Генетические алгоритмы

Применение генетического алгоритма для нахождения решения в оптимизационной задаче. Его традиционная схема и общий вид. История эволюционных вычислений в области алгоритмизации. Структура хромосомы и ее представление в двоичном виде и коде Грея.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 12.01.2014
Размер файла 248,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

«Тихоокеанский государственный университет»

Реферат

Тема: «Генетические алгоритмы»

Выполнила:

Зуфарова А.С.

Хабаровск - 2013

Содержание

  • Введение
  • 1. История появления эволюционных алгоритмов
  • 2. Генетические Алгоритмы
  • 3. Общий вид генетического алгоритма
  • 4. Генетические операторы
  • 5. Особенности генетических алгоритмов
  • 6. Когда применяют генетический алгоритм
  • Список используемой литературы
  • Введение
  • Природа поражает своей сложностью и богатством проявлений. Среди примеров можно назвать сложные социальные системы, иммунные и нейронные системы, сложные взаимосвязи между видами. Они - всего лишь некоторые из чудес, ставшие очевидными при глубоком исследовании природы вокруг нас. Наука - это одна из систем, которая объясняет окружающее и помогает приспособиться к новой информации, получаемой из внешней среды. Многое из того, что мы видим и наблюдаем, можно объяснить теорией эволюции через наследственность, изменение и отбор.
  • На мировоззрение людей сильно повлияла теория эволюции Чарльза Дарвина, представленная в работе "Происхождение Видов", в 1859 году. Множество областей научного знания многим обязано революции, вызванной теорией эволюции и развития. Но Дарвин, подобно многим современникам, предполагающим, что в основе развития лежит естественный отбор, не мог не ошибаться. Например, он не смог показать механизм наследования, при котором поддерживается изменчивость. Однако Дарвин обнаружил главный механизм развития: отбор в соединении с изменчивостью. Во многих случаях, специфические особенности развития через изменчивость и отбор все еще не бесспорные, однако, основные механизмы объясняют невероятно широкий спектр явлений, наблюдаемые в Природе. Поэтому не удивительно, что ученые, занимающиеся компьютерными исследованиями, в поисках вдохновения обратились к теории эволюции. Возможность того, что вычислительная система, наделенная простыми механизмами изменчивости и отбора, могла бы функционировать по аналогии с законами эволюции в естественных системах, была очень привлекательной. Эта надежда является причиной появления ряда вычислительных систем, построенных на принципах естественного отбора.
  • Итак, в природе постоянно происходит процесс решения задач оптимизации. Задачи оптимизации -- наиболее распространенный и важный для практики класс задач. Их приходится решать каждому из нас либо в быту, распределяя свое время между различными делами, либо на работе, добиваясь максимальной скорости работы программы или максимальной доходности компании -- в зависимости от должности.
  • Благодаря открытиям последних ста лет современной науке известны все основные механизмы эволюции, связанные с генетическим наследованием. Эти механизмы достаточно просты по своей идее, но остроумны (если к природе применимо это слово) и эффективны. Удивительно, но простое моделирование эволюционного процесса на компьютере позволяет получить решения многих практических задач. Такие модели получили название “генетические алгоритмы” и уже широко применяются в различных областях.
  • В процессе изучения различных подходов к решению задач оптимизации нами выдвигается гипотеза что, решение задач оптимизации возможно с помощью генетических алгоритмов.
  • Объектом изучения данной работы являются генетические алгоритмы.
  • Предмет изучения - применение генетических алгоритмов для нахождения решения оптимизационной задачи.
  • Методы исследования:
  • ь сбор и анализ литературных источников по данной теме;
  • ь изучение особенностей создания и использования генетических алгоритмов;
  • ь моделирование работы генетического алгоритма на компьютере применимо к нахождению решения задачи оптимизации.
  • Задачи:
  • ь проанализировать возможности генетических алгоритмов;
  • ь изучить особенности генетических алгоритмов.
  • генетический эволюционный двоичный

1. История появления эволюционных алгоритмов

Природа поражает своей сложностью и богатством всех своих проявлений. Среди примеров можно назвать сложные социальные системы, иммунные и нейронные системы, сложные взаимосвязи между видами. Они - всего лишь некоторые из чудес, которые стали более очевидны, когда мы стали глубже исследовать себя самих и мир вокруг нас. Наука - это одна из сменяющих друг друга систем веры, которыми мы пытается объяснять то, что наблюдаем, этим самым, изменяя себя, чтобы приспособиться к новой информации, получаемой из внешнего мира. Многое из того, что мы видим и наблюдаем, можно объяснить единой теорией: теорией эволюции через наследственность, изменчивость и отбор.

Теория эволюции повлияла на изменение мировоззрения людей с самого своего появления. Теория, которую Чарльз Дарвин представил в работе, известной как "Происхождение Видов", в 1859 году, стала началом этого изменения. Многие области научного знания в настоящее время наслаждаются свободой мысли в атмосфере, которая многим обязана революции, вызванной теорией эволюции и развития. Но Дарвин, подобно многим своим современникам, кто предполагал, что в основе развития лежит естественный отбор, не мог не ошибаться. Например, он не смог показать механизм наследования, при котором поддерживается изменчивость. Его гипотеза о пангенезисе оказалась неправильной. Это было на пятьдесят лет до того, как теория наследственности начала распространяться по миру, и за тридцать лет до того, как "эволюционный синтез" укрепил связь между теорией эволюции и относительно молодой наукой генетикой. Однако Дарвин выявил главный механизм развития: отбор в сочетании с изменчивостью или, как он его называл, "спуск с модификацией". Во многих случаях, специфические особенности развития через изменчивость и отбор все еще не бесспорны, однако, основные механизмы объясняют невероятно широкий спектр явлений, наблюдаемых в Природе.

Поэтому неудивительно, что ученые, занимающиеся компьютерными исследованиями, обратились к теории эволюции в поисках вдохновения. Возможность того, что вычислительная система, наделенная простыми механизмами изменчивости и отбора, могла бы функционировать по аналогии с законами эволюции в природных системах, была очень привлекательна. Эта надежда стала причиной появления ряда вычислительных систем, построенных на принципах естественного отбора.

История эволюционных вычислений началась с разработки ряда различных независимых моделей. Основными из них были генетические алгоритмы и классификационные системы Голланда (Holland), опубликованные в начале 60-х годов и получившие всеобщее признание после выхода в свет книги, ставшей классикой в этой области, - "Адаптация в естественных и искусственных системах" ("Adaptation in Natural and Artifical Systems", 1975). В 70-х годах в рамках теории случайного поиска Растригиным Л.А. был предложен ряд алгоритмов, использующих идей бионического поведения особей. Развитие этих идей нашло отражение в цикле работ Букатовой И.Л. по эволюционному моделированию. Развивая идеи Цетлина М.Л. о целесообразном и оптимальном поведении стохастических автоматов, Неймарк Ю.И. предложил осуществлять поиск глобального экстремума на основе коллектива независимых автоматов, моделирующих процессы развития и элиминации особей. Большой вклад в развитие эволюционного программирования внесли Фогел (Fogel) и Уолш (Walsh). Несмотря на разницу в подходах, каждая из этих "школ" взяла за основу ряд принципов, существующих в природе, и упростила их до такой степени, чтобы их можно было реализовать на компьютере.

Главная трудность с возможностью построения вычислительных систем, основанных на принципах естественного отбора и применением этих систем в прикладных задачах, состоит в том, что природные системы достаточно хаотичны, а все наши действия, фактически, носят четкую направленность. Мы используем компьютер как инструмент для решения определенных задач, которые мы сами и формулируем, и мы акцентируем внимание на максимально быстром выполнении при минимальных затратах. Природные системы не имеют никаких таких целей или ограничений, во всяком случае, нам они не очевидны. Выживание в природе не направлено к некоторой фиксированной цели, вместо этого эволюция совершает шаг вперед в любом доступном ее направлении.

Возможно это большое обобщение, но я полагаю, что усилия, направленные на моделирование эволюции по аналогии с природными системами, к настоящему времени можно разбить на две большие категории:

1. системы, которые смоделированы на биологических принципах. Они успешно использовались для задач типа функциональной оптимизации и могут легко быть описаны на небиологическом языке,

2. системы, которые являются биологически более реалистичными, но которые не оказались особенно полезными в прикладном смысле. Они больше похожи на биологические системы и менее направлены (или не направлены вовсе). Они обладают сложным и интересным поведением, и, видимо, вскоре получат практическое применение.

Конечно, на практике мы не можем разделять эти вещи так строго. Эти категории - просто два полюса, между которыми лежат различные вычислительные системы. Ближе к первому полюсу - эволюционные алгоритмы, такие как Эволюционное Программирование (Evolutionary Programming), Генетические Алгоритмы (Genetic Algorithms) и Эволюционные Стратегии (Evolution Strategies). Ближе ко второму полюсу - системы, которые могут быть классифицированы как Искусственная Жизнь (Artificial Life).

Конечно, эволюция биологических систем не единственный "источник вдохновения" создателей новых методов, моделирующих природные процессы. Нейронные сети (neural networks), например, основаны на моделировании поведения нейронов в мозге. Они могут использоваться для ряда задач классификации, например, задачи распознавания образов, машинного обучения, обработки изображений и др. Область их приложения частично перекрывается со сферой применения генетические алгоритмы. Моделируемый отжиг (simulated annealing) - другая методика поиска, которая основана скорее на физических, а не биологических процессах.

2. Генетические Алгоритмы

Генетические Алгоритмы - адаптивные методы поиска, которые в последнее время часто используются для решения задач функциональной оптимизации. Они основаны на генетических процессах биологических организмов: биологические популяции развиваются в течении нескольких поколений, подчиняясь законам естественного отбора и по принципу "выживает наиболее приспособленный" (survival of the fittest), открытому Чарльзом Дарвином. Подражая этому процессу генетические алгоритмы способны "развивать" решения реальных задач, если те соответствующим образом закодированы. Например, Генетические Алгоритмы могут использоваться, чтобы проектировать структуры моста, для поиска максимального отношения прочности/веса, или определять наименее расточительное размещение для нарезки форм из ткани. Они могут также использоваться для интерактивного управления процессом, например на химическом заводе, или балансировании загрузки на многопроцессорном компьютере. Вполне реальный пример: израильская компания Schema разработала программный продукт Channeling для оптимизации работы сотовой связи путем выбора оптимальной частоты, на которой будет вестись разговор. В основе этого программного продукта и используются генетические алгоритмы.

Основные принципы Генетические Алгоритмы были сформулированы Голландом (Holland, 1975), и хорошо описаны во многих работах. В отличии от эволюции, происходящей в природе, Генетические Алгоритмы только моделируют те процессы в популяциях, которые являются существенными для развития. Точный ответ на вопрос, какие биологические процессы существенны для развития, и какие нет? - все еще открыт для исследователей.

В природе особи в популяции конкурируют друг с другом за различные ресурсы, такие, например, как пища или вода. Кроме того, члены популяции одного вида часто конкурируют за привлечение брачного партнера. Те особи, которые наиболее приспособлены к окружающим условиям, будут иметь относительно больше шансов, воспроизвести потомков. Слабо приспособленные особи либо совсем не произведут потомства, либо их потомство будет очень немногочисленным. Это означает, что гены от высоко адаптированных или приспособленных особей будут распространяться в увеличивающемся количестве потомков на каждом последующем поколении. Комбинация хороших характеристик от различных родителей иногда может приводить к появлению "суперприспособленного" потомка, чья приспособленность больше, чем приспособленность любого из его родителя. Таким образом, вид развивается, лучше и лучше приспосабливаясь к среде обитания.

Генетические Алгоритмы используют прямую аналогию с таким механизмом. Они работают с совокупностью "особей" - популяцией, каждая из которых представляет возможное решение данной проблемы. Каждая особь оценивается мерой ее "приспособленности" согласно тому, насколько "хорошо" соответствующее ей решение задачи. Например, мерой приспособленности могло бы быть отношение силы/веса для данного проекта моста. (В природе это эквивалентно оценке того, насколько эффективен организм при конкуренции за ресурсы.) Наиболее приспособленные особи получают возможность "воспроизводит" потомство с помощью "перекрестного скрещивания" с другими особями популяции. Это приводит к появлению новых особей, которые сочетают в себе некоторые характеристики, наследуемые ими от родителей. Наименее приспособленные особи с меньшей вероятностью смогут воспроизвести потомков, так что те свойства, которыми они обладали, будут постепенно исчезать из популяции в процессе эволюции.

Так и воспроизводится вся новая популяция допустимых решений, выбирая лучших представителей предыдущего поколения, скрещивая их и получая множество новых особей. Это новое поколение содержит более высокое соотношение характеристик, которыми обладают хорошие члены предыдущего поколения. Таким образом, из поколения в поколение, хорошие характеристики распространяются по всей популяции. Скрещивание наиболее приспособленных особей приводит к тому, что исследуются наиболее перспективные участки пространства поиска. В конечном итоге, популяция будет сходиться к оптимальному решению задачи.

Имеются много способов реализации идеи биологической эволюции в рамках Генетические Алгоритмы. Традиционным считается Генетический Алгоритм, представленный на схеме.

Рис. 1. Традиционная схема генетического алгоритма

В последние годы, реализовано много генетических алгоритмов и в большинстве случаев они мало похожи на этот Генетические Алгоритмы. По этой причине в настоящее время под термином "генетические алгоритмы" скрывается не одна модель, а достаточно широкий класс алгоритмов, подчас мало похожих друг от друга. Исследователи экспериментировали с различными типами представлений, операторов кроссовера и мутации, специальных операторов, и различных подходов к воспроизводству и отбору.

Хотя модель эволюционного развития, применяемая в Генетические алгоритмы, сильно упрощена по сравнению со своим природным аналогом, тем не менее, Генетические Алгоритмы является достаточно мощным средством и может с успехом применяться для широкого класса прикладных задач, включая те, которые трудно, а иногда и вовсе невозможно, решить другими методам. Однако, Генетические Алгоритмы, как и другие методы эволюционных вычислений, не гарантирует обнаружения глобального решения за полиномиальное время. Генетические Алгоритмы не гарантируют и того, что глобальное решение будет найдено, но они хороши для поиска "достаточно хорошего" решения задачи "достаточно быстро". Там, где задача может быть решена специальными методам, почти всегда такие методы будут эффективнее Генетические Алгоритмы и в быстродействии и в точность найденных решений. Главным же преимуществом Генетические Алгоритмы является то, что они могут применяться даже на сложных задачах, там, где не существует никаких специальных методов. Даже там, где хорошо работаю существующие методики, можно достигнуть улучшения сочетанием их с Генетические Алгоритмы.

3. Общий вид генетического алгоритма

В начале ГА-функция генерирует определенное количество возможных решений. Задается функция оптимальности f(x), определяющая эффективность каждого найденного решения, для отслеживания выхода решения из допустимой области в функцию можно включить штрафной компонент. Каждое решение кодируется как вектор x, называемый хромосомой. Его элементы - гены, изменяющиеся в определённых позициях, называемых аллелями. Геном - совокупность всех хромосом. Генотип - значение генома.

Рис. 2. Структура хромосомы

Обычно хромосомы представляются в двоичном целочисленном виде или двоичном с плавающей запятой. В некоторых случаях более эффективно будет использование кода Грея (табл. 1), в котором изменение одного бита в любой позиции приводит к изменению значения на единицу. Для некоторых задач двоичное представление естественно, для других задач может оказаться полезным отказаться от двоичного представления. В общем случае выбор способа представления параметров задачи в виде хромосомы влияет на эффективность решения.

Табл. 1

Целое

Двоичный код

Код Грея

0

0000

0000

1

0001

0001

2

0010

0011

3

0011

0010

4

0100

0110

5

0101

0111

6

0110

0101

7

0111

0100

8

1000

1100

9

1001

1101

10

1010

1111

11

1011

1110

12

1100

1010

13

1101

1011

14

1110

1001

15

1111

1000

Популяция - совокупность решений на конкретной итерации, количество хромосом в популяции задаётся изначально и в процессе обычно не изменяется. Для ГА пока не существует таких же чётких математических основ, как для НС, поэтому при реализации ГА возможны различные вариации.

Начальная популяция -- конечный набор допустимых решений задачи. Эти решения могут быть выбраны случайным образом или получены с помощью вероятностных жадных алгоритмов. Как мы увидим ниже, выбор начальной популяции не имеет значения для сходимости процесса, однако формирование "хорошей" начальной популяции (например, из множества локальных оптимумов) может заметно сократить время достижения глобального оптимума. Это отличается от стандартных методов, когда начальное состояние всегда одно и то же.

Каждая хромосома популяции оценивается функцией эффективности , и ей в соответствии с этой оценкой присваивается вероятность воспроизведения - Вычисление коэффициента выживаемости (fitness).

В соответствии с вероятностями воспроизведения Pi генерируется новая популяция хромосом, причём с большей вероятностью воспроизводятся наиболее эффективные элементы. Популяция следующего поколения в большинстве реализаций генетических алгоритмов содержит столько же особей, сколько начальная, но в силу отбора приспособленность в ней в среднем выше. Воспроизведение осуществляется при помощи генетических операторов кроссинговера (скрещивание) и мутации.

Если найдено удовлетворительное решение, процесс останавливается, иначе продолжается с шага 2.

Жизненный цикл популяции - это несколько случайных скрещиваний и мутаций, в результате которых к популяции добавляется какое-то количество новых индивидуумов.

4. Генетические операторы

Генетические операторы необходимы, чтобы применить принципы наследственности и изменчивости к виртуальной популяции. Помимо отличительных особенностей, о которых будет рассказано ниже, у них есть такое свойство как вероятность. Т. е. описываемые операторы не обязательно применяются ко всем скрещиваемым особям, что вносит дополнительный элемент неопределенности в процесс поиска решения. В данном случае, неопределенность не подразумевает негативный фактор, а является своеобразной "степенью свободы" работы генетического алгоритма.

Оператор кроссинговера.

Оператор кроссинговера (crossover operator), также называемый кроссовером, является основным генетическим оператором, за счет которого производится обмен генетическим материалом между особями. Моделирует процесс скрещивания особей.

Пусть имеются две родительские особи с хромосомами Х={xi, i=1,L} и Y={yi, i=1,L}. Случайным образом определяется точка внутри хромосомы, в которой обе хромосомы делятся на две части и обмениваются ими. Назовем эту точку точкой разрыва. Вообще говоря, в англоязычной литературе она называется точкой кроссинговера (crossover point), просто, на мой взгляд, точка разрыва более образное название и к тому же позволяет в некоторых случаях избежать тавтологии. Описанный процесс изображен на рис. 3.

Рис. 3. Кроссинговер

Данный тип кроссинговера называется одноточечным, т. к. при нем родительские хромосомы разрезаются только в одной случайной точке. Также существует 2-х и n-точечный операторы кроссинговера. В 2-х точечном кроссинговере точек разрыва 2, а n-точечный кроссинговер является своеобразным обобщением 1- и 2-точечного кроссинговеров для n > 2. Кроме описанных типов кроссинговера есть ещё однородный кроссинговер. Его особенность заключается в том, что значение каждого бита в хромосоме потомка определяется случайным образом из соответствующих битов родителей. Для этого вводится некоторая величина 0<p0<1, и если случайное число больше p0, то на n-ю позицию первого потомка попадает n-й бит первого родителя, а на n-ю позицию второго - n-й бит второго родителя. В противном случае к первому потомку попадает бит второго родителя, а ко второму - первого. Такая операция проводится для всех битов хромосомы. Вероятность кроссинговера самая высокая среди генетических операторов и равна обычно 60% и больше.

Оператор мутации.

Оператор мутации (mutation operator) необходим для "выбивания" популяции из локального экстремума и способствует защите от преждевременной сходимости. Достигаются эти чудеса за счет того, что инвертируется случайно выбранный бит в хромосоме, что и показано на рис. 4.

Рис. 4. Мутация

Так же как и кроссинговер, мутация проводится не только по одной случайной точке. Можно выбирать некоторое количество точек в хромосоме для инверсии, причем их число также может быть случайным. Также можно инвертировать сразу некоторую группу подряд идущих точек. Вероятность мутации значительно меньше вероятности кроссинговера и редко превышает 1%. Среди рекомендаций по выбору вероятности мутации нередко можно встретить варианты 1/L или 1/N, где L - длина хромосомы, N - размер популяции.

Необходимо также отметить, что есть мнение, что оператор мутации является основным поисковым оператором и известны алгоритмы, не использующих других операторов (кроссинговер, инверсия и т. д.) кроме мутации.

5. Особенности генетических алгоритмов

Генетический алгоритм - новейший, но не единственно возможный способ решения задач оптимизации. С давних пор известны два основных пути решения таких задач - переборный и локально-градиентный. У этих методов свои достоинства и недостатки, и в каждом конкретном случае следует подумать, какой из них выбрать.

Рис. 5

Рассмотрим достоинства и недостатки стандартных и генетических методов на примере классической задачи коммивояжера. Суть задачи состоит в том, чтобы найти кратчайший замкнутый путь обхода нескольких городов, заданных своими координатами. Оказывается, что уже для 30 городов поиск оптимального пути представляет собой сложную задачу, побудившую развитие различных новых методов (в том числе нейросетей и генетических алгоритмов).

Каждый вариант решения (для 30 городов) - это числовая строка, где на j-ом месте стоит номер j-ого по порядку обхода города. Таким образом, в этой задаче 30 параметров, причем не все комбинации значений допустимы. Естественно, первой идеей является полный перебор всех вариантов обхода.

Рис. 6

Переборный метод наиболее прост по своей сути и тривиален в программировании. Для поиска оптимального решения (точки максимума целевой функции) требуется последовательно вычислить значения целевой функции во всех возможных точках, запоминая максимальное из них. Недостатком этого метода является большая вычислительная стоимость. В частности, в задаче коммивояжера потребуется просчитать длины более 1030 вариантов путей, что совершенно нереально. Однако, если перебор всех вариантов за разумное время возможен, то можно быть абсолютно уверенным в том, что найденное решение действительно оптимально.

Рис. 7

Второй популярный способ основан на методе градиентного спуска. При этом вначале выбираются некоторые случайные значения параметров, а затем эти значения постепенно изменяют, добиваясь наибольшей скорости роста целевой функции. Достигнув локального максимума, такой алгоритм останавливается, поэтому для поиска глобального оптимума потребуются дополнительные усилия.

Градиентные методы работают очень быстро, но не гарантируют оптимальности найденного решения. Они идеальны для применения в так называемых унимодальных задачах, где целевая функция имеет единственный локальный максимум (он же - глобальный). Легко видеть, что задача коммивояжера унимодальной не является.

Рис. 8

Типичная практическая задача, как правило, мультимодальна и многомерна, то есть содержит много параметров. Для таких задач не существует ни одного универсального метода, который позволял бы достаточно быстро найти абсолютно точное решение.

Однако, комбинируя переборный и градиентный методы, можно надеяться получить хотя бы приближенное решение, точность которого будет возрастать при увеличении времени расчета.

Генетический алгоритм представляет собой именно такой комбинированный метод. Механизмы скрещивания и мутации в каком-то смысле реализуют переборную часть метода, а отбор лучших решений - градиентный спуск.

Рис. 9

На рисунке показано, что такая комбинация позволяет обеспечить устойчиво хорошую эффективность генетического поиска для любых типов задач.

Итак, если на некотором множестве задана сложная функция от нескольких переменных, то генетический алгоритм - это программа, которая за разумное время находит точку, где значение функции достаточно близко к максимально возможному. Выбирая приемлемое время расчета, мы получим одно из лучших решений, которые вообще возможно получить за это время.

Однако, ГА, как и другие методы эволюционных вычислений, не гарантирует обнаружения глобального решения за полиномиальное время. ГА-мы не гарантируют и того, что глобальное решение будет найдено, но они хороши для поиска "достаточно хорошего" решения задачи "достаточно быстро". Там, где задача может быть решена специальными методам, почти всегда такие методы будут эффективнее ГА и в быстродействии и в точность найденных решений. Главным же преимуществом ГА-мов является то, что они могут применяться даже на сложных задачах, там, где не существует никаких специальных методов. Даже там, где хорошо работаю существующие методики, можно достигнуть улучшения сочетанием их с ГА.

генетический алгоритм эволюционный двоичный

6. Когда применяют генетический алгоритм

Генетические алгоритмы в различных формах применились ко многим научным и техническим проблемам. Генетические алгоритмы использовались при создании других вычислительных структур, например, автоматов или сетей сортировки. В машинном обучении они использовались при проектировании нейронных сетей или управлении роботами. Они также применялись при моделировании развития в различных предметных областях, включая биологические (экология, иммунология и популяционная генетика), социальные (такие как экономика и политические системы) и когнитивные системы.

Тем не менее, возможно наиболее популярное приложение генетических алгоритмов - оптимизация многопараметрических функций. Многие реальные задачи могут быть сформулированы как поиск оптимального значения, где значение - сложная функция, зависящая от некоторых входных параметров. В некоторых случаях, представляет интерес найти те значения параметров, при которых достигается наилучшее точное значение функции. В других случаях, точный оптимум не требуется - решением может считаться любое значение, которое лучше некоторой заданное величины. В этом случае, генетические алгоритмы - часто наиболее приемлемый метод для поиска "хороших" значений. Сила генетического алгоритма заключена в его способности, манипулировать одновременно многими параметрами, эта особенность ГА использовалось в сотнях прикладных программ, включая проектирование самолетов, настройку параметров алгоритмов и поиску устойчивых состояний систем нелинейных дифференциальных уравнений.

Однако нередки случаи, когда ГА работает, не так эффективно, как ожидалось.

Предположим, есть реальная задача, сопряженная с поиском оптимального решения, как узнать, является ли ГА хорошим методом для ее решения? До настоящего времени не существует строгого ответа, однако многие исследователи разделяют предположения, что если пространство поиска, которое предстоит исследовать, - большое, и предполагается, что оно не совершенно гладкое и унимодальное. Т. е. содержит один гладкий экстремум) или не очень понятно, или если функция приспособленности с шумами, или если задача не требует строго нахождения глобального оптимума. Т. е. если достаточно быстро просто найти приемлемое "хорошее" решения (что довольно часто имеет место в реальных задачах) - ГА будет иметь хорошие шансы стать эффективной процедурой поиска, конкурируя и превосходя другие методы, которые не используют знания о пространстве поиска.

Если же пространство поиска небольшое, то решение может быть найдено методом полного перебора, и можно быть уверенным, что наилучшее возможное решение найдено, тогда как ГА мог с большей вероятностью сойтись к локальному оптимуму, а не к глобально лучшему решению. Если пространство гладкое и унимодальное любой градиентный алгоритм, такой как, метод скорейшего спуска будет более эффективен, чем ГА. Если о пространстве поиска есть некоторая дополнительная информация (как, например, пространство для хорошо известной задачи о коммивояжере), методы поиска, использующие эвристики, определяемые пространством, часто превосходят любой универсальный метод, каким является ГА. При достаточно сложном рельефе функции приспособленности методы поиска с единственным решением в каждый момент времени, такой как простой метод спуска, могли "затыкаться" в локальном решении, однако считается, что ГА, так как они работают с целой "популяцией" решений, имеют меньше шансов сойтись к локальному оптимуму и робастно функционируют на многоэкстремальном ландшафте.

Конечно, такие предположения не предсказывают строго, когда ГА будет эффективной процедурой поиска, конкурирующей с другими процедурами. Эффективность ГА сильно зависит от таких деталей, как метод кодировки решений, операторы, настройки параметров, частный критерий успеха. Теоретическая работа, отраженная в литературе, посвященной Гамам, не дает оснований говорить о выработки каких-либо строгих механизмов для четких предсказаний.

Список используемой литературы

1. Вентцель Е.С. «Исследование операций», - М.: 1972 г.

2. Гальцына О.Л., Попов И.И. «Основы алгоритмизации и программирования».

3. Грешилов А.А. «Как принять наилучшее решение в реальных условиях», - М.: 1991 г., стр. 164-170.

4. Корнеев В.В., Гареев А.Ф. «Базы данных. Интеллектуальная обработка данных», М.: 2001 г., стр. 220.

5. Коршунов Ю.М. «Математические основы кибернетики. Для студентов вузов», - М.: 1987 г., стр. 67-89.

6. Новиков Ф.А. «Дискретная математика для программистов».

7. «Генетические алгоритмы: почему они работают?» / Компьютерра, № 11, 1999 год.

Размещено на Allbest.ru

...

Подобные документы

  • Основные генетические операторы. Схема функционирования генетического алгоритма. Задачи, решаемые с помощью генетических алгоритмов. Математическая постановка задачи оптимизации. Решение Диофантова уравнения. Программная реализация. Создание пособия.

    курсовая работа [391,4 K], добавлен 20.02.2008

  • Непрерывная и дискретная информация. Кодирование как процесс представления информации в виде кода. Особенности процедуры дискретизации непрерывного сообщения. Позиционные и непозиционные системы счисления. Представление информации в двоичном коде.

    реферат [117,3 K], добавлен 11.06.2010

  • Операторы генетического алгоритма. Пример простейшей программы. Процесс генерации и накопления информации о выживании и продолжении рода в ряде поколений популяции. Программа, реализующая простой генетический алгоритм для нахождения минимума функции.

    курсовая работа [39,3 K], добавлен 29.10.2012

  • Этапы работы генетического алгоритма, область его применения. Структура данных, генерация первоначальной популяции. Алгоритм кроссинговера - поиск локальных оптимумов. Селекция особей в популяции. Техническое описание программы и руководство пользователя.

    реферат [1014,2 K], добавлен 14.01.2016

  • Описание принципа работы генетического алгоритма, проверка его работы на функции согласно варианту на основе готовой программы. Основные параметры генетического алгоритма, его структура и содержание. Способы реализации алгоритма и его компонентов.

    лабораторная работа [20,2 K], добавлен 03.12.2014

  • Содержание фундаментальной теории гена. Описание простого генетического алгоритма поиска оптимальных решений. Сущность понятий "кроссинговер", "сайт", "иллегальная рекомбинация". Этапы реализации алгоритма Девиса по перераспределению участков хромосом.

    контрольная работа [23,7 K], добавлен 17.09.2010

  • Изучение понятия и свойств алгоритма. Определение сущности технологии Robson. Исполнитель, а также блок-схема алгоритма или его графическое представление, в котором он изображается в виде последовательности связанных между собой функциональных блоков.

    реферат [155,9 K], добавлен 19.10.2013

  • Основные свойства алгоритма. Формальный и неформальный исполнитель алгоритма, система его команд. Способы записи алгоритма. Словесное описание, построчная запись, опорный конспект. Характеристики алгоритмического языка. Выполнение алгоритма компьютером.

    презентация [2,0 M], добавлен 04.04.2014

  • Создание программы для поиска минимума функции двух вещественных переменных в заданной области с помощью генетического алгоритма. Генетические алгоритмы и операторы. Создание начальной популяции. Размножение. Мутация и селекция. Тестирование программы.

    курсовая работа [131,6 K], добавлен 22.02.2015

  • Метод хорд решения нелинейных уравнений. Вычисление интеграла методом Симпсона. Процесс численного решения уравнения. Окно программы расчета корней уравнения методом хорд. Алгоритм вычисления интеграла в виде блок-схемы. Выбор алгоритма для вычислений.

    курсовая работа [832,6 K], добавлен 24.07.2012

  • Разновидности систем счисления данных, особенности позиционной системы. Порядок перехода между основными системами счисления и реализации целочисленных операций. Представление отрицательных чисел. Представление отрицательных чисел в двоичном коде.

    лабораторная работа [142,3 K], добавлен 06.07.2009

  • Определение и описание "генетического алгоритма", идея которого состоит в организации эволюционного процесса, конечной целью которого является получение оптимального решения в сложной комбинаторной задаче. Пример его тривиальной реализации на C++.

    контрольная работа [172,1 K], добавлен 24.05.2010

  • Сущность и экономическое обоснование, методы и подходы к прогнозированию валютного курса. Описание технологии интеллектуальных вычислений. Применение генетических алгоритмов для настройки архитектуры нейронных сетей. Основные способы улучшения модели.

    курсовая работа [1,3 M], добавлен 26.03.2016

  • Сущность задач оптимизации и методы их решения с ориентацией на современные средства компьютерной техники. Область допустимых решений. Структура оптимизационной модели. Проверка правильности нахождения точек координат методом половинного деления.

    курсовая работа [2,4 M], добавлен 25.04.2015

  • Оптимизация решения задачи с помощью алгоритма отжига. Анализ теории оптимизации как целевой функции. Метод градиентного спуска. Переменные и описание алгоритма отжига. Представление задачи коммивояжера через граф. Сведение задачи к переменным и решение.

    курсовая работа [784,0 K], добавлен 21.05.2015

  • Основные этапы создания алгоритмов, представление в виде программы. Рассмотрение методов решения задач. Метод поэтапных уточнений. Различие между численными и логическими алгоритмами. Реализация цикла со счетчиком. Процесс разработки сложного алгоритма.

    презентация [1,3 M], добавлен 22.10.2013

  • Описание решения задачи, ее постановка, общий подход к решению. Представление исходных данных, условий задачи и целей ее решения. Составление алгоритма решения поставленной задачи. Написание программного обеспечения и тестирование конечного продукта.

    курсовая работа [1,1 M], добавлен 03.07.2011

  • Методы решения систем линейных уравнений трехдигонального вида: прогонки, встречных прогонок, циклической редукции. Параллельные алгоритмы решения. Метод декомпозиции области. Основные возможности и особенности технологии CUDA. Анализ ускорения алгоритма.

    дипломная работа [1,4 M], добавлен 21.06.2013

  • Понятие алгоритма. Цикл программы. Структурная схема алгоритма. Элементы языка Тurbo Рascal. Алфавит. Идентификаторы. Комментарии. Лексика языка С++. ESC-последовательности. Операции. Ключевые слова. Комментарии.

    контрольная работа [43,0 K], добавлен 24.04.2006

  • Числа с фиксированной точкой характеризуются длиной слова в битах, положением двоичной точки, бывают беззнаковыми или знаковыми. Позиция двоичной точки определяет число разрядов в целой и дробной частях машинного слова. Представление отрицательного числа.

    лабораторная работа [154,6 K], добавлен 31.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.