Проблема создания искусственного интеллекта
Разработки в области создания систем искусственного интеллекта как одно из приоритетных направлений в науке. Конкретизация понятия "искусственный интеллект". Знания – основа интеллектуальной системы. Диалектико-материалистическое понимание мышления.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 20.12.2013 |
Размер файла | 29,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
Конкретизация понятия «искусственный интеллект»
Знания - основа интеллектуальной системы
Проблемы создания ИИ
Вывод
Список литературы
Введение
Проблема искусственного интеллекта является сейчас одной из самых злободневных. Ей занимаются ученые различных специальностей: кибернетики, лингвисты, психологи, философы, математики, инженеры. При исследовании проблем, связанных с искусственным интеллектом, решаются многие основополагающие вопросы, связанные с путями развития научной мысли, с воздействием достижений в области вычислительной техники и робототехники на жизнь будущих поколений людей. Здесь возникают и развиваются новые методы научных междисциплинарных исследований. Здесь формируется новый взгляд на роль тех или иных научных результатов и возникает то, что можно назвать философским осмыслением этих результатов.
Понятие искусственного интеллекта многогранно. Но несколько наиболее важных аспектов все же можно выделить. Во-первых, это вопрос о том, что такое искусственный интеллект, ведь определение понятия обусловливает предмет, цель, методы, успешность исследования. Во-вторых, интеллект подразумевает обработку информации, поэтому важной является проблема представления знаний в системах искусственного интеллекта. В-третьих, существовали и существуют различные подходы к решению вопросов, связанных с созданием интеллектуальных систем, и их рассмотрение проливает свет на многие аспекты проблемы. В-четвертых, огромное значение имеет обеспечение взаимодействия систем искусственного интеллекта с человеком на естественном языке, так как при этом значительно облегчается ведение диалога с ними. Несмотря на то, что, по мнению некоторых ученых, искусственный интеллект принципиально невозможен, разработки в области создания систем искусственного интеллекта являются в настоящее время одним из приоритетных направлений в науке.
Конкретизация понятия «искусственный интеллект»
В понятие «искусственный интеллект» вкладывается различный смысл - от признания интеллекта у ЭВМ, решающих логические или даже любые вычислительные задачи, до отнесения к интеллектуальным лишь тех систем, которые решают весь комплекс задач, осуществляемых человеком, или еще более широкую их совокупность. Постараемся же вычленить тот смысл понятия «искусственный интеллект», который в наибольшей степени соответствует реальным исследованиям в этой области.
В исследованиях по искусственному интеллекту ученые отвлекаются от сходства процессов, происходящих в технической системе или в реализуемых ею программах, с мышлением человека. Если система решает задачи, которые человек обычно решает посредством своего интеллекта, то мы имеем дело с системой искусственного интеллекта. Однако это ограничение недостаточно. Создание традиционных программ для ЭВМ- работа программиста - не есть конструирование искусственного интеллекта. Какие же задачи, решаемые техническими системами, можно рассматривать как конституирующие искусственный интеллект? Чтобы ответить на этот вопрос, надо уяснить, прежде всего, что такое задача. Как отмечают психологи, этот термин тоже не является достаточно определенным. По-видимому, в качестве исходного можно принять понимание задачи как мыслительной задачи, существующее в психологии. Они подчеркивают, что задача есть только тогда, когда есть работа для мышления, т. е. когда имеется некоторая цель, а средства к ее достижению не ясны; их надо найти посредством мышления. Хорошо по этому поводу сказал замечательный математик Д. Пойа: «... трудность решения в какой-то мере входит в само понятие задачи: там, где нет трудности, нет и задачи». Если человек имеет очевидное средство, с помощью которого, наверное, можно осуществить желание, поясняет он, то задачи не возникает. Если человек обладает алгоритмом решения некоторой задачи и имеет физическую возможность его реализации, то задачи в собственном смысле уже не существует. Так понимаемая задача, в сущности, тождественна проблемной ситуации, и решается она посредством преобразования последней. В ее решении участвуют не только условия, которые непосредственно заданы. Человек использует любую находящуюся в его памяти информацию, «модель мира», имеющуюся в его психике и включающую фиксацию разнообразных законов, связей, отношений этого мира. Если задача не является мыслительной, то она решается на ЭВМ традиционными методами и, значит, не входит в круг задач искусственного интеллекта. Ее интеллектуальная часть выполнена человеком. На долю машины осталась часть работы, которая не требует участия мышления, т. е. «безмысленная», неинтеллектуальная. Под словом «машина» здесь понимается машина вместе с ее совокупным математическим обеспечением, включающим не только программы, но и необходимые для решения задач «модели мира». Недостатком такого понимания является главным образом его антропоморфизм. Задачи, решаемые искусственным интеллектом, целесообразно определить таким образом, чтобы человек, по крайней мере, в определении отсутствовал. Основная функция мышления заключается в выработке схем целесообразных внешних действий в бесконечно варьирующих условиях. Специфика человеческого мышления (в отличие от рассудочной деятельности животных) состоит в том, что человек вырабатывает и накапливает знания, храня их в своей памяти. Выработка схем внешних действий происходит не по принципу «стимул - реакция», а на основе знаний, получаемых дополнительно из среды, для поведения в которой вырабатывается схема действия. Этот способ выработки схем внешних действий (а не просто действия по командам, пусть даже меняющимся как функции от времени или как однозначно определенные функции от результатов предшествующих шагов) является существенной характеристикой любого интеллекта. Отсюда следует, что к системам искусственного интеллекта относятся те, которые, используя заложенные в них правила переработки информации, вырабатывают новые схемы целесообразных действий на основе анализа моделей среды, хранящихся в их памяти. Способность к перестройке самих этих моделей в соответствии с вновь поступающей информацией является свидетельством более высокого уровня искусственного интеллекта. Большинство исследователей считают наличие собственной внутренней модели мира у технических систем предпосылкой их «интеллектуальности». Формирование такой модели связано с преодолением синтаксической односторонности системы, т. е. с тем, что символы или та их часть, которой оперирует система, интерпретированы, имеют семантику. Характеризуя особенности систем искусственного интеллекта, специалисты указывают на: 1) наличие в них собственной внутренней модели внешнего мира; эта модель обеспечивает индивидуальность, относительную самостоятельность системы в оценке ситуации, возможность семантической и прагматической интерпретации запросов к системе; 2) способность пополнения имеющихся знаний; 3) способность к дедуктивному выводу, т. е. к генерации информации, которая в явном виде не содержится в системе; это качество позволяет системе конструировать информационную структуру с новой семантикой и практической направленностью; 4) умение оперировать в ситуациях, связанных с различными аспектами нечеткости, включая «понимание» естественного языка; 5) способность к диалоговому взаимодействию с человеком; 6) способность к адаптации. На вопрос, все ли перечисленные условия обязательны, необходимы для признания системы интеллектуальной, ученые отвечают по-разному. В реальных исследованиях, как правило, признается абсолютно необходимым наличие внутренней модели внешнего мира, и при этом считается достаточным выполнение хотя бы одного из перечисленных выше условий. П. Армер выдвинул мысль о «континууме интеллекта»: различные системы могут сопоставляться не только как имеющие и не имеющие интеллекта, но и по степени его развития. При этом, считает он, желательно разработать шкалу уровня интеллекта, учитывающую степень развития каждого из его необходимых признаков. Известно, что в свое время А. Тьюринг предложил в качестве критерия, определяющего, может ли машина мыслить, «игру в имитацию». Согласно этому критерию, машина может быть признана мыслящей, если человек, ведя с ней диалог по достаточно широкому кругу вопросов, не сможет отличить ее ответов от ответов человека. Критерий Тьюринга в литературе был подвергнут критике с различных точек зрения. Действительно серьезный аргумент против этого критерия заключается в том, что в подходе Тьюринга ставится знак тождества между способностью мыслить и способностью к решению задач переработки информации определенною типа. Успешная «игра в имитацию» не может без тщательного предварительного анализа мышления как целостности быть признана критерием способности машины к мышлению. Однако этот аргумент бьет мимо цели, если мы говорим не о мыслящей машине, а об искусственном интеллекте, который должен лишь продуцировать физические тела знаков, интерпретируемые человеком в качестве решений определенных задач. Поэтому прав В. М. Глушков, утверждая, что наиболее естественно, следуя Тьюрингу, считать, что некоторое устройство, созданное человеком, представляет собой искусственный интеллект, если, ведя с ним достаточно долгий диалог по более или менее широкому кругу вопросов, человек не сможет различить, разговаривает он с разумным живым существом или с автоматическим устройством. Если учесть возможность разработки программ, специально рассчитанных на введение в заблуждение человека, то, возможно, следует говорить не просто о человеке, а о специально подготовленном эксперте. Этот критерий, на взгляд многих ученых, не противоречит перечисленным выше особенностям системы искусственного интеллекта. Но что значит по «достаточно широкому кругу вопросов», о котором идет речь в критерии Тьюринга и в высказывании В. М. Глушкова? На начальных этапах разработки проблемы искусственного интеллекта ряд исследователей, особенно занимающихся эвристическим программированием, ставили задачу создания интеллекта, успешно функционирующего в любой сфере деятельности. Это можно назвать разработкой «общего интеллекта». Сейчас большинство работ направлено на создание «профессионального искусственного интеллекта», т. е. систем, решающих интеллектуальные задачи из относительно ограниченной области (например, управление портом, интегрирование функций, доказательство теорем геометрии и т. п.). В этих случаях «достаточно широкий круг вопросов» должен пониматься как соответствующая область предметов. Исходным пунктом рассуждений об искусственном интеллекте было определение такой системы как решающей мыслительные задачи. Но перед нею ставятся и задачи, которые люди обычно не считают интеллектуальными, поскольку при их решении человек сознательно не прибегает к перестройке проблемных ситуаций. К их числу относится, например, задача распознания зрительных образов. Человек узнает человека, которого видел один-два раза, непосредственно в процессе чувственного восприятия. Исходя из этого, кажется, что эта задача не является интеллектуальной. Но в процессе узнавания человек не решает мыслительных задач лишь постольку, поскольку программа распознания не находится в сфере осознанного. Но так как в решении таких задач на неосознанном уровне участвует модель среды, хранящаяся в памяти, то эти задачи, в сущности, являются интеллектуальными. Соответственно и система, которая ее решает, может считаться интеллектуальной. Тем более это относится к «пониманию» машиной фраз на естественном языке, хотя человек в этом не усматривает обычно проблемной ситуации. Теория искусственного интеллекта при решении многих задач сталкивается с гносеологическими проблемами. Одна из таких проблем состоит в выяснении вопроса, доказуема ли теоретически (математически) возможность или невозможность искусственного интеллекта. На этот счет существуют две точки зрения. Одни считают математически доказанным, что ЭВМ в принципе может выполнить любую функцию, осуществляемую естественным интеллектом. Другие полагают в такой же мере доказанным математически, что есть проблемы, решаемые человеческим интеллектом, которые принципиально недоступны ЭВМ. Эти взгляды высказываются как кибернетиками, так и философами.
Знание - основа интеллектуальной системы
Многие виды умственной деятельности человека, такие, как написание программ для вычислительной машины, занятие математикой, ведение рассуждений на уровне здравого смысла и даже вождение автомобиля - требуют «интеллекта». На протяжении последних десятилетий было построено несколько типов компьютерных систем, способных выполнять подобные задачи. Имеются системы, способные диагностировать заболевания, планировать синтез сложных синтетических соединений, решать дифференциальные уравнения в символьном виде, анализировать электронные схемы, понимать ограниченный объем человеческой речи и естественного языкового текста. Можно сказать, что такие системы обладают в, некоторой степени, искусственным интеллектом. Работа по построению таких систем проводится в области, получившей название искусственный интеллект (ИИ). При реализации интеллектуальных функций непременно присутствует информация, называемая знаниями. Другими словами, интеллектуальные системы являются в то же время системами обработки знаний. В настоящее время в исследованиях по искусственному интеллекту выделились несколько основных направлений. 1. Представление знаний. В рамках этого направления решаются задачи, связанные с формализацией и представлением знаний в памяти системы ИИ. Для этого разрабатываются специальные модели представления знаний и языки описания знаний, внедряются различные типы знаний. Проблема представления знаний является одной из основных проблем для системы ИИ, так как функционирование такой системы опирается на знания о проблемной области, которые хранятся в ее памяти. 2. Манипулирование знаниями. Чтобы знаниями можно было пользоваться при решении задачи, следует научить систему ИИ оперировать ими. В рамках данного направления разрабатываются способы пополнения знаний на основе их неполных описаний, создаются методы достоверного и правдоподобного вывода на основе имеющихся знаний, предлагаются модели рассуждений, опирающихся на знания и имитирующих особенности человеческих рассуждений. Манипулирование знаниями очень тесно связано с представлением знаний, и разделить эти два направления можно лишь условно. 3. Общение. В круг задач этого направления входят: проблема понимания и синтеза связных текстов на естественном языке, понимание и синтез речи, теория моделей коммуникаций между человеком и системой ИИ. На основе исследований в этом направлении формируются методы построения лингвистических процессов, вопросно-ответных систем, диалоговых систем и других систем ИИ, целью которых является обеспечение комфортных условий для общения человека с системой ИИ. 4. Восприятие. Это направление включает разработку методов представления информации о зрительных образах в базе знаний, создание методов перехода от зрительных сцен к их текстовому описанию и методов обратного перехода, создание средств, порождающих зрительные сцены на основе внутренних представлений в системах ИИ. 5. Обучение. Для развития способности систем ИИ к обучению, т. е. к решению задач, с которыми они раньше не встречались, разрабатываются методы формирования условий задач по описанию проблемной ситуации или по наблюдению за ней, методы перехода от известного решения частных задач (примеров) к решению общей задачи, создание приемов разбиения исходной задачи на более мелкие и уже известные для систем ИИ. В этом направлении ИИ сделано еще весьма мало. 6. Поведение. Поскольку системы ИИ должны действовать в некоторой окружающей среде, то необходимо разрабатывать некоторые поведенческие процедуры, которые позволили бы им адекватно взаимодействовать с окружающей средой, другими системами ИИ и людьми. Это направление в ИИ также разработано ещё очень слабо. В последние годы термин «знание» все чаще употребляется в информатике. Специалисты подчеркивают, что совершенствование так называемых интеллектуальных систем (информационно-поисковых систем высокого уровня, диалоговых систем, базирующихся на естественных языках, интерактивных человеко-машинных систем, используемых в управлении, проектировании, научных исследованиях) во многом определяется тем, насколько успешно будут решаться задачи (проблемы) представления знаний.
Проблемы создания ИИ
Гносеологический анализ проблемы искусственного интеллекта вскрывает роль таких познавательных орудий, как категории, специфическая семиотическая система, логические структуры, ранее накопленное знание. Они обнаруживаются не посредством исследования физиологических или психологических механизмов познавательного процесса, а выявляются в знании, в его языковом выражении. Орудия познания, формирующиеся, в конечном счете, на основе практической деятельности, необходимы для любой системы, выполняющей функции абстрактного мышления, независимо от ее конкретного материального субстрата и структуры. Поэтому, чтобы создать систему, выполняющую функции абстрактного мышления, т. е. в конечном счете, формирующую адекватные схемы внешних действий в существенно меняющихся средах, необходимо наделить такую систему этими орудиями. Развитие систем искусственного интеллекта за последние десятилетия идет по этому пути. Однако степень продвижения в данном направлении в отношении каждого из указанных познавательных орудий неодинакова и в целом пока незначительна. 1. В наибольшей мере системы искусственного интеллекта используют формально-логические структуры, что обусловлено их неспецифичностью для мышления и, в сущности, алгоритмическим характером. Это дает возможность относительно легкой их технической реализации. Однако даже здесь кибернетике предстоит пройти большой путь. В системах искусственного интеллекта еще слабо используются модальная, императивная, вопросная и иные логики, которые функционируют в человеческом интеллекте и не менее необходимы для успешных познавательных процессов, чем давно освоенные логикой, а затем и кибернетикой формы вывода. Повышение «интеллектуального» уровня технических систем, безусловно, связано не только с расширением применяемых логических средств, но и с более интенсивным их использованием (для проверки информации на непротиворечивость, конструирования планов вычислений и т. д.). 2. Намного сложнее обстоит дело с семиотическими системами, без которых интеллект невозможен. Языки, используемые в ЭВМ, еще далеки от семиотических структур, которыми оперирует мышление. Прежде всего, для решения ряда задач необходимо последовательное приближение семиотических систем, которыми наделяется ЭВМ, к естественному языку, точнее, к использованию его ограниченных фрагментов. В этом плане предпринимаются попытки наделить входные языки ЭВМ универсалиями языка, например полисемией (которая элиминируется при обработке в лингвистическом процессоре). Разработаны проблемно-ориентированные фрагменты естественных языков, достаточные для решения системой ряда практических задач. Наиболее важным итогом этой работы является создание семантических языков (и их формализация), в которых слова-символы имеют интерпретацию. Однако многие универсалии естественных языков, необходимые для выполнения ими познавательных функций, в языках искусственного интеллекта пока реализованы слабо (например, открытость) или используются ограниченно (например, полисемия). Все большее воплощение в семиотических системах универсалий естественного языка, обусловленных его познавательной функцией, выступает одной из важнейших линий совершенствования систем искусственного интеллекта, особенно тех, в которых проблемная область заранее жестко не определена. Современные системы искусственного интеллекта способны осуществлять перевод с одномерных языков на многомерные. В частности, они могут строить диаграммы, схемы, чертежи, графы, высвечивать на экранах кривые и т. д. ЭВМ производят и обратный перевод (описывают графики и тому подобное с помощью символов). Такого рода перевод является существенным элементом интеллектуальной деятельности. Но современные системы искусственного интеллекта пока не способны к непосредственному (без перевода на символический язык) использованию изображений или воспринимаемых сцен для «интеллектуальных» действий. Поиск путей глобального (а не локального) оперирования информацией составляет одну из важнейших и перспективных задач теории искусственного интеллекта. 3. Воплощение в информационные массивы и программы систем искусственного интеллекта аналогов категорий находится пока в начальной стадии. Аналоги некоторых категорий (например, «целое», «часть», «общее», «единичное») используются в ряде систем представления знаний, в частности в качестве «базовых отношений», в той мере, в какой это необходимо для тех или иных конкретных предметных или проблемных областей, с которыми взаимодействуют системы. В формализованном понятийном аппарате некоторых систем представления знаний предприняты отдельные (теоретически существенные и практически важные) попытки выражения некоторых моментов содержания и других категорий (например, «причина», «следствие»). Однако ряд категорий (например, «сущность», «явление») в языках систем представления знаний отсутствует. Проблема в целом разработчиками систем искусственного интеллекта в полной мере еще не осмыслена, и предстоит большая работа философов, логиков и кибернетиков по внедрению аналогов категорий в системы представления знаний и другие компоненты интеллектуальных систем. Это одно из перспективных направлений в развитии теории и практики кибернетики. 4. Современные системы искусственного интеллекта почти не имитируют сложную иерархическую структуру образа, что не позволяет им перестраивать проблемные ситуации, комбинировать локальные части сетей знаний в блоки, перестраивать эти блоки и т. д. Не является совершенным и взаимодействие вновь поступающей информации с совокупным знанием, фиксированным в системах. В семантических сетях и фреймах, использующихся при представлении знаний, пока недостаточно используются методы, благодаря которым интеллект человека легко пополняется новой информацией, находит нужные данные, перестраивает свою систему знаний и т. д. 5. Еще в меньшей мере современные системы искусственного интеллекта способны активно воздействовать на внешнюю среду, без чего не может; осуществляться самообучение и вообще совершенствование «интеллектуальной» деятельности. Таким образом, хотя определенные шаги к воплощению гносеологических характеристик мышления в современных системах искусственного интеллекта сделаны, но в целом эти системы еще далеко не владеют комплексом гносеологических орудий, которыми располагает человек и которые необходимы для выполнения совокупности функций абстрактного мышления. Чем больше характеристики систем искусственного интеллекта будут приближены к гносеологическим характеристикам мышления человека, тем ближе будет их «интеллект» к интеллекту человека, точнее, тем выше будет их способность к комбинированию знаковых конструкций, воспринимаемых и интерпретируемых человеком в качестве решения задач и вообще воплощения мыслей. В связи с этим возникает сложный вопрос. При анализе познавательного процесса гносеология абстрагируется от психофизиологических механизмов, посредством которых реализуется этот процесс. Но из этого не следует, что для построения систем искусственного интеллекта эти механизмы не имеют значения. Вообще говоря, не исключено, что механизмы, необходимые для воплощения неотъемлемых характеристик интеллектуальной системы, не могут быть реализованы в цифровых машинах или даже в любой технической системе, включающей в себя только компоненты неорганической природы. Иначе говоря, в принципе не исключено, что хотя мы можем познать все гносеологические закономерности, обеспечивающие выполнение человеком его познавательной функции, но их совокупность реализуема лишь в системе, субстратно тождественной человеку. Такой взгляд обосновывается X. Дрейфусом. «Телесная организация человека, - пишет он, - позволяет ему выполнять... функции, для которых нет машинных программ - таковые не только еще не созданы, но даже не существуют в проекте... Эти функции включаются в общую способность человека к приобретению телесных умений и навыков. Благодаря этой фундаментальной способности наделенный телом субъект может существовать в окружающем его мире, не пытаясь решить невыполнимую задачу формализации всего и вся». Как отмечают специалисты, подчеркивание значения «телесной организации» для понимания особенностей психических процессов, в частности возможности восприятия, заслуживает внимания. Качественные различия в способности конкретных систем отражать мир тесно связаны с их структурой, которая хотя и обладает относительной самостоятельностью, но не может преодолеть некоторых рамок, заданных субстратом. В процессе биологической эволюции совершенствование свойства отражения происходило на основе усложнения нервной системы, т. е. субстрата отражения. Не исключается также, что различие субстратов ЭВМ и человека может обусловить фундаментальные различия в их способности к отражению, что ряд функций человеческого интеллекта в принципе недоступен таким машинам. Иногда в философской литературе утверждается, что допущение возможности выполнения технической системой интеллектуальных функций человека означает сведение высшего (биологического и социального) к низшему (к системам из неорганических компонентов) и, следовательно, противоречит материалистической диалектике. Однако в этом рассуждении не учитывается, что пути усложнения материи однозначно не предначертаны и не исключено, что общество имеет возможность создать из неорганических компонентов (абстрактно говоря, минуя химическую форму движения) системы не менее сложные и не менее способные к отражению, чем биологические. Созданные таким образом системы являлись бы компонентами общества, социальной формой движения. Следовательно, вопрос о возможности передачи интеллектуальных функций техническим системам, и в частности о возможности наделения их рассмотренными в работе гносеологическими орудиями, не может быть решен только исходя из философских соображений. Он должен быть подвергнут анализу на базе конкретных научных исследований. X. Дрейфус подчеркивает, что ЭВМ оперирует информацией, которая не имеет значения, смысла. Поэтому для ЭВМ необходим перебор огромного числа вариантов. Телесная организация человека, его организма позволяет отличать значимое от незначимого для жизнедеятельности и вести поиск только в сфере первого. Для «нетелесной» ЭВМ, утверждает Дрейфус, это недоступно. Конечно, конкретный тип организации тела позволяет человеку ограничивать пространство возможного поиска. Это происходит уже на уровне анализаторной системы. Совсем иначе обстоит дело в ЭВМ. Когда в кибернетике ставится общая задача, например распознания образов, то эта задача переводится с чувственно-наглядного уровня на абстрактный. Тем самым снимаются ограничения, не осознаваемые человеком, но содержащиеся в его «теле», в структуре органов чувств и организма в целом. Они игнорируются ЭВМ. Поэтому пространство поиска резко увеличивается. Это значит, что к «интеллекту» ЭВМ предъявляются более высокие требования (поиска в более обширном пространстве), чем к интеллекту человека, к которому приток информации ограничен физиологической структурой его тела. Системы, обладающие психикой, отличаются от ЭВМ, прежде всего тем, что им присущи биологические потребности, обусловленные их материальным, биохимическим субстратом. Отражение внешнего мира происходит сквозь призму этих потребностей, в чем выражается активность психической системы. ЭВМ не имеет потребностей, органически связанных с ее субстратом, для нее как таковой информация незначима, безразлична. Значимость, генетически заданная человеку, имеет два типа последствий. Первый - круг поиска сокращается, и, тем самым, облегчается решение задачи. Второй - нестираемые из памяти фундаментальные потребности организма обусловливают односторонность психической системы. Дрейфус пишет в связи с этим: «Если бы у нас на Земле очутился марсианин, ему, наверное, пришлось бы действовать в абсолютно незнакомой обстановке; задача сортировки релевантного и нерелевантного, существенного и несущественного, которая бы перед ним возникла, оказалась бы для него столь же неразрешимой, как и для цифровой машины, если, конечно, он не сумеет принять в расчет никаких человеческих устремлений». С этим нельзя согласиться. Если «марсианин» имеет иную биологию, чем человек, то он имеет и иной фундаментальный слой неотъемлемых потребностей, и принять ему «человеческие устремления» значительно труднее, чем ЭВМ, которая может быть запрограммирована на любую цель. Животное в принципе не может быть по отношению к этому фундаментальному слою перепрограммировано, хотя для некоторых целей оно может быть запрограммировано вновь посредством дрессировки. В этом (но только в этом) смысле потенциальные интеллектуальные возможности машины шире таких возможностей животных. У человека над фундаментальным слоем биологических потребностей надстраиваются социальные потребности, и информация для него не только биологически, но и социально значима. Человек универсален и с точки зрения потребностей и с точки зрения возможностей их удовлетворения. Однако эта универсальность присуща ему как социальному существу, производящему средства целесообразной деятельности, в том числе и системы искусственного интеллекта. Таким образом, телесная организация не только дает дополнительные возможности, но и создает дополнительные трудности. Поэтому интеллекту человека важно иметь на вооружении системы, свободные от его собственных телесных и иных потребностей, пристрастий. Конечно, от таких систем неразумно требовать, чтобы они самостоятельно распознавали образы, классифицировали их по признакам, по которым это делает человек. Им цели необходимо задавать в явной форме. Вместе с тем следует отметить, что технические системы могут иметь аналог телесной организации. Развитая кибернетическая система обладает рецепторными и эффекторными придатками. Начало развитию таких систем положили интегральные промышленные роботы, в которых ЭВМ в основном выполняет функцию памяти. В роботах третьего поколения ЭВМ выполняет и «интеллектуальные» функции. Их взаимодействие с миром призвано совершенствовать их «интеллект». Такого рода роботы имеют «телесную организацию», конструкция их рецепторов и эффекторов содержит определенные ограничения, сокращающие пространство, в котором, абстрактно говоря, могла бы совершать поиск цифровая машина. Тем не менее, совершенствование систем искусственного интеллекта на базе цифровых машин может иметь границы, из-за которых переход к решению интеллектуальных задач более высокого порядка, требующих учета глобального характера переработки информации и ряда других гносеологических характеристик мышления, невозможен на дискретных машинах при сколь угодно совершенной программе. Это значит, что техническая (а не только биологическая) эволюция отражающих систем оказывается связанной с изменением материального субстрата и конструкции этих систем. Такая эволюция, т. е. аппаратурное усовершенствование систем искусственного интеллекта, например, через более интенсивное использование аналоговых компонентов, гибридных систем, голографии и ряда других идей, будет иметь место. При этом не исключается использование физических процессов, протекающих в мозгу, и таких, которые психика в качестве своих механизмов не использует. Наряду с этим еще далеко не исчерпаны возможности совершенствования систем искусственного интеллекта путем использования в функционировании цифровых машин гносеологических характеристик мышления, о которых речь шла выше. В последнее время при анализе проблем, связанных с искусственным интеллектом, часто применяют математический аппарат нечетких множеств, идея и реализация которого принадлежит американскому математику Л. А. Заде. Суть его подхода состоит в своего рода некотором отказе от принципа детерминизма. Пожалуй, наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки. Смещение центра исследований нечетких систем в сторону практических приложений привело к постановке целого ряда проблем таких, как новые архитектуры компьютеров для нечетких вычислений, элементная база нечетких компьютеров и контроллеров, инструментальные средства разработки, инженерные методы расчета и разработки нечетких систем управления и многое другое. Математическая теория нечетких множеств, предложенная Л. А. Заде около тридцати лет назад, позволяет описывать нечеткие понятия и знания, оперировать этими знаниями и делать нечеткие выводы. Основанные на этой теории методы построения компьютерных нечетких систем существенно расширяют области применения компьютеров. В последнее время нечеткое управление является одной из самых активных и результативных областей исследований применения теории нечетких множеств. Нечеткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов, или когда доступные источники информации интерпретируются качественно, неточно или неопределенно. Экспериментально показано, что нечеткое управление дает лучшие результаты, по сравнению с получаемыми при общепринятых алгоритмах управления. Нечеткие методы помогают управлять домной и прокатным станом, автомобилем и поездом, распознавать речь и изображения, проектировать роботов, обладающих осязанием и зрением. Нечеткая логика, на которой основано нечеткое управление, ближе по духу к человеческому мышлению и естественным языкам, чем традиционные логические системы. Нечеткая логика, в основном, обеспечивает эффективные средства отображения неопределенностей и неточностей реального мира. Наличие математических средств отражения нечеткости исходной информации позволяет построить модель, адекватную реальности.
Вывод
искусственный интелект знание мышление
Природа мышления, загадка сознания, тайна разума, все это, безусловно, одна из наиболее волнующих человека проблем. С того самого момента, как человек стал задумываться над проблемой мышления, в подходе к ней существуют два основных диаметрально противоположных направления: материализм и идеализм. Идеализм исходит из признания мышления некой особой сущностью, в корне отличной от материи, от всего того, с чем мы имеем дело во внешнем мире. Материализм, напротив, утверждает, что вещественный, чувственно воспринимаемый нами мир, к которому принадлежим мы сами, есть единственный действительный мир и наше сознание и мышление, как бы ни казалось оно сверхчувствительным, являются продуктом вещественного, телесного органа. Можно пытаться объяснить, что, так как кибернетика позволяет моделировать некоторые функции мозга, то сознание или разум имеет чисто материальную основу. Однако данная область может считаться слабо изученной, несмотря на труд не одного поколения ученых, и делать подобные выводы еще более чем рано.
До сих пор диалектико-материалистическое понимание мышления опиралось, главным образом, на обобщенные данные психологии, физиологии и языкознания. Данные кибернетики позволяют поставить вопрос о более конкретном понимании мышления.
Инструментом философии является знание. Именно инструментом, а не результатом. Знание не есть конечный предмет, который можно положить в сундук и сказать: «Да, теперь у меня есть знание!» Знание - это цепочка. Знание в области искусственного интеллекта - тоже есть цепочка, причем бесконечная.
Инструментом же кибернетики является моделирование. С точки зрения теории моделирования вообще не имеет смысла говорить о полном тождестве модели и оригинала. Поэтому нельзя стопроцентно смоделировать разумное поведение, объект, способный мыслить, и поместить его все в тот же сундук. Все это вполне согласуется с понятием знания. Развитие информационной техники позволило компенсировать человеку психофизиологическую ограниченность своего организма в ряде направлений. «Внешняя нервная система», создаваемая и расширяемая человеком, уже дала ему возможность вырабатывать теории, открывать количественные закономерности, раздвигать пределы познания сложных систем. Искусственный интеллект и его совершенствование превращают границы сложности, доступные человеку, в систематически раздвигаемые. Это особенно важно в современную эпоху, когда общество не может успешно развиваться без рационального управления сложными и сверхсложными системами. Разработка проблем искусственного интеллекта является существенным вкладом в осознание человеком закономерностей внешнего и внутреннего мира, в их использование в интересах общества и, тем самым, в развитие свободы человека.
Список литературы
«Будущее искусственного интеллекта. « М., Наука, 1991, ред. : Карл, Левитин, Поспелов, Хорошевский.
Алексеева И. Ю. «Знание как объект компьютерного моделирования. «// «Вопросы философии», 1987
Алексеева И. Ю. «Искусственный интеллект и рефлексия над знаниями. «// «Философия науки и техники», 1991
Анисов А. М. «ЭВМ и понимание математических доказательств. «// «Вопросы философии», 1987
Артоболевский И. И., Кобринский А. Е. «Знакомьтесь - роботы», М., 1979
Вапиик В. Н. «Задача обучения распознаванию образа»
Винер Н. «Кибернетика или управление и связь в животном и машине. «, М., Наука 1983
Гаврилов А. В., Канглер В. М. «Использование искусственных нейронных сетей для анализа данных. «// Сб. научн. трудов НГТУ. - Новосибирск: Изд-во НГТУ, 1999
Геранзон Бу «Практический интеллект»// «Вопросы философии», 1998
Глушков В. М. «Кибернетика: вопросы теории и практики»
Клаус Г. «Кибернетика и философия», М. : Иностранная литература, 1963
Лекторский В. А. «Теория познания (гносеология, эпистемология) «// «Вопросы философии», 1999
Размещено на Allbest.ru
...Подобные документы
Характеристика сущности искусственного интеллекта. Проблема создания искусственного интеллекта. Базовые положения, методики и подходы построения систем ИИ (логический, структурный, эволюционный, имитационный). Проблемы создания и реализация систем ИИ.
реферат [43,1 K], добавлен 19.07.2010Сущность и проблемы определения искусственного интеллекта, его основных задач и функций. Философские проблемы создания искусственного интеллекта и обеспечения безопасности человека при работе с роботом. Выбор пути создания искусственного интеллекта.
контрольная работа [27,9 K], добавлен 07.12.2009Искусственный интеллект – научное направление, связанное с машинным моделированием человеческих интеллектуальных функций. Черты искусственного интеллекта Развитие искусственного интеллекта, перспективные направления в его исследовании и моделировании.
реферат [70,7 K], добавлен 18.11.2010Понятие искусственного интеллекта как свойства автоматических систем брать на себя отдельные функции интеллекта человека. Экспертные системы в области медицины. Различные подходы к построению систем искусственного интеллекта. Создание нейронных сетей.
презентация [3,0 M], добавлен 28.05.2015Области человеческой деятельности, в которых может применяться искусственный интеллект. Решение проблем искусственного интеллекта в компьютерных науках с применением проектирования баз знаний и экспертных систем. Автоматическое доказательство теорем.
курсовая работа [41,3 K], добавлен 29.08.2013Эволюция систем искусственного интеллекта. Направления развития систем искусственного интеллекта. Представление знаний - основная проблема систем искусственного интеллекта. Что такое функция принадлежности и где она используется?
реферат [49,0 K], добавлен 19.05.2006Современные разработки в области искусственного интеллекта: составление расписаний, принципы автономного планирования и управления, диагностика, понимание естественного языка, ведение игр, автономное управление, робототехника. Направления исследований.
реферат [24,0 K], добавлен 11.03.2014История создания и основные направления в моделировании искусственного интеллекта. Проблемы обучения зрительному восприятию и распознаванию. Разработка элементов интеллекта роботов. Исследования в области нейронных сетей. Принцип обратной связи Винера.
реферат [45,1 K], добавлен 20.11.2009Понятие, сущность и история создания искусственного интеллекта. Области его практического приложения в человеческой деятельности. Использование его для создания роботизированной техники. Задача создания первой разумной системы на основе сети Интернет.
презентация [622,3 K], добавлен 01.12.2014Феномен мышления. Создание искусственного интеллекта. Механический, электронный, кибернетический, нейронный подход. Появление перцептрона. Искусственный интеллект представляет пример интеграции многих научных областей.
реферат [27,2 K], добавлен 20.05.2003История развития искусственного интеллекта. Экспертные системы: их типы, назначение и особенности, знания и их представление. Структура идеальной и инструменты построения экспертных систем. Управление системой продукции. Семантические сети и фреймы.
реферат [85,7 K], добавлен 20.12.2011Может ли искусственный интеллект на данном уровне развития техники и технологий превзойти интеллект человека. Может ли человек при контакте распознать искусственный интеллект. Основные возможности практического применения искусственного интеллекта.
презентация [511,2 K], добавлен 04.03.2013История развития искусственного интеллекта в странах дальнего зарубежья, в России и в Республике Казахстан. Разработка проекта эффективного внедрения и адаптации искусственного интеллекта в человеческом социуме. Интеграция искусственного в естественное.
научная работа [255,5 K], добавлен 23.12.2014Начало современного этапа развития систем искусственного интеллекта. Особенности взаимодействия с компьютером. Цель когнитивного моделирования. Перспективы основных направлений современного развития нейрокомпьютерных технологий, моделирование интеллекта.
реферат [24,7 K], добавлен 05.01.2010Сущность искусственного интеллекта, сферы человеческой деятельности, в которых он распространен. История и этапы развития данного явления. Первые идеи и их воплощение. Законы робототехники. Использование искусственного интеллекта в коммерческих целях.
реферат [40,8 K], добавлен 17.08.2015Понятие искусственного интеллекта в робототехнике и мехатронике. Структура и функции интеллектуальной системы управления. Классификация и типы знаний, представление их с помощью логики предикатов. Суть семантических сетей, фреймовое представление знаний.
курс лекций [1,1 M], добавлен 14.01.2011Принципы построения и программирования игр. Основы 2-3D графики. Особенности динамического изображения и искусственного интеллекта, их использование для создания игровых программ. Разработка логических игр "Бильярд", "Карточная игра - 50", "Морской бой".
отчет по практике [2,3 M], добавлен 21.05.2013Исторический обзор развития работ в области искусственного интеллекта. Создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека. От логических игр до медицинской диагностики.
реферат [29,1 K], добавлен 26.10.2009Понятие и суть нечеткой логики и генетических алгоритмов. Характеристика программных пакетов для работы с системами искусственного интеллекта в среде Matlab R2009b. Реализация аппроксимации функции с применением аппарата нечеткого логического вывода.
курсовая работа [2,3 M], добавлен 23.06.2012Применение методов искусственного интеллекта и современных компьютерных технологий для обработки табличных данных. Алгоритм муравья, его начальное размещение и перемещение. Правила соединения UFO-компонентов при моделировании шахтной транспортной системы.
дипломная работа [860,8 K], добавлен 23.04.2011