Системы охлаждения средств вычислительной техники

Анализ принципов и новых прогрессивных систем охлаждения. Сравнение технико-экономических показателей различных видов охлаждения. Виды методов производства радиаторов. Система охлаждения, в качестве теплоносителя в которой выступает какая-либо жидкость.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 29.04.2014
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Департамент образования, науки и молодежной политики Воронежской области

государственное образовательное бюджетное учреждение среднего профессионального образования Воронежской области

«Воронежский техникум строительных технологий»

(ГОБУ СПО ВО «ВТСТ»)

Техническое обслуживание средств вычислительной техники и компьютерных сетей

КУРСОВОЙ ПРОЕКТ

Системы охлаждения средств вычислительной техники

Руководитель О.Е. Говорухина

Разработал(а) Т.С. Дверцова

Воронеж 2014

Содержание и объем проекта

Введение

1. Обзорно-постановочная часть

2. Проектная часть

3. Организационно-экономическая часть

4. Охрана труда и техника безопасности

Заключение

Список используемых источников

План выполнения курсового проекта:

Структура дипломного проекта

Объем структурной части, %

Сроки выполнения

Выполнение проекта, %

Подпись руководителя и консультанта

1. Введение, обзорно-постановочная часть

30

18.02

2. Проектная часть

60

25.02

3. Организационно-экономическая часть

70

04.03

4. Охрана труда и техника безопасности

90

11.03

5. Графическая часть

100

16.03

Введение

Цель работы - исследовать систему охлаждения компьютерных систем и область применения.

Задачами исследования является выяснение и выбор наиболее эффективных средств охлаждения компьютерных систем.

Работа разбита на этапы:

1. Исследование принципов охлаждения (типы и виды).

2. Исследование новых прогрессивных систем охлаждения.

3. Сравнение технико-экономических показателей различных видов охлаждения.

Актуальность данной темы очень велика, т.к. от работоспособности охлаждающих свойств системы зависит в целом работоспособность всей компьютерной системы - ее продуктивность и долговечность.

Высокое быстродействие современных компьютеров имеет свою цену: они потребляют огромную мощность, которая рассеивается в виде тепла. Основные части компьютера -- центральный процессор, графический процессор -- требуют собственных систем охлаждения; прошли те времена, когда эти микросхемы довольствовались маленьким радиатором. Новый системный блок оборудуется несколькими вентиляторами: как минимум один в блоке питания, один охлаждает процессор, серьёзная видеокарта комплектуется своим вентилятором. Несколько вентиляторов установлены в корпусе компьютера, встречаются даже материнские платы с активным охлаждением микросхем чипсета. Некоторые современные жёсткие диски также разогреваются до заметных температур.

Большинство компьютеров оборудуется охлаждением по принципу минимизации стоимости: устанавливается один, два шумных корпусных вентилятора, процессор оборудуется штатной системой охлаждения. Охлаждение получается достаточным, дешёвым, но очень шумным.

Существует другой выход -- сложные технические решения: жидкостное (обычно водяное) охлаждение, фреоновое охлаждение, специальный алюминиевый корпус компьютера, который рассеивает тепло по всей своей поверхности (по сути, работает как радиатор). Для некоторых задач такие решения использовать необходимо: например, для студии звукозаписи, где компьютер должен быть полностью бесшумен. Для обычного домашнего и офисного применения такие специализированные системы чересчур дороги: их цены начинаются от сотни долларов и выше. Подобные варианты на сегодня весьма экзотичны.

1. Обзорно-постановочная часть

1.1 Охлаждение компьютерных систем

1.1.1 Принципы охлаждения (типы и виды)

На данный момент существует достаточно много систем охлаждения, все они используют общий принцип действия -- перенос тепла от более горячего тела (охлаждаемого объекта) к менее горячему (системе охлаждения). Мы рассмотрим следующие системы:

-- Радиатор;

-- Система жидкостного охлаждения;

-- Система охлаждения на элементах Пельтье;

-- Система фазового перехода;

-- Система экстремального охлаждения на жидком азоте;

Можно использовать и наиболее эффективные установки, в которых совмещаются различные виды перечисленных систем

1. Радиаторы

Радиатор (новолат. radiator, «излучатель») -- теплообменник, служит для рассеивания тепла от охлаждаемого объекта. Механизмом передачи тепла здесь является теплопроводность, способность вещества проводить тепло внутри своего объёма. Все, что нужно -- создать физический контакт радиатора с охлаждаемым объектом, именно поэтому он всегда находится в тесном контакте с тем, что охлаждает. После того, как радиатор принимает на себя часть тепла от охлаждаемого объекта, его задача - рассеять его в окружающий воздух.

Но мало просто обеспечить физический контакт, ведь рано или поздно от постоянно нагревающегося охлаждаемого объекта нагреется и сама система охлаждения. А процесса теплообмена в системе тел с одинаковой температурой быть не может. Чтобы найти выход из данной ситуации и не столкнуться с проблемой перегрева, необходимо организовать подвод какого-то холодного вещества, чтобы охлаждать саму систему охлаждения. Такое вещество общепринято называть хладагентом (холодильный агент, частный случай теплоносителя).

Радиатор является воздушной системой охлаждения, т.е. хладагентом в его случае является холодный воздух из окружения. Тепло от охлаждаемого объекта идет к основанию радиатора, потом равномерно распределяется по всем его рёбрам, а уже после этого оно уходит в окружающий воздух. Такой процесс называется теплопроводностью. Воздух вокруг радиатора постепенно нагревается, из-за чего процесс теплообмена становится все менее эффективным. Эффективность теплообмена можно увеличить, если постоянно подавать холодный воздух к рёбрам радиатора. Для эффективного охлаждения нужна свободная циркуляция холодного воздуха.

Рисунок 1 Радиатор

Такие физические величины, как теплопроводность (скорость распространения тепла по телу) и теплоемкость (количество теплоты, которое нужно сообщить телу, чтобы повысить его температуру на 1 градус) у радиатора должны быть на высоком уровне. Мы знаем, что наибольшей теплопроводностью обладают металлы. На самом деле это не так - наибольшая теплопроводность у алмаза, и лежит она в диапазоне от 1000 до 2600 Вт/(м·K). Из металлов же лучше всех тепло проводит серебро - его теплопроводность равна 430 Вт/(м·K). После серебра идет медь [390 Вт/(м·K)], потом золото [320 Вт/(м·K)]. Завершает цепочку алюминий [236 Вт/(м·K)].

Наиболее применимыми являются два материала - алюминий и медь. Первый -- из-за низкой стоимости и высокой теплоёмкости (930 против 385 у меди), второй -- из-за большой теплопроводности (к недостаткам меди можно отнести более высокую температуру плавления и сложность ее обработки). Серебро же, за его высокую теплопроводность, иногда используют для изготовления основания радиатора. Еще для изготовления радиаторов может применяться сплав алюминия с кремнием - силумин. Преимущество его использования - дешевле алюминия.

Если радиатор сделан из высокотеплопроводного материала, то температура в любой его точке будет одинакова. Выделение тепла будет одинаково эффективно со всей площади поверхности. Т.к. объект отдаёт тепло со своей поверхности, то это значит, что для достижения наилучшего отвода тепла, площадь поверхности охлаждаемого объекта должна быть максимальной. Существует два способа увеличения площади радиатора -- увеличение площади рёбер с сохранением размеров радиатора и увеличение геометрических размеров радиатора. Второй вариант, понятно, предпочтительней, но это вносит ряд неудобств - например, увеличивает вес и размеры радиатора, что может затруднить монтаж устройства. Ну и цена, соответственно, растет пропорционально количеству израсходованного на изготовления материала. Типов конструкций ребер радиаторов существует огромное множество. Они могут быть толстыми, если были созданы процессом выдавливания. Или наоборот, тонкими - если ребра отливали. Они могут быть прямыми по всей длине радиатора, а могут быть расчерчены поперек. Могут быть плоскими, согнутыми из пластин, вдавленными в основание. Но лучше всего в работе на сегодняшний день себя показывают радиаторы игольчатого типа - в таких радиаторах вместо ребер квадратные или цилиндрические иглы.

Рисунок 2 Современный радиатор

Виды радиаторов

Существуют следующие виды методов производства радиаторов, по которым они классифицируются:

1. Прессованные (экструзионные) радиаторы -- самые дешевые и самые распространенные на рынке. Основным материалом, который используется в их производстве, является алюминий. Радиаторы такого типа изготавливаются путем прессования (экструзии), который позволяет получить достаточно сложные профили поверхностей ребер и достичь хороших теплоотводящих свойств.

2. Складчатые (ленточные) радиаторы -- получаются тогда, когда тонкая металлическая лента, свернутая в гармошку, пайкой прикрепляется на базовую пластину радиатора. Складки ленты-гармошки в данном случае играют роль ребер. Такая технология изготовления позволяет получать компактные изделия по сравнению с прессованными радиаторами, но с примерно такой же тепловой эффективностью.

3. Кованые (холоднодеформированные) радиаторы -- радиаторы, получаемые в результате использования технологии холодного прессования. Эта технология позволяет создавать поверхность радиатора в виде стержней произвольного сечения, а не только стандартных прямоугольных ребер. Как правило, они дороже радиаторов первых двух типов, но их эффективность зачастую гораздо ниже.

4. Составные радиаторы -- близкие родственники «складчатых» радиаторов. Несмотря на это, их отличает существенный момент: в данном типе радиаторов поверхность ребер формируется не лентой-гармошкой, а тонкими раздельными пластинками, которые закрепляют пайкой или стыковой сваркой на подошве радиатора. Радиаторы этого типа немного более эффективны, чем экструзионные и складчатые.

5. Литые радиаторы - в производстве изделий такого типа используется технология литья в пресс-форму под давлением. Применение такой технологии позволяет получать профили реберной поверхности практически любой сложности, значительно улучшающий теплопередачу.

6. Точеные радиаторы -- являются самыми дорогими и продвинутыми радиаторами. Изделия такого типа создаются прецизионной механической обработкой (на специальных высокоточных станках с ЧПУ) монолитных заготовок и отличаются самой высокой тепловой эффективностью. Если бы не производственная стоимость, то радиаторы такого типа давно смогли бы вытеснить своих конкурентов на рынке.

2. Тепловые трубки

В современных системах перестали быть редкостью применяемые в радиаторах и в кулерах - тепловые трубки или просто теплотрубки.

Рисунок 3 Теплотрубки

Они представляют собой герметическое теплопередающее устройство, которое работает по замкнутому испарительно-конденсационному циклу в тепловом контакте с внешними -- источником и стоком тепла. Тепловая энергия берется на охлаждаемом объекте и затрачивается на испарение теплоносителя, который находится внутри корпуса тепловой трубки. Далее тепловая энергия переносится паром в виде скрытой теплоты испарения далее, на определенном расстоянии от места испарения, где при конденсации пара выделяется в сток. Образовавшийся конденсат снова возвращается в место испарения -- либо под действием капиллярных сил (которые обеспечиваются наличием специализированной капиллярной структуры внутри тепловой трубки), либо за счет действия массовых сил (такая конструкция обычно именуется термосифоном).

Получается, что вместо привычного электронного механизма переноса тепла (путем теплопроводности, что имеет место в сплошном металлическом теплопроводе), в теплотрубке используется молекулярный механизм переноса (точнее, процесс переноса кинетической и колебательной энергии беспорядочного движения частиц пара).

Рисунок 4 Кулер с теплотрубками

Оптимальная площадь

Нужно стремиться к тому, чтобы площадь контакта между радиатором и охлаждаемым объектом была как можно больше - ведь именно через эту площадь тепло от объекта будет поступать на радиатор. Но нужно учитывать то, что при соприкосновении двух даже самых гладких поверхностей, между ними все равно остаются мельчайшие полости и зазоры, заполненные воздухом.

Чтобы избавиться от вредного воздуха и позволить радиатору работать с максимальной отдачей, применяют различные тепловые интерфейсы, чаще всего это термопроводная паста (термопаста). Она имеют большую теплопроводность [благодаря использованию в своем составе таких веществ, как алюминий и серебро (до 90% содержания)] и за счет текучести заполняет собой все неровности в соприкасающихся поверхностях.

Термопаста поставляются в комплекте с большинством брендовых кулеров и радиаторов. Бывает в виде шприца или небольшого тюбика-пакетика. Рекомендуется избегать попадания термопасты на электрические элементы компьютера.

Одним из параметров термопаст является продолжительность периода, когда она выходит на максимальную эффективность. В среднем это время составляет около недели. Компания Coolink недавно произвела первую термопасту с добавлением наночастиц - ее преимуществом является то, что никакого периода ожидания нет.

Помимо термопасты есть и другой вид теплового интерфейса - проводящие прокладки. Суть их работы та же, но используются они по-другому - кладутся на поверхность контакта и при тепловом воздействии меняют свое агрегатное состояние, заполняя неровности и вытесняя воздух.

Итог по радиаторам

Несмотря на всевозможные вариации, самое главное преимущество радиатора то, что он не является источником какого-либо шума. К минусам можно отнести относительно низкую эффективность, отсутствие потенциала для разгона системы и зачастую крупные габариты.

Если доверять охлаждение современных видеокарт и процессоров пассивным радиаторам достаточно опасно, то охлаждение модулей памяти, жестких дисков, чипсета, цепей питания - возможно.

3. Кулеры

Кулер (англ. cooler -- охладитель) совокупность радиатора и вентилятора, устанавливаемого на электронные компоненты компьютера с повышенным тепловыделением. Самая главная задача устройства -- снижение температуры охлаждаемого объекта и поддержание ее на определенном уровне. Достигается это за счет непрерывного потока воздуха, обдувающего радиатор. То есть менее эффективный процесс излучения превращается в более эффективный -- конвекцию. Кулеры -- это самый простой, самый быстрый, доступный и, в большинстве случаев, достаточный способ охлаждения компонентов компьютера -- воздухом охлаждается все.

Кулеры бывают разных размеров - обычно от 40х40мм до 320х320мм.

Рисунок 5 Кулер

Самой важной частью любого кулера является его вентилятор. Именно он шумит у нас в системном блоке. А если быть более точным, то шум этот появляется при столкновении воздушного потока с радиатором. Особенно этот шум ощутим на дешевых моделях кулеров, т.к. над их дизайном никто не работает.

Вентилятор состоит из крыльчатки (в ней по внутреннему диаметру расположен магнит) и электромотора, который этот магнит вместе с крыльчаткой вращает. Через центр вентилятора идет осевой штырь, который размещается в центре мотора. Для большей плавности хода крыльчатки могут использоваться три вида подшипников (срок службы которых производители указывают в тысячах часов на упаковке):

-- Подшипник скольжения (sleeve bearing ) -- наиболее дешевый и наименее надежный вариант, создающий при работе высокий уровень шума.

-- Один подшипник скольжения (sleeve bearing ) и 1 подшипник качения (ball bearing) -- комбинированный подшипник- более долговечная конструкция, работающая в среднем в два раза дольше, чем на подшипнике скольжения.

-- Два или четыре подшипника качения (ball bearing) -- наиболее надежные варианты с низким уровнем шума, но стоят такие вентиляторы существенно дороже первых двух.

-- Игольчатые и NCB (наномиллиметровые керамические) подшипники -- устанавливаются в вентиляторы ограниченным числом производителей. Они отличаются низким уровнем шума, невысокой стоимостью и очень большим сроком службы.

Если срок службы указан в 40-50 тысяч часов (почти 5 лет, хотя бывает и больше -- до 300 000 часов), это вовсе не значит, что вспомнить о кулере в следующий раз придется только через это время. Нет, это число нужно делить на два-три, и все равно время от времени производить профилактические действия - протирать от пыли, продувать, смазывать. Если не ухаживать за кулером, он может начать шуметь, а если совсем про него забыть - то и остановиться.

Производительность вентилятора (расходная характеристика) - пожалуй, основная его характеристика. Измеряется она в количестве кубических футов воздуха, перегоняемых им в минуту, сокращенно -- CFM (Cubic Feet per Minute). Эта характеристика главным образом зависит от площади вентилятора, профиля лопастей и скорости их вращения. Чем больше это значение, тем выше эффективность охлаждения и, как правило, тем выше уровень шума, создаваемый вентилятором при работе.

Питание кулеров

Перегонять кубометры воздуха кулер может своими лопастями на скорости до 8000 оборотов в минуту (для сравнения, двигатель обычного легкового автомобиля выдает 5-8 тысяч оборотов, двигатель болида «Формула-1» -- до 22 000 оборотов). Но понятное дело, что при такой скорости шум от работы кулера будет ощутимым. Поэтому предпочтительнее брать кулеры с термодатчиками - которые «анализируют» температуру и в зависимости от ситуации могут увеличивать или уменьшать количество оборотов. Чаще всего это положительно сказывается на шуме от работы.

Все компьютерные кулеры питаются от постоянного тока, напряжение которого чаще всего составляет 12В. Для подключения к питанию они используют Molex-коннекторы (для Smart-вентиляторов) или PC-Plug-коннекторы. PC-Plug имеет четыре провода: два чёрных (земля), жёлтый (+12В) и красный (+5В).

Разъёмы Molex на материнских платах используются для того, чтобы система сама могла контролировать скорость вращения вентилятора, подавая на красный провод различное напряжение (обычно от 8 до 12 В). По жёлтому (сигнальному) проводу система узнает от кулера сведения о скорости вращения его лопастей. Использование Molex имеет один весомый недостаток: опасно цеплять вентиляторы с потребляемой мощностью более 6Вт. PC-Plug - выдерживает десятки Ватт. Но при подключении к нему Вы не сможете узнать, работает Ваш вентилятор или нет. Найти переходник с одного разъема на другой сейчас не составляет никакого труда - они часто идут в комплекте. Так же для снижения шума кулер иногда переводят на 5В или 7В. Шлейфы округляют, провода заплетают в косички или обтягивают оплеткой и убирают в укромное местечко - чтобы не мешали продуманной воздушной циркуляции.

2.2 О шумах

Все кулеры классифицируются по уровню шума, издаваемому от их работы на следующие классы (чем ниже уровень шума, тем более комфортной будет работа за компьютером):

-- Условно бесшумный. Уровень шума такой системы охлаждения составляет менее 24 дБ. Этот показатель ниже типового фонового шума в тихой комнате (в вечернее или ночное время суток). Таким образом, кулер не вносит практически никакого существенного вклада в шумовую картину. Обычно это значение достигается при минимальном числе оборотов вентилятора для систем с регулятором скорости вращения.

-- Малошумный. Уровень шума от такой системы охлаждения лежит в пределах от 24 до 30 дБ включительно. Кулер вносит еле ощущаемый вклад в акустику ПК.

-- Эргономичный. Уровень шума такой системы охлаждения лежит в диапазоне от 37 до 42 дБ включительно. Шум от такого кулера по всей вероятности будет заметен в большинстве пользовательских конфигураций компьютера.

-- Не эргономичный. Уровень шума рассматриваемой системы охлаждения больше 42 дБ. В таких условиях кулер будет являться основным «генератором» шума компьютера практически любой конфигурации. Домашнее применение такого кулера неоправданно - он больше подойдет для производственных и офисных помещений с фоновым шумом более 45 дБ.

2.3 Итог по кулерам

К плюсам кулеров относятся их распространенность, универсальность, доступность. Небольшую стоимость тоже можно отнести к плюсу, но стоит учитывать, что на хороший кулер жадничать не стоит - ведь это, по сути, второе сердце компьютера - нельзя, чтобы остановилось.

К минусам можно отнести возможные шумы, которые рано или поздно появятся на любом кулере.

Подводя итог вышесказанному. На данный момент кулер - самая распространенная система охлаждения, охладить которой можно что угодно - от процессора до винчестера и памяти. Вопрос заключается в выборе и подборе нужного кулера - ведь их существует великое множества от десятков производителей.

3 Система жидкостного охлаждения

Система жидкостного охлаждения - это такая система охлаждения, в качестве теплоносителя в которой выступает какая-либо жидкость.

Вода в чистом виде редко используется в качестве теплоносителя (связано это с электропроводностью и коррозионной активностью воды), чаще это дистиллированная вода (с различными добавками антикоррозийного характера), иногда -- масло, другие специальные жидкости.

система охлаждение радиатор теплоноситель

Рисунок 6 Жидкостное охлаждение

Главная разница в использовании воздушного и жидкостного охлаждения заключается в том, что во втором случае для переноса тепла вместо нетеплоемкого воздуха используется жидкость, обладающая гораздо большей, по сравнению с воздухом, теплоемкостью.

Принцип действия системы жидкостного охлаждения отдаленно напоминает систему охлаждения в двигателях автомобиля -- через радиатор вместо воздуха, прокачивается жидкость, что обеспечивает гораздо лучший теплоотвод. В радиаторах охлаждаемого объекта вода нагревается, после чего вода из этого места циркулирует в более холодное, т.е. отводит тепло.

Составляющие системы

Типичная система состоит из водоблока, в котором происходит передача тепла от процессора теплоносителю, помпы, прокачивающей воду по замкнутому контуру системы, радиатора, где происходит отдача тепла от теплоносителя воздуху, резервуара (служит для заполнения системы водой и прочих сервисных нужд) и соединительных шлангов.

Поверхность соприкосновения водоблока с процессором обычно отполирована до зеркального отражения. Через знакомый термоинтерфейс водоблок крепится на охлаждаемый объект. Обычно он крепится с помощью специальных скоб, что исключает его возможность двигаться. Бывают водоблоки и для видеокарт, но явных отличий от принципа действия процессорных водоблоков нет - все различия в креплении и форме радиатора.

Одна из частых проблем обладателей систем жидкостного охлаждения это перегрев околопроцессорно-сокетных элементов материнской платы. Связано это с тем, что обычно в таких системах отсутствует циркуляция холодного воздуха.

Водоблок через специальные трубки соединяется с радиатором, крепиться который может как внутри системного блока, так и снаружи. Второй вариант, предпочтительнее, т. к больше свободного места внутри системного блока, более низкая температура окружающей среды положительно влияет на радиатор. Плюс он дополнительно обдувается корпусным вентилятором.

Рисунок 7 Соединение радиатора с водоблоком

Резервуар для жидкости, или иначе, расширительный бачок, так же может находиться снаружи системного блока. Его объем в штатных системах варьируется от 200мл до литра.

Производители систем охлаждения стараются заботиться о своих пользователях и прекрасно понимают, что для хорошей системы охлаждения место найдется внутри не каждого системного блока. Тем более, нужно учитывать, что каждый производитель как-то хочет выделиться на фоне других. Поэтому существует огромный выбор внешних систем жидкостного охлаждения. Обычно внутри таких систем скрывается сразу все - помпа, резервуар, продуваемый вентиляторами радиатор. Но и стоят они, обычно, демонстративно дорого.

Рисунок 8 Водяное охлаждение

Итог по системам водяного охлаждения

Если посудить, то обычных штатных кулеров всегда достаточно, в обычных условиях работы ПК Поэтому чаще всего такую систему следует рассматривать с позиции разгона - тогда, когда возможностей воздушной системы охлаждения будет не хватать.

Другим плюсом жидкостной системы охлаждения является возможность ее установки в ограниченном пространстве корпуса. В отличие от воздуха, трубки с жидкостью можно задать практически любые направления.

Еще один плюс такой системы - ее беззвучность. Чаще всего помпы заставляют циркулировать поток воды по системе, не создавая шума больше значения в 25 дБ.

Минус - дороговизна установки.

4 Система охлаждения на элементах Пельтье

Среди нестандартных систем охлаждения можно отметить одну очень эффективную систему - на основе элементов Пельтье. Жан Шарль Атаназ -- французский физик, открывший и изучивший явление выделения или поглощения тепла при прохождении электрического тока через контакт двух разнородных проводников. Устройства, принцип работы которых использует данный эффект, называются элементы Пельтье.

В основе работы таких элементов лежит контакт двух проводников с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт этих материалов, электрону необходимо приобрести энергию, чтобы он мог перейти в зону с большей энергией проводимости другого полупроводника. Охлаждение места контакта полупроводников происходит при поглощении этой энергии. Нагревание места контакта происходит при протекании тока в обратном направление.

На практике используются только контакт двух полупроводников, т.к. при контакте металлов эффект настолько мал, что незаметен на фоне явления теплопроводности и омического нагрева.

Элемент Пельтье содержит одну или несколько пар небольших (не больше 60х60 мм) полупроводниковых параллелепипедов -- одного n-типа и одного p-типа в паре [обычно теллурида висмута (Bi2Te3) и германида кремния (SiGe)]. Они попарно соединены металлическими перемычками, которые служат термическими контактами и изолированы не проводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединены так, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости -- протекающий электрический ток протекает последовательно через всю цепь. В зависимости от того, в каком направлении течет электрический ток, верхние контакты охлаждаются, а нижние нагреваются -- или наоборот. Таким образом, переносится тепло с одной стороны элемента Пельтье на противоположную и создаётся разность температур. При охлаждении нагревающейся стороны элемента Пельтье (радиатором или вентилятором) температура холодной стороны становится ещё ниже.

Рисунок 9 Система охлаждения на элементах Пельтье

Итог по элементам Пельтье

К достоинствам такой системы охлаждения можно отнести небольшие размеры и отсутствие каких-либо подвижных частей, а также газов и жидкостей.

Минусом является очень низкий коэффициент полезного действия, что приводит к большой потребляемой мощности для достижения заметной разности температур. Так же, если элемент Пельтье выйдет из строя, то из-за отсутствия контакта между радиатором (или кулером) и процессора, последний моментально нагреется и может выйти из строя.

5 Системы фазового перехода (фреоновые установки)

Не очень распространенный, но очень эффективный класс систем охлаждения - системы, хладагентом в которой выступают фреоны. Отсюда и название - фреоновые устанвоки. Но более правильно было бы называть такие системы системами фазового перехода. На принципе действия таких систем работают практически все современные бытовые холодильники.

Один из вариантов охладить тело -- заставить вскипеть на нем жидкость. Для перехода жидкости в пар, необходимо затратить энергию (энергия фазового перехода) - то есть, закипая, жидкость отбирает тепловую энергию от окружающих ее предметов.

Слово «Фреоны» трактуется как галогеноалканы, фторсодержащие производные насыщенных углеводородов (главным образом метана и этана), используемые как хладагенты. Кроме атомов фтора, в молекулах фреонов содержатся обычно атомы хлора, реже -- брома. Известно более 40 различных фреонов; большинство из них выпускается промышленностью. Фреоны -- бесцветные газы или жидкости, без запаха.

Рисунок 10 Фреоновое охлаждение

Если же взять такую жидкость, которая будет закипать, скажем, при -40°С, то сосуд, в котором свободно кипит эта жидкость (такой сосуд называют испарителем), будет очень сложно нагреть. Его температура будет стремиться к -40°С. А, поставив такой сосуд на нужный нам объект охлаждения (например, на процессор), мы сможем добиться того, чего и хотели - охладить систему.

Мощный компрессор после испарителя качает газ и подает его под большим давлением в конденсор. Там газ конденсируется в жидкость и отдает тепло. Конденсор, выполненный в виде радиатора, рассеивает тепло в атмосферу - этот этап мы уже хорошо рассмотрели в предыдущих системах. Далее жидкий фреон поступает к испарителю, где выкипая, отбирает тепло - вот и весь замкнутый цикл. Цикл «фазовых переходов» потому так и назван -- фреон попеременно меняет свое агрегатное состояние.

Системы фазового перехода, испарители (холодильники) которых устанавливаются непосредственно на охлаждаемые элементы, называются системами «Direct Die». Холодными в такой системе являются только сам испаритель и отсасывающая трубка, остальные же элементы могут иметь комнатную температуру или выше. Холодные элементы нужно тщательно теплоизолировать для предотвращения образования конденсата.

Рисунок 11 Вид установленного фреонового охлаждения

Минусом фреонового охлаждения является относительная громоздкость испарителя и отсасывающей трубки, поэтому объектом охлаждения выбираются лишь процессор и видеокарта.

Есть и еще одна разновидность систем охлаждения - чиллеры. Этот класс систем состоит в основном из систем жидкостного охлаждения, отличием же является наличие второй части (холодильника теплоносителя), которая работает вместо радиатора - зачастую эта часть является той самой системой фазового перехода. Достоинством такой системой является то, что ей можно охладить все элементы Системного блока, а не только видеокарту и процессор (в отличие от «direct die»-систем). Система фазового перехода чиллера охлаждает лишь теплоноситель системы жидкостного охлаждения, то есть в замкнутом контуре течет очень холодная жидкость. Отсюда и минус систем такого типа - необходимость изолирования всей системы (водоблоки, трубки, насосы и т.п.). Если же изолировать не хочется, то можно использовать маломощную фреоновую установку для чиллера, но тогда об экстремальном разгоне можно будет забыть.

Итог по фреоновым установкам

Плюсом системы является возможность достижения очень низких температур, возможность постоянной работы. Высокий КПД системы (потери минимальны). Из постоянных систем охлаждения, фреоновые - самые мощные. При этом они позволяют выносить тепло из корпуса, что положительно сказывается на температурах внутри него.

К минусам относятся такие особенности системы, как сложность изготовления такой системы [серийно выпускаемых систем не так много, цены на них высоки]. Небольшой вес и маленькие габариты - все это в полной мере отсутствует в установках данного типа.

Условная стационарность системы. Практически во всех случаях (кроме тех случаев, когда Вы не планируете заниматься экстремальным разгоном) - потребуется теплоизоляция всей системы. Ну и самый, пожалуй, негативный момент - более чем ощутимый шум от работы (50-60 дБ).

Еще одним минусом является то, что на покупку фреона нужна лицензия. У кого ее нет, выбор не велик: в свободной продаже есть только один -- R134a (точка кипения которого -25°С).

Существует еще один хладагент -- R290 (пропан), но сейчас он не используется в охладительных системах (возгораемость). Он обладает очень хорошими свойствами: точка кипения -41°С, совместим с любым маслом компрессора и главное, дёшев.

6 Система экстремального охлаждения

Рассмотрим системы, в качестве хладагента в которых используется жидкий азот.

Жидкий азот представляет собой прозрачную жидкость, без цвета и запаха, температурой кипения (при нормальном атмосферном давлении) которой равна ни много ни мало -195.8 градусов по Цельсию. Для хранения жидкого азота применяют специальные резервуары -- сосуды Дьюара объемом от 6 до 40 литров.

Рисунок 12 Сосуд Дьюара

Установки данного типа предназначены только для экстремального охлаждения, в экстремальных условиях.

Минусом является то, что систему с азотом нельзя собрать в небольшую систему под столом, чтобы она там сама по себе стояла. Говоря иначе, такое охлаждение не подходит для решения бытовых задач - нужен постоянный и ответственный контроль, все нужно стараться делать тщательно и без ошибок.

2 Проектная часть

Организация азотной системы охлаждения

Системы с жидким азотом не содержат никаких помп или других подвижных элементов. Она представляет собой высокий металлический (медный или алюминиевый) стакан с дном, который плотно соединяется с центральным процессором.

Рисунок 13 Стакан для азота

Основной проблемой при разработке стакана является обеспечение процессора при полной нагрузке минимальной температурой. Ведь теплопроводные свойства жидкого азота сильно отличаются от той же воды. Он берет лишь тем, что «промораживает» стенки стакана, позволяя охладить процессор до температуры ниже 100 градусов. А так как тепловыделение камешка в простое и в режиме полной нагрузки отличается достаточно существенно, стакан часто не в состоянии вовремя эффективно отвести тепло. Для современного процессора оптимальной температурой является -110-130 градусов.

После изготовления стакана, его (и материнскую плату) нужно тщательно теплоизолировать, чтобы конденсат, который неминуемо образуется от такого перепада температур, не замкнул какие-нибудь контакты на материнской плате. Обычно используют различные пористые и пенистые материалы, например вспененный каучук - неопрен. В несколько слоев обматывают отрезанным куском, после чего закрепляют тем же скотчем.

Рисунок 14 Азотное охлаждение

С изоляцией материнской платы несколько сложнее. Чаще всего поступают так - заклеивая разъемы, все «заливают» диэлектрическим лаком. Причем, с обратной стороны материнской платы такую процедуру тоже нужно проделать - в районе процессорного сокета. Такая лакировка абсолютно не мешает работе платы (хотя, вы автоматически лишаетесь гарантии - так, на всякий случай, если еще не лишились) - но зато вы почти гарантированно исключаете возможность пострадать от протекания жидкого азота.

Дальше все просто. После того, как Вы тщательно соберете все компоненты, можно приступать. С помощью какой-то промежуточной емкости (например, термос или какой-то другой теплоизолированный стакан) наливаете азот в стакан на материнской плате, после чего можете тестировать свою систему.

Для часа работы компьютера достаточно 4-5 литров азота. Заливать в стакан нужно примерно до половины, причем постоянно поддерживая этот уровень.

3. Расчетно-экономическая часть

В данном курсовом проекте рассмотрены 6 видов охлаждения системного блока компьютера. На основании рассмотренных систем составлена таблица 1, в которой рассмотрена современная стоимость компонентов имеющихся в продаже.

Таблица 1

Стоимость компонентов ПК разных фирм

Компоненты

Цена в

“DNS”

Цена в

“РЕТ”

Цена в

“Юлмарт”

Вентилятор Arctic Cooling F8 для ATX корпуса 80x80 (2000 rpm, 31 CFM, 22,5dBA, 3pin, Гидродинамический)

120 руб.

135 руб.

127 руб.

Система жидкостного охлаждения Arctic Cooling Accelero Hybrid (AlCu, 2fan, Actic F12 400-1350 PWM, 74 CFM, F8 900-2000)

3 290 руб.

3320 руб.

3190 руб.

Радиатор из алюминия и меди Thermalright HR-01 3U

1 900 руб.

2100 руб.

1 880 руб.

Для обычного рабочего компьютера будет достаточно купить вентилятор Arctic Cooling F8 магазина DNS стоимостью в 120 рублей.

4. Техника безопасности

Работа с любым электронным оборудованием требует большого внимания и аккуратности. Основной опасностью при работе внутри любого электрооборудования является поражение электрическим током.

Перед сборкой компьютера следует помнить о потенциальных опасностях и мерах предосторожности.

Прежде чем приступить к работе, требующей вскрытия кожуха системного блока компьютера, выньте вилку из розетки. Обычно пользователи ограничиваются нажатием кнопки POWER на системном блоке, однако в большинстве современных компьютерных систем в этом случае напряжение от блока питания все равно подается на компоненты компьютера. Чтобы быть полностью уверенным, что система обесточена, вытащите шнур питания компьютера из розетки или задней стенки ПК.

Следует помнить, что не следует вскрывать блок питания компьютера даже при обесточивании, так как блок питания компьютера содержит конденсаторы, из-за которых остается вероятность поражения электрическим током.

В большинстве случаев серьезную опасность для компонентов компьютера представляет статическое напряжение, которое скапливается на вашей одежде. Особенно это актуально в помещениях с теплым и сухим воздухом.

Статическое напряжение может вывести из строя все электронные компоненты компьютера одним единственным разрядом. Поэтому желательно иметь антистатический браслет, надеваемый на запястье. При отсутствии такого браслета перед работой с открытым корпусом компьютера следует дотронуться рукой до металлического шасси компьютера или блоку питания. Можно также прикоснуться к радиатору отопления. Для уменьшения вероятности накопления электростатического заряда не следует работать в одежде из синтетической или шерстяной ткани. При работе рекомендуется надеть халат из х/б ткани.

Запрещается работать с компьютером при недостаточном освещении т.к. установка некоторых компонентов требует большой точности, внимательности и аккуратности. Не точная или не полная установка детали может вывести ее из строя при включении компьютера.

Выполнение вышеуказанных пунктов позволит избежать большинство проблем, связанных с ремонтом или модернизацией современного персонального компьютера.

Заключение

В процессе выполнения курсового проекта были исследованы различные системные охлаждения компьютера.

Данный курсовой проект можно использовать как пособие по выбору системы охлаждения для вашего компьютера.

Список используемых источников

Основная литература

1. Стивен Бигелоу « Устройство и ремонт Персонального компьютера» Москва. Изд. БИНОМ 2010. книга 1,2.

2. Новиков, Ю.В.; Калашников, О.А.; Гуляев, С.Э. Разработка устройств сопряжения для персонального компьютера типа IBM PC; М.: ЭКОМ - Москва, 2002- 224 c.

3. Гук, Михаил Процессоры Pentium II, Pentium Pro и просто Pentium; СПб: Питер - Москва, 1999. 288 c.

Интернет ресурсы:

http://www.overclockers.ru/lab/20539.shtml.

Размещено на Allbest.ru

...

Подобные документы

  • Обоснование необходимости охлаждения компьютера. Общие принципы обеспечения теплового режима. Характеристика ключевых систем охлаждения компьютеров: радиаторов, кулеров, системы охлаждения на элементах Пельтье, водяного и нестандартных систем охлаждения.

    презентация [11,2 M], добавлен 25.03.2015

  • Общие принципы охлаждения и работы различных видов и типов охлаждения компьютерных систем. Технико-экономическое обоснование и анализ различных систем охлаждения. Проектирование и расчеты отопления, вентиляции, природного и искусственного освещения.

    дипломная работа [3,4 M], добавлен 10.07.2010

  • Существует несколько видов систем охлаждения процессора ПК: классическое воздушное охлаждение, системы водяного охлаждения, системы для экстремального охлаждения при разгоне на жидком азоте, системы охлаждения на тепловых трубках и элементах Пельтье.

    курсовая работа [251,7 K], добавлен 03.04.2008

  • Общие принципы охлаждения, видов охлаждения ПК и блока питания. Вопросы усовершенствования охлаждения блока питания ПК. Параметры микроклимата: расчеты вентиляции, природного и искусственного освещения, уровня шума, сопоставление их с нормативными.

    дипломная работа [2,3 M], добавлен 14.07.2010

  • Классификация и типы систем охлаждения процессора, их отличительные особенности, оценка главных преимуществ и недостатков: фреоновая, азотная, углекислотная, на тепловых трубках, водная, воздушная. Создание систем фреонового охлаждения, принципы и этапы.

    курсовая работа [3,9 M], добавлен 22.04.2012

  • Программные средства охлаждения микропроцессоров. Роль радиатора в улучшении отвода тепла. Интерфейс между чипом и радиатором. Аэрогенные системы охлаждения с элементами Пельтье. Гидрогенные, криогенные системы. Циклические тепловые трубки, электроосмос.

    курсовая работа [2,0 M], добавлен 06.06.2009

  • Исследование системы активного и пассивного охлаждения компьютера. Параллельное расположение вентиляторов. Анализ основ погруженного охлаждения. Разработка структурной и принципиальной схем. Требования к организации и оборудованию рабочего места техника.

    дипломная работа [3,9 M], добавлен 11.01.2015

  • Особенности нагревания первых электронно-вычислительных машин, первые попытки их охлаждения. История появления водного охлаждения компьютерного процессора. Сущность оверклокерских систем охлаждения для экстремального разгона комплектующих компьютера.

    презентация [947,7 K], добавлен 20.12.2009

  • Виды систем охлаждения (СО) для персонального компьютера (ПК). Основные характеристики типовых СО, меры предупреждения неполадок. Организация воздушных потоков в корпусе ПК. Обзор и тестирование СО для процессора, основные методы тестирования.

    курсовая работа [4,2 M], добавлен 19.06.2011

  • Конструкция системного блока персонального компьютера, технология его сборки. Конструкция и принцип действия различных видов системы охлаждения, поиск и устранение ее неисправностей, текущее техническое обслуживание. Выбор оборудования и материалов.

    курсовая работа [234,8 K], добавлен 28.03.2012

  • Теоретический анализ научно-технической и методической литературы по системам охлаждения устройств персонального компьютера. Проектирование и изготовление системы охлаждения устройств персонального компьютера. Планы и сценарии уроков по технологии.

    курсовая работа [35,4 K], добавлен 05.12.2008

  • Характеристики элементов вычислительной машины для выполнения офисных операций. Выбор процессора, расчет его мощности на 60 GFLOPS. Выбор материнской платы, системы охлаждения для процессора, физической и оперативной памяти для хранения информации.

    контрольная работа [43,6 K], добавлен 11.11.2015

  • Определение секундного расхода жидкости, охлаждающей двигатель и количества теплоты, которая относится от двигателя ежесекундно. Разработка программы расчета данных характеристик для воды и тосола для различных автомобилей с использованием средств Pascal.

    курсовая работа [104,5 K], добавлен 26.02.2014

  • Материнская плата GIGABYTE A-M52LT-D3 и ее компоненты. Процессор AMD ATHLON II x2 240 (REGOR): общие характеристики. Структура многоядерных процессоров. Оперативная память Kingston. Виды звуковых и видеокарт. Блок питания и система охлаждения компьютера.

    контрольная работа [2,5 M], добавлен 15.01.2014

  • Разработка корпуса системного блока компьютера, обладающего эффективной системой охлаждения и приятным дизайном. Анализ существующих корпусов: "стимпанк", лепка из различных материалов, "техно". Выбор стиля и формы для корпуса системного блока.

    практическая работа [5,5 M], добавлен 06.05.2011

  • Вопросы усовершенствования видеокарт, их недостатки, виды охлаждения ПК. Выбор вентилятора и его установка на видеокарту. Сравнительные характеристики видеокарт до усовершенствования и после. Расчеты вентиляции, природного и искусственного освещения.

    дипломная работа [4,4 M], добавлен 18.07.2010

  • Аппаратные средства вычислительной техники. Центральный процессор. Память как составляющая компьютера, ее типичная иерархическая структура. Устройства ввода-вывода, шины. История развития средств вычислительной техники. Характеристика систем на основе Р6.

    реферат [251,3 K], добавлен 08.02.2014

  • Характеристика систем технического и профилактического обслуживания средств вычислительной техники. Диагностические программы операционных систем. Взаимосвязь систем автоматизированного контроля. Защита компьютера от внешних неблагоприятных воздействий.

    реферат [24,4 K], добавлен 25.03.2015

  • Создание воздушного потока входным вентилятором. Охлаждение плат и устройств. Проблема оптимального выбора корпуса и вентиляторов. Устройство системы водяного охлаждения. Принцип работы элементов Пельтье. Охлаждение процессоров. Последствия перегрева.

    лабораторная работа [43,2 K], добавлен 03.01.2011

  • Анализ и диагностика для нахождения оптимальных настроек процессора серии Intel Pentium 4 517, материнской платы ASUS P5GD2-X и оперативной памяти KETECH DDR2. Установка дополнительного охлаждения на оборудование. Модернизация вентиляции корпуса.

    отчет по практике [897,1 K], добавлен 28.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.