Накопитель на жестких магнитных дисках

Рассмотрение понятия и характеристик накопителей на жестких магнитных дисках. Определение основных элементов конструкции накопителя, механизма привода головок чтения/записи. Характеристика воздушных фильтров, плат управления, разъемов винчестеров.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 24.12.2013
Размер файла 237,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

Введение

Накопитель на жестких магнитных дисках

Характеристики НЖМД

Устройство накопителей на жестких дисках

Диски

Рабочий слой диска

Головки чтения/записи ЖД

Конструкция головок чтения/записи

Механизмы привода головок жесткого диска

Привод с шаговым двигателем

Привод с подвижной катушкой

Линейный привод

Сервопривод

Воздушные фильтры

Двигатель привода жестких дисков

Платы управления ЖД

Кабели и разъемы

Элементы конфигурации винчестеров

Заключение

Список использованной литературы

ВВЕДЕНИЕ

В наше время существует огромное количество запоминающих устройств различных по принципам действия, техническим, физическим и эксплуатационным характеристикам. Основным свойством и назначением накопителей информации является ее хранение и воспроизведение. И одним из зарекомендовавших себя типом носителей являются накопители на жестких магнитных исках (НЖМД). В качестве основного устройства для хранения информации их выбирают не случайно, а в связи с их достоинствами, выгодно отличающими их от других типов носителей, а именно: объем хранимой информации, быстродействие, стоимость, а так же они являются более надежными накопителями по сравнению с накопителями на гибких магнитных дисках.

НАКОПИТЕЛИ НА ЖЕСТКИХ МАГНИТНЫХ ДИСКАХ

Накопимтель на жёстких магнимтных димсках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск, в компьютерном сленге «винчемстер» -- запоминающее устройство (устройство хранения информации)произвольного доступа, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или стеклянные) пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома -- магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм[1]), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.

Также, в отличие от гибкого диска, носитель информации обычно совмещают с накопителем, приводом и блоком электроники. Такие жёсткие диски часто используются в качестве несъёмного носителя информации.

ХАРАКТЕРИСТИКИ НЖМД

Интерфейс (англ. interface) -- техническое средство взаимодействия 2-х разнородных устройств, что в случае с жёсткими дисками является совокупностью линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии (контроллеры интерфейсов), и правил (протокола) обмена. Современные серийно выпускаемые внутренние жёсткие диски могут использовать интерфейсы ATA (он же IDE и PATA), SATA, eSATA, SCSI, SAS, FireWire, SDIO и Fibre Channel.

Ёмкость (англ. capacity) -- количество данных, которые могут храниться накопителем. С момента создания первых жёстких дисков в результате непрерывного совершенствования технологии записи данных их максимально возможная ёмкость непрерывно увеличивается. Ёмкость современных жёстких дисков (с форм-фактором 3,5 дюйма) на сентябрь 2011 года достигает 4000 Гб (4 терабайт) и близится к 5 Тб.[5] В отличие от принятой в информатике системы приставок, обозначающих кратную 1024 величину (см.: двоичные приставки), производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как «200 ГБ», составляет 186,2 ГиБ.[6][7]

Физический размер (форм-фактор; англ. dimension) -- почти все накопители 2001--2008 годов для персональных компьютеров и серверов имеют ширину либо 3,5, либо 2,5 дюйма -- под размер стандартных креплений для них соответственно в настольных компьютерах и ноутбуках. Также получили распространение форматы 1,8, 1,3, 1 и 0,85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5,25 дюймов.

Время произвольного доступа (англ. random access time) -- среднее время, за которое винчестер выполняет операцию позиционирования головки чтения/записи на произвольный участок магнитного диска. Диапазон этого параметра -- от 2,5 до 16 мс. Как правило, минимальным временем обладают диски для серверов (например, у Hitachi Ultrastar 15K147 -- это 3,7 мс[8]), самым большим из актуальных -- диски для портативных устройств (Seagate Momentus 5400.3 -- 12,5 мс[9]). Для сравнения, у SSD-накопителей этот параметр меньше 1 мс.

Скорость вращения шпинделя (англ. spindle speed) -- количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 5400, 5900, 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции). Увеличению скорости вращения шпинделя в винчестерах для ноутбуков препятствует гироскопический эффект, влияние которого пренебрежимо мало в неподвижных компьютерах.

Надёжность (англ. reliability) -- определяется как среднее время наработки на отказ (MTBF). Также подавляющее большинство современных дисков поддерживают технологию S.M.A.R.T. Количество операций ввода-вывода в секунду (англ. IOPS) -- у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе. Потребление энергии -- важный фактор для мобильных устройств. Сопротивляемость ударам (англ. G-shock rating) -- сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии. Скорость передачи данных (англ. Transfer Rate) при последовательном доступе:

внутренняя зона диска: от 44,2 до 74,5 Мб/с;

внешняя зона диска: от 60,0 до 111,4 Мб/с.

Объём буфера -- буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных дисках он обычно варьируется от 8 до 128 Мб.

УСТРОЙСТВО НАКОПИТЕЛЕЙ НА ЖЕСТКИХ ДИСКАХ

Существует много различных типов накопителей на жестких дисках, но практически все они состоят из одних и тех же основных деталей. Конструкции этих деталей, а также качество используемых материалов могут быть различными, но основные их рабочие характеристики и принципы функционирования одинаковы. К основным элементам конструкции типичного накопителя на жестком диске (рис. 10.6) относятся следующие:

· диски;

· головки чтения/записи;

· механизм привода головок;

· двигатель привода дисков;

· печатная плата со схемами управления;

· кабели и разъемы;

· элементы конфигурации (перемычки и переключатели).

Диски, двигатель привода дисков, головки и механизм привода головок обычно размещаются в герметичном корпусе, который называется HDA {Head Disk Assembly -- блок головок и дисков). Обычно этот блок рассматривается как единый узел; его почти никогда не вскрывают. Прочие узлы, не входящие в блок HDA (печатная плата, лицевая панель, элементы конфигурации и монтажные детали) являются съемными.

Рис. 10.6. Основные узлы накопителя на жестком диске

Диски

Обычно в накопителе содержится один или несколько магнитных дисков. За прошедшие годы установлен ряд стандартных размеров накопителей, которые определяются в основном величиными дисков, а именно:

¦ 5,25 дюйма (на самом деле -- 130 мм, или 5,12 дюйма);

¦ 3,5 дюйма (на самом деле -- 95 мм, или 3,74 дюйма);

¦ 2,5 дюйма (на самом деле -- 65 мм, или 2,56 дюйма);

¦ 1 дюйм (на самом деле -- 34 мм, или 1,33 дюйма).

Существуют также накопители с дисками больших размеров, к примеру 8 дюймов, 14 дюймов и даже больше, но, как правило, эти устройства в персональных компьютерах не используются. Сейчас в настольных и некоторых портативных моделях чаще всего устанавливаются накопители формата 3,5 дюйма, а малогабаритные устройства (формата 2,5 дюйма и меньше) -- в портативных системах.

В 1998 году компания IBM представила накопитель, получивший название Micro-Drive, каждый жесткий диск того в настоящее время может содержать до 1 Гбайт данных при величинных, составляющих примерно четверть диаметра стандартного диска! Эти накопители существуют в физическом и электрическом формате платы Compact Flash (CF) Type II, т. е. могут использоваться практически в любом устройстве, то поддерживает CF-платы. К подобным устройствам относятся цифровые камеры, персональные «карманные» компьютеры PDA, МРЗ-проигрыватели и другие устройства, использующие модули памяти Compact Flash.

Через несколько лет ряд компаний, в частности HP, Calluna и Toshiba, начали разработку 1,8-дюймовых накопителей. В настоящее время только Toshiba продолжает производить накопители этого формата. В 2000 году специалисты компании Toshiba представили 1,8-дюймовый накопитель, созданный в физическом формате PC Card Type П. Эти накопители, емкость которых достигает 5 Гбайт и более, могут использоваться в портативных компьютерах, а также в любом другом устройстве, позволяющем установить стандартную плату PC Card.

В большинстве накопителей устанавливается минимум два диска, хотя в некоторых малых моделях бывает и по одному. Количество дисков ограничивается физическими величиными накопителя, а именно высотой его корпуса. Самое большое количество дисков в накопителях формата 3,5 дюйма, с которым мне приходилось встречаться, равно 11.

Раньше почти все диски производились из алюминиевого сплава, довольно прочного и легкого. Но со временем возникла потребность в накопителях, сочетающих малые размеры и большую емкость. Поэтому в качестве основного материала для дисков стало использоваться стекло, а точнее, композитный материал на основе стекла и керамики. Один из таких материалов называется МетСог и производится компанией Dow Corning. Он значительно прочнее, чем каждый из его компонентов в отдельности. Стеклянные диски отличаются большей прочностью и жесткостью, поэтому их можно сделать в два раза тоньше алюминиевых (а иногда еще тоньше). Кроме того, они менее восприимчивы к перепадам температур, т. е. их размеры при нагреве и охлаждении изменяются весьма незначительно.

Рабочий слой диска

Независимо от того, какой материал используется в качестве основы диска, он покрывается тонким слоем вещества, способного сохранять остаточную намагниченность после воздействия внешнего магнитного поля. Этот слой называется рабочим или магнитным, и именно в нем сохраняется записанная информация. Самыми распространенными являются следующие типы рабочего слоя:

¦ оксидный;

¦ тонкопленочный;

¦ двойной антиферромагнитный (antiferromagnetically coupled -- AFC).

Головки чтения/записи ЖД

В накопителях на жестких дисках для каждой из сторон каждого диска предусмотрена собственная головка чтения/записи. Все головки смонтированы на общем подвижном каркасе и перемещаются одновременно.

Конструкция каркаса с головками довольно проста. Каждая головка установлена на конце рычага, закрепленного на пружине и слегка прижимающего ее к диску. Мало кто знает о том, что диск как бы зажат между парой головок (сверху и снизу). И если бы это не повлекло за собой никаких последствий, можно было бы провести небольшой эксперимент: открыть накопитель и приподнять пальцем верхнюю головку. Как только бы вы ее отпустили, она вернулась бы в первоначальное положение (то же самое произошло бы и с нижней головкой).

Когда накопитель выключен, головки касаются дисков под действием пружин. При раскручивании дисков аэродинамическое давление под головками повышается и они отрываются от рабочих поверхностей («взлетают»). Когда диск вращается на полной скорости, зазор между ним и головками может составлять 0,5-5 микродюймов и даже больше. В начале 1960-х годов величина зазора между диском и головками составляла 200-300 микродюймов; в современных накопителях она достигает 10 нанометров или 0,4 микродюйма.

Рис. 10.7. Головки чтения/записи и поворотный привод с подвижной катушкой

Внимание!

Общая тенденция такова: чем раньше был выпущен накопитель и чем меньше его емкость, тем больше зазор между головками и поверхностями дисков. Именно из-за малого величины этого зазора блок HDA можно вскрывать только в абсолютно чистых помещениях: любая пылинка, попавшая в зазор, может привести к ошибкам при считывании данных и даже к столкновению головок с дисками на полном ходу.

В последнем случае может быть повреждена или головка, или диск, что одинаково неприятно.

Именно поэтому сборка блоков HDA выполняется только в чистых помещениях, соответствующих требованиям класса 100 (или даже более высоким). Это означает, что в одном кубическом футе воздуха может присутствовать не более 100 пылинок размером до 0,5 мкм. Для сравнения: стоящий неподвижно человек каждую минуту выдыхает порядка 500 таких частиц! Поэтому помещения оснащаются специальными системами фильтрации и очистки воздуха. Блоки HDA можно вскрывать только в таких условиях.

Поддержка столь стерильных условий стоит немалых денег. Некоторые фирмы выпускают «чистые цеха» в настольном исполнении. Стоят они всего несколько тысяч долларов и выглядят, как большие ящики с прозрачными стенками, в которые вмонтированы перчатки для рук оператора. Прежде чем приступить к работе, оператор должен вставить в ящик устройство и все важные инструменты, затем закрыть ящик и включить систему фильтрации. Через некоторое время можно будет начинать разборку и прочие манипуляции с накопителем.

Существуют и другие способы создания стерильных условий. Представьте себе, к примеру, монтажный стол, отгороженный от окружающего пространства воздушной завесой, причем непосредственно на рабочее место под давлением постоянно подается очищенный воздух.

Это напоминает устанавливаемые на зиму в дверях магазинов «занавески» из горячего воздуха, которые не мешают проходу, но и не дают теплу из помещения выйти наружу.

Поскольку подобное оборудование стоит довольно дорого, за ремонт накопителей на жестких дисках обычно берутся только их производители.

Конструкции головок чтения/записи

По мере развития технологии производства дисковых накопителей совершенствовались и конструкции головок чтения/записи. Первые головки представляли собой сердечники с обмоткой (электромагниты). По современным меркам их размеры были огромными, а плотность записи -- чрезвычайно низкой. За прошедшие годы конструкции головок прошли долгий путь развития от первых головок с ферритовыми сердечниками до современных гигантских магниторезистивных моделей.

Механизмы привода головок жесткого диска

Пожалуй, еще более важной деталью накопителя, чем сами головки, является механизм, который устанавливает их в нужное положение и называется приводом головок.

Таблица 10.3. Зависимость характеристик накопителей от типа привода

Характеристика

Привод с шаговым двигателе

Привод с подвижной катушкой

Время доступа к данным

Большое

Малое

Стабильность температуры

Низкая (очень!)

Высокая

Чувствительность к выбору рабочего положения

Постоянная

Отсутствует

Автоматическая парковка головок

Выполняется (не всегда)

Выполняется

Профилактическое обслуживание

Периодическое переформатирование

Не требуется

Общая надежность (относительная)

Низкая

Высокая

Именно с его помощью головки перемещаются от центра к краям диска и устанавливаются на заданный цилиндр. Существует много конструкций механизмов привода головок, но их можно разделить на два основных типа:

¦ с шаговым двигателем;

¦ с подвижной катушкой.

Тип привода во многом определяет быстродействие и надежность накопителя, достоверность считывания данных, его температурную стабильность, чувствительность к выбору рабочего положения и вибрациям. Скажем сразу, что накопители с приводами на основе шаговых двигателей гораздо менее надежны, чем устройства с приводами от подвижных катушек. Привод -- самая важная деталь накопителя.

В табл. 10.3 приведены два типа привода головок накопителя на жестких дисках и отображена зависимость характеристик устройства от конкретного типа привода.

Приводы с шаговым двигателем обычно использовались на жестких дисках с емкостью до 100 Мбайт и менее, которые создавались в 1980-х и в начале 1990-х годов. Во всех накопителях, имеющих более высокую емкость, обычно используются приводы с подвижной катушкой.

В накопителях на гибких дисках для перемещения головок используется привод с шаговым двигателем. Его параметров (в том числе и точности) оказывается вполне достаточно для дисководов этого типа, поскольку плотность дорожек записи на гибких дисках значительно ниже (135 дорожек на дюйм), чем в накопителях на жестких дисках (более 5 000 дорожек на дюйм).

В большинстве выпускаемых сегодня накопителей устанавливаются приводы с подвижными катушками.

Привод с шаговым двигателем

Шаговый двигатель -- это электродвигатель, ротор того может поворачиваться только ступенчато, т. е. на строго определенный угол. Если покрутить его вал вручную, то можно услышать негромкие щелчки (или треск при быстром вращении), которые возникают всякий раз, когда ротор проходит очередное фиксированное положение.

Шаговые двигатели могут устанавливаться только в фиксированных положениях. Размеры этих двигателей невелики (порядка нескольких сантиметров), а форма может быть разной -- прямоугольной, цилиндрической и т. д.

Рис. 10.8. Внешний вид привода с шаговым двигателем

Шаговый двигатель устанавливается вне блока HDA, но его вал проходит внутрь через отверстие с герметизирующей прокладкой. Обычно двигатель располагается у одного из углов корпуса накопителя и его можно легко узнать.

Одна из самых серьезных проблем, присущих для механизмов с шаговыми двигателями, -- нестабильность их температур. При нагреве и охлаждении диски расширяются и сжимаются, в результате чего дорожки смещаются относительно своих прежних положений. Поскольку механизм привода головок не позволяет сдвинуть их на расстояние, меньшее одного шага (переход на одну дорожку), компенсировать эти погрешности температур невозможно. Головки перемещаются в соответствии с поданным на шаговый двигатель количеством импульсов.

На рис. 10.8 отображен внешний вид привода с шаговым двигателем.

Привод с подвижной катушкой

Привод с подвижной катушкой используется практически во всех современных накопителях. В отличие от систем с шаговыми двигателями, в которых перемещение головок осуществляется вслепую, в приводе с подвижной катушкой используется сигнал обратной связи, чтобы можно было точно определить положения головок относительно дорожек и скорректировать их в случае необходимости. Такая система обеспечивает более высокое быстродействие, точность и надежность, чем традиционный привод с шаговым двигателем.

Привод с подвижной катушкой работает по принципу электромагнетизма. По конструкции он напоминает обычный громкоговоритель. Как известно, в громкоговорителе подвижная катушка, соединенная с диффузором, может перемещаться в зазоре постоянного магнита. При протекании через катушку электрического тока она смещается вместе с диффузором относительно постоянного магнита. Если ток в катушке периодически изменяется (в соответствии со звуковым электрическим сигналом), то возникающие при этом колебания диффузора порождают воспринимаемый человеком звук. В типичной конструкции привода подвижная катушка жестко соединяется с блоком головок и размещается в поле постоянного магнита. Катушка и магнит никак не связаны между собой; перемещение катушки осуществляется только под воздействием электромагнитных сил. При появлении в катушке электрического тока она так же, как и в громкоговорителе, смещается относительно жестко закрепленного постоянного магнита, передвигая при этом блок головки. Подобный механизм оказывается весьма быстродействующим и не столь шумным, как привод с шаговым двигателем.

В отличие от привода с шаговым двигателем, в устройствах с подвижной катушкой нет заранее зафиксированных положений. Вместо этого в них используется специальная система наведения (позиционирования), которая точно подводит головки к нужному цилиндру (поэтому привод с подвижной катушкой может плавно перемещать головки в любые положения). Эта система называется сервоприводом и отличается от ранее рассмотренной тем, что для точного наведения (позиционирования) головок используется сигнал обратной связи, несущий информацию о реальном взаимном расположении дорожек и головок. Эту систему часто называют системой с обратной связью (или с автоматической регулировкой).

Колебания температур не сказываются на точности работы привода с подвижной катушкой и обратной связью. При сжатии и расширении дисков все изменения их размеров отслеживаются сервоприводом, и положения головок (не будучи предопределенными) корректируются должным образом. Для поиска конкретной дорожки используется заранее записанная на диске вспомогательная информация (сервокод) и в процессе работы всегда определяется реальное положение цилиндра на диске с учетом всех отклонений температур. Поскольку сервокод считывается непрерывно, в процессе нагрева накопителя и расширения дисков, к примеру, головки отслеживают дорожку и проблем со считыванием данных не возникает. Поэтому привод с подвижной катушкой и обратной связью часто называют системой слежения за дорожками.

Механизмы привода головок с подвижной катушкой бывают двух типов:

¦ линейный;

¦ поворотный.

Эти типы отличаются только физическим расположением магнитов и катушек.

Линейный привод

Линейный привод (рис. 10.9) перемещает головки по прямой, строго вдоль линии радиуса диска. Катушки располагаются в зазорах постоянных магнитов. Главное достоинство линейного привода состоит в том, что при его использовании не возникают азимутальные погрешности, присущие для поворотного привода. (Под азимутом понимается угол между плоскостью рабочего зазора головки и направлением дорожки записи.) При перемещении с одного цилиндра на другой головки не поворачиваются и их азимут не изменяется.

Однако линейный привод имеет существенный недостаток: его конструкция слишком массивна. Чтобы повысить производительность накопителя, нужно снизить массу приводного механизма и самих головок. Чем легче механизм, тем с крупными ускорениями он может перемещаться с одного цилиндра на другой. Линейные приводы намного тяжелее поворотных, поэтому в современных накопителях они не используются.

Поворотный привод (см. рис. 10.7) работает по тому же принципу, что и линейный, но в нем к подвижной катушке крепятся концы рычагов головок. При движении катушки относительно постоянного магнита рычаги перемещения головок поворачиваются, передвигая головки к оси или к краям дисков.

Рис. 10.9. Линейный привод с подвижной катушкой

Благодаря небольшой массе такая конструкция может двигаться с крупными ускорениями, что позволяет существенно сократить время доступа к данным. Быстрому перемещению головок способствует и тот факт, что плечи рычагов делаются разными: то, на котором смонтированы головки, имеет большую длину. К недостаткам этого привода рекомендуется отнести то, что головки при перемещении от внешних цилиндров к внутренним поворачиваются и угол между плоскостью магнитного зазора головки и направлением дорожки изменяется. Именно поэтому ширина рабочей зоны диска (зоны, в той располагаются дорожки) оказывается зачастую ограниченной (для того чтобы неизбежно возникающие азимутальные погрешности оставались в допустимых пределах). В настоящее время поворотный привод используется почти во всех накопителях с подвижной катушкой.

Сервопривод

Для управления приводами с подвижной катушкой в разное время использовались три способа построения петли обратной связи:

¦ со вспомогательным «клином»;

¦ со встроенными кодами;

¦ со специализированным диском.

Они различаются технической реализацией, но, по сути, предназначены для достижения одной и той же цели: обеспечивать постоянную корректировку положения головок и их наведение (позиционирование) на соответствующий цилиндр. Основные различия между ними сводятся к тому, на каких участках поверхностей дисков записываются сервокоды.

При всех способах построения петли обратной связи для ее работы необходима специальная информация (сервокоды), которая записывается на диск при его изготовлении. Обычно она записывается в так называемом коде Грея. В этой системе кодирования при переходе от одного числа к следующему или предыдущему изменяется всего один двоичный разряд. При таком подходе информация считывается и обрабатывается намного быстрее, чем при обычном двоичном кодировании, и определение местоположения головки происходит практически без задержки. Сервокоды записываются на диск при сборке накопителя и не изменяются в течение всего срока его эксплуатации.

Запись сервокодов выполняется на специальном устройстве, в котором головки последовательно перемещаются на строго определенные позиции, и в этих положениях на диски записываются упомянутые выше коды. Для точной установки головок в таких устройствах используется лазерный прицел, а расстояния определяются методом интерференции, т. е. с точностью до долей волны лазерного излучения. Поскольку перемещение головок в таком устройстве осуществляется механически (без участия собственного привода накопителя), все работы проводятся в чистом помещении либо с открытой крышкой блока HDA, либо через специальные

отверстия, которые по окончании записи сервокодов заклеиваются герметизирующей лентой. Вы можете найти эти заклеенные отверстия на блоке HDA, причем на ленте обязательно будет написано, что, оторвав ее, вы потеряете право на гарантийное обслуживание.

Устройства для записи сервокодов стоят около 50 тыс. долларов и часто предназначаются для какой-либо конкретной модели накопителя. Некоторые компании, занимающиеся ремонтом накопителей, располагают такими устройствами, т. е. могут выполнить перезапись сервокодов при повреждении накопителя. Если же в ремонтной компании нет устройства для записи сервокодов, то неисправный накопитель отсылается изготовителю.

К счастью, при обычных операциях считывания и записи удалить сервокоды невозможно. Этого нельзя сделать даже при форматировании низкого уровня. Иногда можно услышать страшные истории о том, как в IDE-накопителях сервокоды стирались при неправильном форматировании низкого уровня. Конечно, плохо отформатировав диск, вы можете на порядок ухудшить его параметры, но сервокоды надежно защищены и удалить их невозможно.

Поскольку привод с подвижной катушкой отслеживает реальное положение дорожек, ошибки позиционирования, возникающие со временем в накопителях с шаговым двигателем, в данных устройствах отсутствуют. На их работе не сказывается также расширение и сжатие дисков, происходящее вследствие колебаний температур. Во многих современных накопителях с приводом от подвижной катушки в процессе работы через определенные промежутки времени выполняется температурная калибровка. Эта процедура заключается в том, что все головки поочередно переводятся с нулевого на какой-либо другой цилиндр. При этом с помощью встроенной схемы проверяется, насколько сместилась заданная дорожка относительно своего положения в предыдущем сеансе калибровки, и вычисляются важные поправки, которые заносятся в оперативное запоминающее устройство в самом накопителе. Впоследствии эта информация используется при каждом перемещении головок, позволяя устанавливать их с максимальной точностью.

В большинстве накопителей температурная калибровка выполняется через каждые 5 мин в течение первого получаса после включения питания, а затем через каждые 25 мин. Некоторые пользователи полагают, что произошла ошибка при считывании данных, но на самом деле просто подошло время очередной калибровки. Заметим, что эта процедура выполняется в большинстве современных интеллектуальных накопителей (IDE и SCSI), что в конечном итоге позволяет подводить головки к дорожкам с максимально возможной точностью.

Однако по мере распространения программ мультимедиа подобные перерывы в работе накопителей становятся помехой. Дело в том, что при выполнении калибровки прекращаются все обмены данными с накопителем, и, к примеру, воспроизведение звуковых или видеофрагментов приостанавливается. Поэтому производители таких накопителей начали выпуск их специальных A/V-модификаций (Audio Visual -- АЛ/), в которых начало очередной температурной калибровки задерживается до тех пор, пока не закончится текущий сеанс обмена данными. Большинство новых моделей IDE -- и SCSI-устройств относится к этому типу, т. е. воспроизведение звуковых и видеофрагментов не прерывается процедурами калибровки.

Кстати, о процедурах, выполняемых накопителями автоматически: большинство устройств, которые осуществляют автоматическую температурную калибровку, выполняют также свипирование диска (sweep). Дело в том, что, хотя головки не касаются носителя, они располагаются настолько близко к нему, что начинает сказываться воздушное трение. Несмотря на сравнительно малую величину, оно все же может привести к преждевременному износу поверхности диска в том случае, если головка будет постоянно (или почти постоянно) находиться над одной и той же дорожкой. Чтобы этого не произошло, выполняется следующая процедура. Если головка слишком долго остается неподвижной (т. е. операции считывания и записи не выполняются), то она автоматически перемещается на случайно выбранную дорожку, расположенную ближе к краям диска, т. е. в ту область, где линейная скорость диска максимальна, а следовательно, воздушный просвет между его поверхностью и головкой имеет наибольшую величину. Временная задержка выбирается относительно небольшой (обычно 9 мин). Если после перевода головки диск снова окажется «в несложное» в течение такого же времени, то головка переместится на другую дорожку и т.д.

Воздушные фильтры

Почти во всех накопителях на жестких дисках используется два воздушных фильтра: фильтр рециркуляции и барометрический фильтр. В отличие от сменных фильтров, которые устанавливались в старых накопителях больших машин, они располагаются внутри корпуса и не подлежат замене в течение всего срока службы накопителя.

В старых накопителях происходила постоянная перекачка воздуха снаружи внутрь устройства и наоборот сквозь фильтр, который нужно было периодически менять. В современных устройствах от этой идеи отказались. Фильтр рециркуляции в блоке HDA предназначен только для очистки внутренней «атмосферы» от небольших частиц рабочего слоя носителя, которые, несмотря на все предпринимаемые меры, все же осыпаются с дисков при взлетах и посадках головок (а также от любых других мелких частиц, которые могут проникнуть внутрь HDA). Поскольку накопители персональных компьютеров герметизированы и в них не происходит перекачки воздуха снаружи, они могут работать даже в условиях сильного загрязнения окружающего воздуха (рис. 10.12).

Выше отмечалось, что блок HDA герметичен, однако это не совсем так. Внешний воздух проникает внутрь HDA сквозь барометрический фильтр, так как это необходимо для выравнивания давления изнутри и снаружи блока. Именно потому, что жесткие диски не являются полностью герметичными устройствами, изготовители указывают для них диапазон высот над уровнем моря, в котором они сохраняют работоспособность (обычно от -300 до +3 000 м). Для некоторых моделей максимальная высота подъема ограничена 2 000 м, поскольку в более разреженном воздухе просвет между головками и поверхностями носителей оказывается недостаточным. По мере изменения атмосферного давления воздух выходит из накопителя или, наоборот, проникает в него сквозь вентиляционное отверстие, чтобы выровнять давление снаружи и внутри устройства.

Рис. 10.12. Циркуляция воздуха в накопителе на жестком диске

Тем не менее это не приводит к загрязнению «атмосферы» внутри накопителя. Дело в том, что барометрический фильтр, установленный на этом отверстии, способен задерживать частицы размером более 0,3 мкм, что соответствует стандартам чистоты атмосферы внутри блока HDA. В некоторых устройствах используются более плотные (тонкие) фильтры, позволяющие задерживать еще более мелкие частицы. Вы легко обнаружите вентиляционные отверстия на большинстве блоков HDA, в то время как сами барометрические фильтры находятся внутри блока.

Двигатель привода жестких дисков

Двигатель, приводящий во вращение диски, часто называют шпиндельным (spindle). Шпиндельный двигатель всегда связан с осью вращения дисков, никакие приводные ремни или шестерни для этого не используются. Двигатель должен быть бесшумным: любые вибрации передаются дискам и могут привести к ошибкам при считывании и записи.

Частота вращения двигателя должна быть строго определенной. Обычно она колеблется от 3 600 до 15 000 об/мин или больше, а для ее стабилизации используется схема управления двигателем с обратной связью (автоподстройкой), позволяющая добиться необходимой точности. Таким образом, контроль за частотой вращения двигателя осуществляется автоматически, и никакие устройства, позволяющие сделать это вручную, в накопителях не предусмотрены. В описаниях некоторых диагностических программ говорится, что с их помощью можно измерить частоту вращения дисков. На самом деле единственное, на что они способны, -- это оценить ее возможное значение по временным интервалам между моментами появления заголовков секторов. Измерить частоту вращения с помощью программы в принципе невозможно, для этого нужны специальные приборы (тестеры). Не волнуйтесь, если какая-нибудь диагностическая программа сообщит, что частота вращения дисков установлена неправильно; скорее всего, плохо работает сама программа, а не накопитель.

Информация о частоте вращения дисков просто не передается (и не должна передаваться) через интерфейс контроллера жесткого диска. Раньше ее можно было оценить, считывая подряд достаточно большое количество секторов и измеряя временные интервалы, через которые появляется соответствующая информация. Но это имело смысл только тогда, когда все диски разбивались на одинаковое число секторов (17), а номинальная частота их вращения составляла 3 600 об/мин. Использование зонной записи, появление накопителей с различными номинальными частотами вращения, не говоря уже о встроенных буферах и кэш-памяти, приводит к тому, что программно вычислить истинную частоту вращения дисков невозможно.

В большинстве накопителей шпиндельный двигатель располагается в нижней части, под блоком HDA. Однако во многих современных устройствах он встраивается внутрь блока HDA и представляет собой центральную часть блока дисков-носителей. Такая конструкция позволяет, не изменяя величины накопителя по вертикали, увеличить количество дисков в блоке (в «стопке»).

Платы управления жесткими дисками

В каждом накопителе, в том числе и на жестких дисках, есть хотя бы одна плата. На ней монтируются электронные схемы для управления шпиндельным двигателем и приводом головок, а также для обмена данными с контроллером (представленными в заранее оговоренной форме). В накопителях IDE контроллер устанавливается непосредственно в накопителе, а для накопителей SCSI необходимо использовать дополнительную плату расширения.

Довольно часто поломки возникают не в механических узлах накопителей, а в платах управления. На первый взгляд это утверждение может показаться странным, поскольку общеизвестно, что электронные узлы надежнее механических, тем не менее факт остается фактом. Поэтому многие неисправные накопители можно отремонтировать, заменив лишь плату управления, а не все устройство. К сожалению, ни один производитель накопителей не реализует платы управления отдельно. Поэтому единственная возможность получить плату управления -- приобрести идентичный функционирующий накопитель и заменить поврежденные элементы деталями, снятыми с накопителя. Как вы понимаете, приобретение совершенно нового жесткого диска для ремонта имеет смысл только в том случае, если поврежденный накопитель содержит какие-либо нужные для вас данные.

Данные, хранящиеся на жестких дисках накопителя с поврежденной платой управления, могут быть извлечены только после ее замены. В большинстве случаев ценность содержащихся данных значительно превышает стоимость накопителя, поэтому приобретение нового идентичного накопителя и его использование в качестве источника запасных частей (в частности, платы управления) полностью себя оправдывает. Подобный метод получил широкое распространение в компаниях, которые занимаются восстановлением данных. Они имеют в наличии множество самых распространенных накопителей, детали которых используются для замены неисправных компонентов и восстановления данных, содержащихся на жестких дисках пользовательских систем.

Кабели и разъемы

В большинстве накопителей на жестких дисках предусмотрено несколько интерфейсных разъемов для подключения к системе, подачи питания, а иногда и для заземления корпуса. Как правило, накопители имеют по меньшей мере три типа разъемов:

¦ интерфейсный разъем (или разъемы);

¦ разъем питания;

¦ разъем (или зажим) для заземления (необязательно).

Наибольшее значение имеют интерфейсные разъемы, потому что через них передаются данные и команды в накопитель и обратно. Многие стандарты интерфейсов предусматривают подключение нескольких накопителей к одному кабелю (шине). Естественно, в этом случае их должно быть не меньше двух; в интерфейсе SCSI допускается подключение до семи накопителей к одному кабелю (Wide SCSI-2 поддерживает до 15 устройств). В некоторых стандартах (к примеру, в ST-506/412 или ESDI) для данных и управляющих сигналов предусмотрены отдельные разъемы, поэтому накопитель и контроллер соединяются двумя кабелями, однако большинство современных устройств ISE и SCSI подключаются с помощью одного кабеля.

Разъемы питания накопителей на жестких дисках обычно такие же, как и у дисководов для гибких дисков. В большинстве накопителей используются два напряжения питания (5 и 12 В), но малогабаритным моделям, разработанным для портативных компьютеров, достаточно напряжения 5 В. Как правило, от источника в 12 В питается схема управления шпиндельным двигателем и привод головок, а напряжение 5 В поступает на прочие схемы. Многие накопители на жестких дисках потребляют несколько большую мощность, чем дисководы для гибких дисков. Проверьте, достаточно ли мощности блока питания компьютера для нормальной работы всех установленных в системе накопителей.

Потребление тока от источника в 12 В зависит от размеров устройства: чем больше отдельных дисков входит в «пакет» и чем больше диаметр каждого из них, тем большая мощность необходима для приведения их в движение. Кроме того, для получения большей частоты вращения дисков необходимо также увеличивать мощность. к примеру, потребляемая мощность для накопителей формата 3,5 дюйма в среднем примерно в 2-4 раза меньше, чем для полноразмерных устройств формата 5,25 дюйма. Некоторые накопители особо малых форматов (2,5 и 1,8 дюйма) потребляют всего около 1 Вт электрической мощности.

Зажим для заземления необходим для того, чтобы обеспечить надежный контакт между общим кабелем накопителя и корпусом инфраструктуры. В компьютерах, где накопители крепятся непосредственно к корпусу с помощью металлических винтов, специальный провод заземления не нужен. В некоторых компьютерах накопители монтируются на пластмассовых или стеклотекстолитовых направляющих, которые, естественно, электрически изолируют корпус накопителя от корпуса инфраструктуры. В этом случае их обязательно нужно соединить дополнительным кабелем, подключаемым к упомянутому зажиму. При плохом заземлении накопителя возникают сбои в его работе, ошибки при считывании и записи и т. п.

Элементы конфигурации винчестеров

накопитель винчестер магнитный диск

При установке накопителя в компьютер обычно необходимо переставить или отключить некоторые перемычки и, возможно, нагрузочные резисторы. Эти элементы конфигурации изменяются от интерфейса к интерфейсу и от накопителя к накопителю.

Обычно рядовой пользователь мог столкнуться с ними при подключении двух и более жестких дисков со старым интерфейсом IDE одновременно , ведь там как правило для этого нужно было установить с помощью перемычек какой диск будет главным (MASTER) и второстепенным (SLAVE), так же с помощью перемычек можно защитить диск от копирования информации.

ЗАКЛЮЧЕНИЕ

Является основным накопителем данных в большинстве компьютеров за счет того, что на данный момент другие типы накопителей уступают им в скорости (чтения/записи) и более меньшего объема памяти. В наше время появились твердотельные накопители информации (SSD) превосходящие НЖМД в скорости, но они все же уступают им в емкости памяти и намного дороже.

СПИСОК ЛИТЕРАТУРЫ

1."Википедия" [Электронный ресурс]. - Свободная энциклопедия - Режим доступа: http://ru.wikipedia.org

2. "Сообщество программистов и IT-Специалистов!" [Электронный ресурс]. - Информационный портал. - Режим доступа: http://info-comp.ru/

3. "Ремонт и upgrade компьютеров своими руками" [Электронный ресурс]. - информационный портал. - Режим доступа: http://upgradecomputer.narod.ru

4. "Сайт Максвей" [Электронный ресурс]. - информационный портал. - Режим доступа: http://maksway.narod.ru.

Размещено на Allbest.ru

...

Подобные документы

  • Технические характеристики накопителей на жестких магнитных дисках и их устройство. Питание и охлаждение накопителей. Неисправности аппаратной и программной частей. Программы для проведения диагностики поверхности накопителя, его головок и электроники.

    курсовая работа [483,6 K], добавлен 19.05.2013

  • Сравнительный анализ и оценка характеристик накопителей на гибких и жестких магнитных дисках. Физическое устройство, организация записи информации. Физическая и логическая организация данных, адаптеры и интерфейсы. Перспективные технологии производства.

    дипломная работа [2,4 M], добавлен 16.04.2014

  • Конструкция, общее устройство и принцип действия накопителей на жестких магнитных дисках. Основные характеристики винчестеров: емкость, среднее время поиска, скорость передачи данных. Наиболее распространенные интерфейсы жестких дисков (SATA, SCSI, IDE).

    презентация [324,3 K], добавлен 20.12.2015

  • Анализ принципа действия накопителей на жестких магнитных дисках персональных компьютеров. Перфокарта как носитель информации в виде карточки из бумаги, картона. Основные функции файловой системы. Способы восстановления информации с RAID-массивов.

    дипломная работа [354,2 K], добавлен 15.12.2012

  • Запоминающие устройства на жестких магнитных дисках. Устройство жестких дисков. Интерфейсы жестких дисков. Интерфейс ATA, Serial ATA. Тестирование производительности накопителей на жестких магнитных дисках. Сравнительный анализ Serial ATA и IDE-дисков.

    презентация [1,2 M], добавлен 11.12.2013

  • Характеристика внешней памяти компьютера. Виды памяти компьютера и накопителей. Классификация запоминающих устройств. Обзор внешних магнитных носителей: накопители прямого доступа, на жестких магнитных дисках, на оптических дисках и карты памяти.

    курсовая работа [88,6 K], добавлен 27.02.2015

  • Структура персонального компьютера. Общие сведения о периферийных устройствах компьютера. Работа с дисковыми накопителями для хранения информации на гибких и жестких магнитных дисках. Устройства для чтения компакт-дисков. Варианты конструкции мыши.

    реферат [496,4 K], добавлен 10.01.2016

  • Устройства ввода информации: клавиатура, мышь, манипуляторы. Накопитель на жестких магнитных дисках. Видеоподсистема компьютера. Видео мониторы, их классификация. Современные ЖК мониторы. Принцип работы, основные параметры и характеристики сканеров.

    курсовая работа [431,9 K], добавлен 24.09.2010

  • Накопитель на гибких магнитных дисках. Сменные носители информации. Устройство накопителя для гибких магнитных дисков. Доступ к информации, записанной в одном цилиндре. Технические характеристики дискеты. Накопители на жестком диске и их устройство.

    презентация [229,4 K], добавлен 13.08.2013

  • Накопители на гибких магнитных дисках позволяют переносить документы и программы с одного компьютера на другой, хранить информацию, не используемую постоянно на компьютере, делать архивные копии программных продуктов, содержащихся на жестком диске.

    реферат [24,4 K], добавлен 18.07.2008

  • Накопители на жестких магнитных дисках. Винчестеры с интерфейсом Serial ATA. Магнитные дисковые накопители. Приводы для чтения CD-ROM (компакт-дисков). Возможные варианты загрузки диска в привод. Флэш-память, основные ее преимущества перед дискетами.

    презентация [26,5 K], добавлен 20.09.2010

  • Место объекта в ЭВМ и вычислительных системах. Область применения, назначение, основные характеристики и параметры объекта. Временные диаграммы. Схема устройства накопителя на жестких магнитных дисках. Главная загрузочная запись (master boot record, MBR).

    реферат [258,8 K], добавлен 24.12.2011

  • Накопитель на жёстких магнитных дисках как основной накопитель данных в большинстве компьютеров. Строение устройства. Блок электроники. Особенности геометрии дисков со встроенными контроллерами. Адресация памяти. Виды интерфейсов. Тенденции развития.

    презентация [4,6 M], добавлен 20.11.2013

  • Накопитель на жестких магнитных дисках как наиболее важное устройство для длительного хранения данных в персональном компьютере: анализ принципа работы, конструктивные особенности. Общая характеристика основных программ для работы с жестким диском.

    курсовая работа [5,1 M], добавлен 01.04.2013

  • Внешние запоминающие устройства для хранения программ и данных. История развития ВЗУ. Характеристика накопителей на магнитной ленте (стримеров) и на гибких магнитных дисках. Типы дисководов, устройство и виды дискеты. Способ записи на гибкий диск.

    реферат [27,8 K], добавлен 16.11.2011

  • Описание особенностей работы устройств для стирания записей с носителей на жестких магнитных дисках, а также с неоднородных полупроводниковых носителей. Изучение способов стирания информации с флеш–памяти. Выбор системы виброакустического зашумления.

    контрольная работа [2,9 M], добавлен 23.01.2015

  • Накопитель на жёстких магнитных дисках - энергонезависимое, перезаписываемое компьютерное запоминающее устройство (винчестер), его назначение и функции. Устройство жесткого диска, хранение данных и параметры. Физический и логический объем накопителей.

    презентация [1,4 M], добавлен 10.08.2013

  • Технические характеристики 18 моделей винчестеров с плотностью записи 20 GB на пластину и выше. Тестирование жестких дисков EIDE. Текущая линейка жестких дисков для настольных систем различных производителей (Fujitsu, IBM, Seagate, Maxtor, WD, Samsung).

    реферат [1,0 M], добавлен 03.05.2010

  • Основные и специализированные виды компьютерной памяти. Классификация устройств долговременного хранения информации, их характеристика: накопители на жестких магнитных дисках; оптические диски, дисководы. Расчет налога на доходы физических лиц в MS Excel.

    курсовая работа [4,6 M], добавлен 27.04.2013

  • Отображение текстовой или графической информации на компьютере. Ввод данных и управление различными объектами операционной системы. Внешние и внутренние устройства. Устройства записи-считывания информации на гибких магнитных и жёстких магнитных дисках.

    презентация [509,8 K], добавлен 23.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.