Экспертные системы

Характеристика понятия экспертных систем, их структуры и существующих классификаций. Анализ наиболее распространённых ЭС, этапы их разработки, преимущества и недостатки. Описание назначения экспертных систем, примеры их использования в экономике.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 21.01.2014
Размер файла 28,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования и науки российской федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Санкт-Петербургский государственный политехнический университет» (ФГБОУ ВПО «СПбГПУ»)

Институт менеджмента и информационных технологий

(филиал) федерального государственного бюджетного образовательного учреждения высшего профессионального образования

«Санкт-Петербургский государственный политехнический университет» в г. Череповце (ИМИТ «СПбГПУ»)

Кафедра финансов

реферат

Дисциплина: Информационные системы в экономике

Тема: «Экспертные системы»

Выполнил

студент группы о.4102

Петрова А.В.

Руководитель

Шутикова М.И.

Череповец 2013

  • Оглавление
  • Введение………………………………………………………………………...…3
  • Сущность, преимущества и недостатки экспертных систем…………………..5
  • Классификация ЭС по решаемой задаче………………………………………...8
  • Классификация ЭС по связи с реальным временем…………………………….8
  • Структура экспертных систем……………………………………………………9
  • Этапы разработки ЭС…………………………………………………………....10
  • Наиболее известные/распространённые ЭС…………………………………...11
  • Назначение экспертных систем в экономике………………………………….12
  • Заключение……………………………………………………………………….14
  • Список используемой литературы……………………………………………...15

Введение

В начале восьмидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название "экспертные системы" (ЭС). Цель исследований по ЭС состоит в разработке программ, которые при решении задач, трудных для эксперта-человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. Экспертные системы и системы искусственного интеллекта отличаются от систем обработки данных тем, что в них в основном используются символьный (а не числовой) способ представления, символьный вывод и эвристический поиск решения (а не исполнение известного алгоритма).

Экспертные системы применяются для решения только трудных практических (не игрушечных) задач. По качеству и эффективности решения экспертные системы не уступают решениям эксперта-человека. Решения экспертных систем обладают "прозрачностью", т.е. могут быть объяснены пользователю на качественном уровне. Это качество экспертных систем обеспечивается их способностью рассуждать о своих знаниях и умозаключениях. Экспертные системы способны пополнять свои знания в ходе взаимодействия с экспертом. Необходимо отметить, что в настоящее время технология экспертных систем используется для решения различных типов задач (интерпретация, предсказание, диагностика, планирование, конструирование, контроль, отладка, инструктаж, управление.

Первую экспертную систему, которую назвали Dendral, разработали в Стэнфорде в конце 1960-х гг. Эта была экспертная система, определяющая строение органических молекул по химическим формулам и спектрографическим данным о химических связях в молекулах. Ценность Dendral заключалась в следующем. Органические молекулы, как правило, очень велики и поэтому число возможных структур этих молекул также велико. Благодаря эвристическим знаниям экспертов-химиков, заложенных в экспертную систему, правильное решение из миллиона возможных находилось всего за несколько попыток. Принципы и идеи, заложенные в Dendral, оказались настолько эффективными, что они до сих пор применяются в химических и фармацевтических лабораториях по всему миру. Экспертная система Dendral одной из первых использовала эвристические знания специалистов для достижения уровня эксперта в решении задач, однако методика современных экспертных систем связана с другой разработкой - Myсin. В ней использовались знания экспертов медицины для диагностики и лечения специального менингита и бактериальных инфекций крови. Экспертная система Mycin, разработанная в том же Стэнфорде в середине 1970-х гг., одной из первых обратилась к проблеме принятия решений на основе ненадежной или недостаточной информации. Все рассуждения экспертной системы Mycin были основаны на принципах управляющей логики, соответствующих специфике предметной области. Многие методики разработки экспертных систем, использующиеся сегодня, были впервые разработаны в рамках проекта Mycin.

На сегодняшний день создано уже большое количество экспертных систем. С помощью них решается широкий круг задач, но исключительно в узкоспециализированных предметных областях. Как правило, эти области хорошо изучены и располагают более-менее четкими стратегиями принятия решений.

Сущность, преимущества и недостатки экспертных систем

Экспертная система (ЭС) - это набор программ или программное обеспечение, которое выполняет функции эксперта при решении какой-либо задачи в области его компетенции. ЭС, как и эксперт-человек, в процессе своей работы оперирует со знаниями. Знания о предметной области, необходимые для работы ЭС, определенным образом формализованы и представлены в памяти ЭВМ в виде базы знаний, которая может изменяться и дополняться в процессе развития системы. Главное достоинство ЭС - возможность накапливать знания, сохранять их длительное время, обновлять и тем самым обеспечивать относительную независимость конкретной организации от наличия в ней квалифицированных специалистов. Накопление знаний позволяет повышать квалификацию специалистов, работающих на предприятии, используя наилучшие, проверенные решения. Качество ЭС определяется размером и качеством базы знаний. Система функционирует в следующем циклическом режиме: выбор (запрос) данных или результатов анализов, наблюдения, интерпретация результатов, усвоение новой информации, выдвижении с помощью правил временных гипотез и затем выбор следующей порции данных или результатов анализов. Такой процесс продолжается до тех пор, пока не поступит информация, достаточная для окончательного заключения.

В любой момент времени в системе существуют три типа знаний:

1. Структурированные знания - статические знания о предметной области. После того как эти знания выявлены, они уже не изменяются.

2. Структурированные динамические знания - изменяемые знания о предметной области. Они обновляются по мере выявления новой информации.

3. Рабочие знания - знания, применяемые для решения конкретной задачи или проведения консультации.

Все перечисленные выше знания хранятся в базе знаний. Для ее построения требуется провести опрос специалистов, являющихся экспертами в конкретной предметной области, а затем систематизировать, организовать и снабдить эти знания указателями, чтобы впоследствии их можно было легко извлечь из базы знаний.

Даже лучшие из существующих ЭС, которые эффективно функционируют как на больших, так и на мини-ЭВМ, имеют определенные ограничения по сравнению с человеком-экспертом:

1. Большинство ЭС не вполне пригодны для применения конечным пользователем. Если вы не имеете некоторого опыта работы с такими системами, то у вас могут возникнуть серьезные трудности. Многие системы оказываются доступными только тем экспертам, которые создавали из базы знаний.

2. Вопросно-ответный режим, обычно принятый в таких системах, замедляет получение решений. Например, без системы MYCIN врач может (а часто и должен) принять решение значительно быстрее, чем с ее помощью.

3. Навыки системы не возрастают после сеанса экспертизы.

4. Все еще остается проблемой приведение знаний, полученных от эксперта, к виду, обеспечивающему их эффективную машинную реализацию.

5. ЭС неспособны обучаться, не обладают здравым смыслом.

6. Использование ЭС ограничивается предметными областями, в которых эксперт может принять решение за время от нескольких минут до нескольких часов.

7. В тех областях, где отсутствуют эксперты, применение ЭС оказывается невозможным.

8. Имеет смысл привлекать ЭС только для решения когнитивных задач. Теннис, езда на велосипеде не могут являться предметной областью для ЭС.

9. Человек-эксперт при решении задач обычно обращается к своей интуиции или здравому смыслу, если отсутствуют формальные методы решения или аналоги таких задач.

Системы, основанные на знаниях, оказываются неэффективными при необходимости проведения скрупулезного анализа, когда число “решений” зависит от тысяч различных возможностей и многих переменных, которые изменяются во времени. В таких случаях лучше использовать базы данных с интерфейсом на естественном языке.

Системы, основанные на знаниях, имеют определенные преимущества перед человеком-экспертом.

1. У них нет предубеждений.

2. Они не делают поспешных выводов.

3. Эти системы работают систематизировано, рассматривая все детали, часто выбирая наилучшую альтернативу из всех возможных.

4. База знаний может быть очень и очень большой. Будучи введены в машину один раз, знания сохраняются навсегда. Человек же имеет ограниченную базу знаний, и если данные долгое время не используются, то они забываются и навсегда теряются.

5. Системы, основанные на знаниях, устойчивы к “помехам”. Эксперт пользуется побочными знаниями и легко поддается влиянию внешних факторов, которые непосредственно не связаны с решаемой задачей. ЭС, не обремененные знаниями из других областей, по своей природе менее подвержены “шумам”. Со временем системы, основанные на знаниях, могут рассматриваться пользователями как разновидность тиражирования - новый способ записи и распространения знаний. Подобно другим видам компьютерных программ они не могут заменить человека в решении задач, а скорее напоминают орудия труда, которые дают ему возможность решат задачи быстрее и эффективнее.

6. Эти системы не заменяют специалиста, а являются инструментом в его руках.

ЭС может функционировать в 2-х режимах:

1. Режим ввода знаний -- в этом режиме эксперт с помощью инженера по знаниям посредством редактора базы знаний вводит известные ему сведения о предметной области в базу знаний ЭС.

2. Режим консультации -- пользователь ведет диалог с ЭС, сообщая ей сведения о текущей задаче и получая рекомендации ЭС. Например, на основе сведений о физическом состоянии больного ЭС ставит диагноз в виде перечня заболеваний, наиболее вероятных при данных симптомах.

экспертная система эксперт

Классификация ЭС по решаемой задаче

1. Интерпретация данных

2. Диагностирование

3. Мониторинг

4. Проектирование

5. Прогнозирование

6. Сводное Планирование

7. Оптимизация

8. Обучение

9. Управление

10. Ремонт

11. Отладка

Классификация ЭС по связи с реальным временем

Статические ЭС -- это ЭС, решающие задачи в условиях, не изменяющихся во времени исходных данных и знаний.

Квазидинамические ЭС интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени.

Динамические ЭС -- это ЭС, решающие задачи в условиях, изменяющихся во времени исходных данных и знаний.

Структура экспертных систем

Структура экспертных систем состоит из следующих основных компонентов: решателя (интерпретатора); рабочей памяти (РП), называемой также базой данных (БД); базы знаний (БЗ); компонентов приобретения знаний; объяснительного компонента; диалогового компонента. База данных (рабочая память) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (в первую очередь долгосрочных), хранимых в системе.

База знаний (БЗ) в экспертных системах предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области.

Решатель, используя исходные данные из рабочей памяти и знания из БЗ, формирует такую последовательность правил, которая приводит к решению задачи.

Компонент приобретения знаний автоматизирует процесс наполнения экспертных систем знаниями, осуществляемый пользователем-экспертом.

Объяснительный компонент объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату.

Диалоговый компонент ориентирован на организацию дружественного общения с пользователем, как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы.

В разработке экспертных систем участвуют представители следующих специальностей: эксперт проблемной области, задачи которой будет решать экспертные системы; инженер по знаниям - специалист по разработке экспертных систем (используемые им технологию, методы называют технологией (методами) инженерии знаний); программист по разработке инструментальных средств, предназначенных для ускорения разработки экспертных систем. Необходимо отметить, что отсутствие среди участников разработки инженеров по знаниям (т. е. их замена программистами) либо приводит к неудаче процесс создания экспертных систем, либо значительно удлиняет его.

Этапы разработки ЭС

Этап идентификации проблем -- определяются задачи, которые подлежат решению, выявляются цели разработки, определяются эксперты и типы пользователей.

Этап извлечения знаний -- проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач.

Этап структурирования знаний -- выбираются ИС и определяются способы представления всех видов знаний, формализуются основные понятия, определяются способы интерпретации знаний, моделируется работа системы, оценивается адекватность целям системы зафиксированных понятий, методов решений, средств представления и манипулирования знаниями.

Этап формализации -- осуществляется наполнение экспертом базы знаний. В связи с тем, что основой ЭС являются знания, данный этап является наиболее важным и наиболее трудоемким этапом разработки ЭС. Процесс приобретения знаний разделяют на извлечение знаний из эксперта, организацию знаний, обеспечивающую эффективную работу системы, и представление знаний в виде, понятном ЭС. Процесс приобретения знаний осуществляется инженером по знаниям на основе анализа деятельности эксперта по решению реальных задач.

Реализация ЭС -- создается один или несколько прототипов ЭС, решающие требуемые задачи.

Этап тестирования -- производится оценка выбранного способа представления знаний в ЭС в целом.

Наиболее известные/распространённые ЭС

Simptomus -- сервис онлайн-диагностики заболеваний. Пациенты указывают симптомы, а Simptomus на основе экспертной системы выводит список возможных диагнозов.

CLIPS -- весьма популярная оболочка для построения ЭС (public domain)

OpenCyc -- мощная динамическая ЭС с глобальной онтологической моделью и поддержкой независимых контекстов

WolframAlpha -- поисковая система, интеллектуальный «вычислительный движок знаний»

MYCIN -- наиболее известная диагностическая система, которая предназначена для диагностики и наблюдения за состоянием больного при менингите и бактериальных инфекциях.

HASP/SIAP -- интерпретирующая система, которая определяет местоположение и типы судов в Тихом океане по данным акустических систем слежения.

Акинатор -- интернет-игра. Игрок должен загадать любого персонажа, а Акинатор должен его отгадать, задавая вопросы. База знаний автоматически пополняется, поэтому программа может отгадать практически любого известного персонажа.

Назначение экспертных систем в экономике

В современных условиях хозяйствования, обусловленных переходом к рыночным отношениям, нестабильным экономическим положением, развитием новых форм хозяйствования, резко возрастают требования к качеству обработки информации. Логика существующей системы информационного обслуживания сельскохозяйственных предприятий привела к своеобразному информационному кризису, реальным выходом из которого является использование современных компьютерных технологий.

Отсутствие рынка готовых прикладных программных средств для автоматизации расчетов в сельском хозяйстве на первый план выдвигает разработку автоматизированных информационных систем непосредственно бухгалтером.

Объединение всех видов программных продуктов и их отдельных компонентов в единую ЭС признано экономически выгодным, так как применение ЭС позволяет существенно сократить расходы на подготовку квалифицированного персонала, дальнейшую проверку работоспособности и надёжности разрабатываемых и исследовательских систем, а также уменьшить время проектирования и (или) исследования. При разработке систем автоматизированного проектирования уже нельзя обойтись без ЭС; их использование признано экономически выгодным. С середины 80-х годов наиболее популярные системы с базами знаний создавались с ориентацией на стандартное оборудование. В этом ключ к пониманию причин успеха современной технологии баз знаний. Опыт показывает, что системы с базами знаний необходимо встраивать в самые важные бизнес процессы и организовать работу персонала так, чтобы он мог максимально использовать их преимущества для достижения наилучших результатов.

Экспертные системы в экономике примеры

S&PCBRS Разработчиком данной экспертной системы является Chase Manatten Bank, Standart & Poor's Corp.

S&PCBRS была разработана для решения следующих задач: оценка рейтинга ценных бумаг по данным о фирмах эмитентах; формирование корректной рейтинговой шкалы.

Экспертная система имеет следующие характеристики: представление задачи оценки рейтинга как задачи классификации; отбор данных о фирмах эмитентах и формирование обучающего материала; выбор нейроклассификатора, его обучение и тестирование; сравнение с оценками экспертов; использование нейросетевой парадигмы Couter-Propagation.

Вероятность правильного предсказания рейтинга экспертной системы S&PCBRS составляет 84%.

Nereid Разработчиком данной экспертной системы является NTT Data, The Tokai Bank, Science Univercity of Tokyo.

Данная система была разработана для поддержки принятия решений для оптимизации работы с валютными опционами.

Система облегчает дилерскую поддержку для оптимального ответа из возможных представленных вариантов. Nereid более практична и дает лучшие решения, чем обычные системы принятия решений.Данная система разработана с использованием фреймовой системы CLP, которая легко интегрирует финансовую область в приложение ИИ. Предложен смешанный тип оптимизации, сочетающий эвристические знания с техникой линейного программирования.

Заключение

В процессе разработки данной темы мною было раскрыто содержание и сущность экспертных систем. Методика объектно-ориентированного программирования основана на модели, напоминающей образы, возникающие в мозгу аналитика, которая представляет предметы и процессы в виде объектов и связей между ними. Наблюдая событие, эксперт легко выделяет знакомые образы. Для решения проблем он испытывает конкретные правила, рассматривая при этом исследуемую проблему под определенным ракурсом. ЭС - это набор программ или программное обеспечение, которое выполняет функции эксперта при решении какой-либо задачи в области его компетенции. ЭС, как и эксперт-человек, в процессе своей работы оперирует со знаниями. Знания о предметной области, необходимые для работы ЭС, определенным образом формализованы и представлены в памяти ЭВМ в виде базы знаний, которая может изменяться и дополняться в процессе развития системы.

Список используемой литературы

1. http://www.mari-el.ru/mmlab/home/AI/7_8/#part_7

2. http://www.bestreferat.ru/referat-54042.html

3. http://ru.wikipedia.org/wiki/%DD%EA%F1%EF%E5%F0%F2%ED%E0%FF_%F1%E8%F1%F2%E5%EC%E0

4. http://www.con-cent.ru/cms/?work_id=13755

5. http://tpl-it.wikispaces.com/Примеры+Экспертных+систем

Размещено на Allbest.ru

...

Подобные документы

  • Сущность, виды, направления использования и основные понятия экспертных систем. Понятие и характеристика основных элементов структуры экспертной системы. Основные виды классификаций экспертных систем: по решаемой задаче и по связи с реальным временем.

    доклад [104,5 K], добавлен 09.06.2010

  • Определение экспертных систем, их достоинство и назначение. Классификация экспертных систем и их отличие от традиционных программ. Структура, этапы разработки и области применения. Классификация инструментальных средств и технология разработки систем.

    курсовая работа [78,0 K], добавлен 03.06.2009

  • Понятие и содержание экспертных систем, принципы взаимосвязи элементов: интерфейса пользователя, собственно пользователя, эксперта, средств объяснения, рабочей памяти и машины логического вывода. Классификация, преимущества, недостатки экспертных систем.

    реферат [33,9 K], добавлен 25.02.2013

  • Изучение характеристик, классификации, функций и основных элементов экспертных систем. Исследование их структуры и отличительных особенностей от другого программного обеспечения. Описания методов проектирования и области применения экспертных систем.

    реферат [38,1 K], добавлен 18.09.2013

  • Этапы разработки экспертных систем. Требования к организации-разработчику. Правильный выбор подходящей проблемы, работа с экспертом. Разработка прототипной системы. Развитие прототипа до промышленной экспертной системы. Особенности оценки системы.

    презентация [169,1 K], добавлен 14.08.2013

  • Преимущества и недостатки моделей представления знаний. Модель, основанная на правилах, фреймовая модель. Семантическая сеть. Структура экспертных систем и этапы их разработки. Механизмы логического вывода. Стратегия "вверх-снизу", "от цели к ситуации").

    презентация [195,3 K], добавлен 29.10.2013

  • Структура экспертных систем, их классификация и характеристики. Выбор среды разработки программирования. Этапы создания экспертных систем. Алгоритм формирования базы знаний с прямой цепочкой рассуждений. Особенности интерфейса модулей "Expert" и "Klient".

    курсовая работа [1,1 M], добавлен 18.08.2009

  • Сущность экспертных систем и их научно-познавательная деятельность. Структура, функции и классификация ЭС. Механизм вывода и система объяснений. Интегрированные информационные системы управления предприятием. Применение экспертных систем в логистике.

    курсовая работа [317,3 K], добавлен 13.10.2013

  • Механизм автоматического рассуждения. Основные требования к экспертным системам. Наделение системы способностями эксперта. Типовая структура и классификация интерфейсов пользователей экспертных систем. Основные термины в области разработки систем.

    презентация [252,6 K], добавлен 14.08.2013

  • Понятия, классификация и структура экспертных систем. Базы знаний и модели представления знаний. Механизмы логического вывода. Инструментальные средства проектирования и разработки экспертных систем. Предметная область ЭС "Выбор мобильного телефона".

    курсовая работа [2,2 M], добавлен 05.11.2014

  • Решение прикладных задач с использованием искусственного интеллекта. Преимущества и недостатки экспертных систем по сравнению с использованием специалистов, области их применения. Представление знаний и моделирование отношений семантическими сетями.

    реферат [260,9 K], добавлен 25.06.2015

  • Основные этапы при создании экспертных систем: идентификация, концептуализация, формализация, выполнение, отладка и тестирование, опытная эксплуатация и внедрение. Соответствия между этапами проекта RAD и стадиями технологии быстрого прототипирования.

    лекция [38,8 K], добавлен 07.11.2013

  • Экспертная система - компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Структура, режимы функционирования, классификация экспертных систем, этапы разработки. Базы знаний интеллектуальных систем.

    реферат [32,2 K], добавлен 04.10.2009

  • Понятие и особенности экспертных систем, способных накапливать, обрабатывать знания из некоторой предметной области, на их основе выводить новые знания и решать на основе этих знаний практические задачи. История и устройство юридических экспертных систем.

    реферат [58,4 K], добавлен 17.03.2015

  • Назначение и архитектура экспертных систем, их применение в сфере образования. Экспертные системы тестирования, принципы их функционирования. Инструментальные средства создания приложения и разработка программы тестирования. Описание программы, листинг.

    дипломная работа [706,4 K], добавлен 07.05.2012

  • Экспертные системы как самостоятельное направление в исследованиях по искусственному интеллекту, история его зарождения и развития, главные цели и оценка важности. Сферы применения экспертных систем и причины их коммерческого успеха, перспективы.

    реферат [140,8 K], добавлен 27.03.2010

  • Участники и инструментальные средства создания экспертной системы. Классификация, преимущества, сферы применения экспертных систем. Разработка блок-схемы алгоритма и программы на языке Турбо Паскаль для решения задачи по теме "Двумерные массивы".

    курсовая работа [1,0 M], добавлен 18.01.2014

  • Рассмотрение экспертных систем: классификация, назначение, общие принципы построения и функционирования. Среда разработки данных систем: BorlandC++ Builder 6.0 и AMZI! Prolog. Описание процесса разработки экспертной системы "Выбор спортивного инвентаря".

    курсовая работа [426,9 K], добавлен 19.08.2012

  • Решение неформализованных задач экспертными системами. Системы искусственного интеллекта, эвристический поиск решения. Особенности работы экспертных систем. Знания о процессе решения задач, используемые интерпретатором. Системы обнаружения неисправности.

    презентация [100,1 K], добавлен 12.02.2014

  • Изучение технологии экспертных систем, которая заключается в том, чтобы получить от эксперта его знания и при необходимости извлекать их из памяти компьютера. Задачи для решения, которых создаются ЭС: интерпретация данных, диагностика, прогнозирование.

    реферат [22,6 K], добавлен 12.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.