработка системы управления данными на базе SharePoint-сайта, программная реализация и внедрение.

    диссертация [4,1 M], добавлен 10.11.2011

  • Разработка информационной системы управления, ориентированной на учет закупленного товара, работу с историческими данными компании и анализ данных для принятия стратегически верных решений. Хранилище данных в 3NF Билла Инмона. Компоненты Data Vault.

    дипломная работа [3,6 M], добавлен 22.09.2016

  • Назначение и цели создания информационной системы. Характеристика объекта автоматизации. Реализация информационной системы "Medic", серверной части приложения. Требования к оперативному запоминающему устройству клиента. Выходные данные программы.

    дипломная работа [5,1 M], добавлен 29.06.2011

  • Необходимость внедрения интегрированной информационной системы с целью повышения эффективности управления процессами. Анализ технологического процесса установки каталитического крекинга КК-1. Разработка концепции построения информационной системы.

    дипломная работа [1,1 M], добавлен 09.10.2013

  • Технология интегрированного информационного пространства и управления данными; программное обеспечение CALS. Этапы жизненного цикла изделий и промышленные автоматизированные системы. Интерактивные электронно-технические руководства, стандарты ISO/IEC.

    реферат [172,8 K], добавлен 19.02.2011

  • Комплексный анализ структуры информационной системы управления персоналом на предприятии. Моделирование информационной системы и расчет задержек запроса менеджера из филиала в области к центральному серверу. Модель оптимизации информационной системы.

    курсовая работа [2,1 M], добавлен 18.09.2014

  • Понятие и структура банка данных. Основные структурные элементы базы данных. Система управления базами данных. Преимущества централизации управления данными. Понятие информационного объекта. Современные технологии, используемые в работе с данными.

    курсовая работа [1,8 M], добавлен 02.07.2011

  • Разработка информационной системы административного управления. Выбор языка и среды программирования. Структура взаимодействия информации. Требования к программно-аппаратному окружению. Создание программы в Delphi и связывание ее с базой данных.

    курсовая работа [1010,9 K], добавлен 08.10.2015

  • Рассмотрение основ использования информационных технологий в гостиничном бизнесе. Выбор системы управления базами данных. Описание информационной технологии. Выполнение программной реализации в среде объектно-ориентированного программирования Delphi 7.

    курсовая работа [2,1 M], добавлен 24.09.2014

  • Характеристика существующих технологий для разработки информационной системы. Проектирование реляционной базы данных информационной системы учета научных публикаций в среде Adobe Dreamweaver. Оценка функциональных возможностей системы учета публикаций.

    дипломная работа [2,0 M], добавлен 12.08.2015

  • Общее понятие, свойства, уровень важности, классификация, жизненный цикл и защита информации. Принципы, субъекты и объекты информационных отношений. Особенности потребностей и этапы их формирования. Механизм реализации информационной потребности.

    курсовая работа [31,2 K], добавлен 10.03.2014

  • Жизненный цикл информационных систем. Обзор CALS-технологии, которая предполагает создание ЕИП предприятия, включающее в себя совокупность распределенных баз данных. Этапы создания программного обеспечения управления метрологической службой предприятия.

    дипломная работа [2,5 M], добавлен 08.07.2012

  • Анализ информационной системы "Бурятия.INFO". Построение функциональной модели "Как надо", диаграммы прецедентов, диаграммы последовательности действий, диаграммы классов. Разработка программного приложения в интегрированной среде Intellij IDEA.

    дипломная работа [1,3 M], добавлен 13.04.2014

  • Проектирование информационной системы. Описание бизнес-процесса работы ООО "Сервис-ТВ". Правила работы с автоматизированными информационными системами. Построение базы данных в среде OpenOffice. Методика расчета оценки экономической эффективности.

    курсовая работа [3,4 M], добавлен 22.11.2012

  • Анализ предметной области разрабатываемой информационной системы "Библиотека". Проектирование базы данных в среде MS Access. Физическая реализация данной информационной системы средствами Delphi 7 и MS Access 2003. Области применения технологии BDE.

    курсовая работа [2,4 M], добавлен 12.01.2016

  • Проект - комплекс действий для достижения цели в течение заданного периода времени и в пределах бюджета; жизненный цикл проекта, проектный треугольник. Понятие корпоративной информационной системы, ее структура. Проведение коммерческих сделок фирмы.

    контрольная работа [1,7 M], добавлен 27.05.2013

  • Основные задачи и направления деятельности кадровой службы (функции). Автоматизация процесса учета кадров. Формирование и ведение базы данных работников, составление отчета в соответствии с данными о работнике в интегрированной среде разработки Delphi.

    дипломная работа [1,4 M], добавлен 14.05.2010

  • Цель создания информационной системы. Автоматизированная информационная система "Строительное предприятие". Использование вычислительной техники и программного обеспечения для создания автоматизированной информационной системы управления на предприятии.

    курсовая работа [2,5 M], добавлен 04.01.2011

  • Количество информации из 64 равновероятных событий. Структура автоматизированной информационной технологии управления. Анализ финансового проекта многоуровневой организации в среде электронной таблицы Excel. Сводный прогноз движения денежных средств.

    контрольная работа [741,0 K], добавлен 21.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.