Топология локальных сетей

Рассмотрение общей характеристики локальных сетей. Документация действий команды администраторов. Маршрутизация в локальных сетях. Современные коммерческие продукты, использующие шинную топологию. Появления архитектуры Token Ring в локальных сетях.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 07.05.2014
Размер файла 72,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Костанайский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования "Челябинский государственный университет"

Реферат

Тема: Топология локальных сетей

Выполнила: Студентка 1 курса

Группы КЮЗ-105

Каиль Елена.

Оглавление

  • Введение
  • Глава 1. Общая характеристика локальных сетей
  • 1.1 Место и роль локальных сетей
  • 1.2 Определение локальной сети
  • Глава 2. Топологии локальной сети
  • 2.1 Основные топологии
  • 2.2 Сложные топологии
  • Заключение
  • Список использованной литературы

Введение

Локальная вычислительная сеть -- компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт). Также существуют локальные сети, узлы которых разнесены географически на расстояния более 12 500 км (космические станции и орбитальные центры). Несмотря на такие расстояния, подобные сети всё равно относят к локальным.

Существует множество способов классификации сетей. Основным критерием классификации принято считать способ администрирования. То есть в зависимости от того, как организована сеть и как она управляется, её можно отнести к локальной, распределённой, городской или глобальной сети. Управляет сетью или её сегментом сетевой администратор. В случае сложных сетей их права и обязанности строго распределены, ведётся документация и журналирование действий команды администраторов.

Компьютеры могут соединяться между собой, используя различные среды доступа: медные проводники, оптические проводники (оптоволоконные кабели) и через радиоканал (беспроводные технологии). Проводные связи устанавливаются через Ethernet, беспроводные -- через Wi-Fi, Bluetooth, GPRS и прочие средства. Отдельная локальная вычислительная сеть может иметь шлюзы с другими локальными сетями, а также быть частью глобальной вычислительной сети (например, Интернет) или иметь подключение к ней.

Компьютер, подключенный к вычислительной сети, называется рабочей станцией или сервером, в зависимости от выполняемых им функций. Эффективно эксплуатировать мощности ЛВС позволяет применение технологии «клиент/сервер». В этом случае приложение делится на две части: клиентскую и серверную. Один или несколько наиболее мощных компьютеров сети конфигурируются как серверы приложений: на них выполняются серверные части приложений. Клиентские части выполняются на рабочих станциях; именно на рабочих станциях формируются запросы к серверам приложений и обрабатываются полученные результаты.

Цель: изучение топологий локальных сетей.

Задачи:

- рассмотреть общую характеристику локальных сетей;

- проанализировать типологии локальной сети.

Курсовая работа состоит из ведения, двух глав, заключения и списка использованной литературы.

Глава 1. Общая характеристика локальных сетей

Чаще всего локальные сети построены на технологиях Ethernet или Wi-Fi. Для построения простой локальной сети используются маршрутизаторы, коммутаторы, точки беспроводного доступа, беспроводные маршрутизаторы, модемы и сетевые адаптеры. Реже используются преобразователи (конвертеры) среды, усилители сигнала (повторители разного рода) и специальные антенны.

Маршрутизация в локальных сетях используется примитивная, если она вообще необходима. Чаще всего это статическая либо динамическая маршрутизация (основанная на протоколе RIP).

Иногда в локальной сети организуются рабочие группы -- формальное объединение нескольких компьютеров в группу с единым названием.

Сетевой администратор -- человек, ответственный за работу локальной сети или её части. В его обязанности входит обеспечение и контроль физической связи, настройка активного оборудования, настройка общего доступа и предопределённого круга программ, обеспечивающих стабильную работу сети.

Адресация

В локальных сетях, основанных на протоколе IP, могут использоваться специальные адреса, назначенные IANA (стандарты RFC 1918 и RFC 1597):

10.0.0.0--10.255.255.255;

172.16.0.0--172.31.255.255;

192.168.0.0--192.168.255.255.

Такие адреса называют локальными или серыми, эти адреса не маршрутизируются в Интернет. Необходимость использовать такие адреса возникла из-за того, что, когда разрабатывался протокол IP, не предусматривалось столь широкое его распространение, и постепенно адресов стало не хватать. Как вариант был придуман протокол IPv6. Однако он пока не стал популярным и поэтому стали использовать локальные адреса. В различных непересекающихся LAN адреса могут повторяться, и это не является проблемой, так как доступ в другие сети происходит с применением технологий, подменяющих или скрывающих адрес внутреннего узла сети за её пределами -- NAT или proxy дают возможность подключить ЛВС к глобальной сети (WAN). Для обеспечения связи локальных сетей с глобальными применяются маршрутизаторы (в роли шлюзов и файрволов).

Конфликт адресов -- распространённая ситуация в локальной сети, при которой в одной IP подсети оказываются два или более компьютеров с одинаковыми IP адресами. Для предотвращения таких ситуаций и облегчения работы сетевых администраторов применяется протокол DHCP, с помощью которого можно автоматически назначать адреса компьютерам.

LAN и VPN

Связь с удалённой локальной сетью, подключенной к глобальной сети, из дома/командировки/удалённого офиса часто реализуется через VPN. При этом устанавливается VPN-подключение к пограничному маршрутизатору.

Особенно популярен следующий способ организации удалённого доступа к локальной сети:

Обеспечивается подключение снаружи к маршрутизатору, например по протоколу PPPoE, PPTP или L2TP (PPTP+IPSec).

Так как в этих протоколах используется PPP, то существует возможность назначить абоненту IP-адрес. Назначается свободный (не занятый) IP-адрес из локальной сети.

Маршрутизатор (VPN, Dial-in сервер) добавляет proxyarp -- запись на локальной сетевой карте для IP-адреса, который он выдал VPN-клиенту. После этого, если локальные компьютеры попытаются обратиться напрямую к выданному адресу, то они после ARP-запроса получат MAC-адрес локальной сетевой карты сервера и трафик пойдёт на сервер, а потом и в VPN-туннель.

1.1 Место и роль локальных сетей

Связь на небольшие расстояния в компьютерной технике существовала еще задолго до появления первых персональных компьютеров.

К большим компьютерам присоединялись многочисленные терминалы (или "интеллектуальные дисплеи"). Правда, интеллекта в этих терминалах было очень мало, практически никакой обработки информации они не делали, и основная цель организации связи состояла в том, чтобы разделить интеллект ("машинное время") большого мощного и дорогого компьютера между пользователями, работающими за этими терминалами. Это называлось режимом разделения времени, так как большой компьютер последовательно во времени решал задачи множества пользователей. В данном случае достигалось совместное использование самых дорогих в то время ресурсов - вычислительных

Подключение терминалов к центральному компьютеру

Затем были созданы микропроцессоры и первые микрокомпьютеры. Появилась возможность разместить компьютер на столе у каждого пользователя, так как вычислительные, интеллектуальные ресурсы подешевели. Но зато все остальные ресурсы оставались еще довольно дорогими. А что значит голый интеллект без средств хранения информации и ее документирования? Не будешь же каждый раз после включения питания заново набирать выполняемую программу или хранить ее в маловместительной постоянной памяти. На помощь снова пришли средства связи. Объединив несколько микрокомпьютеров, можно было организовать совместное использование ими компьютерной периферии (магнитных дисков, магнитной ленты, принтеров). При этом вся обработка информации проводилась на месте, но ее результаты передавались на централизованные ресурсы. Здесь опять же совместно использовалось самое дорогое, что есть в системе, но уже совершенно по-новому. Такой режим получил название режима обратного разделения времени. Как и в первом случае, средства связи снижали стоимость компьютерной системы в целом.

Объединение в сеть первых микрокомпьютеров

Затем появились персональные компьютеры, которые отличались от первых микрокомпьютеров тем, что имели полный комплект достаточно развитой для полностью автономной работы периферии: магнитные диски, принтеры, не говоря уже о более совершенных средствах интерфейса пользователя (мониторы, клавиатуры, мыши и т.д.). Периферия подешевела и стала по цене вполне сравнимой с компьютером. Казалось бы, зачем теперь соединять персональные компьютеры

Что им разделять, когда и так уже все разделено и находится на столе у каждого пользователя? Интеллекта на месте хватает, периферии тоже. Что же может дать сеть в этом случае?

Объединение в сеть персональных компьютеров

Самое главное -- это опять же совместное использование ресурса. То самое обратное разделение времени, но уже на принципиально другом уровне. Здесь уже оно применяется не для снижения стоимости системы, а с целью более эффективного использования ресурсов, имеющихся в распоряжении компьютеров. Например, сеть позволяет объединить объем дисков всех компьютеров, обеспечив доступ каждого из них к дискам всех остальных как к собственным.

Но нагляднее всего преимущества сети проявляются в том случае, когда все пользователи активно работают с единой базой данных, запрашивая информацию из нее и занося в нее новую (например, в банке, в магазине, на складе). Никакими дискетами тут уже не обойдешься: пришлось бы целыми днями переносить данные с каждого компьютера на все остальные, содержать целый штат курьеров. А с сетью все очень просто: любые изменения данных, произведенные с любого компьютера, тут же становятся видными и доступными всем. В этом случае особой обработки на месте обычно не требуется, и в принципе можно было бы обойтись более дешевыми терминалами (вернуться к первой рассмотренной ситуации), но персональные компьютеры имеют несравнимо более удобный интерфейс пользователя, облегчающий работу персонала. К тому же возможность сложной обработки информации на месте часто может заметно уменьшить объем передаваемых данных.

Использование локальной сети для организации совместной работы компьютеров

Без сети также невозможно обойтись в том случае, когда необходимо обеспечить согласованную работу нескольких компьютеров. Эта ситуация чаще всего встречается, когда эти компьютеры используются не для вычислений и работы с базами данных, а в задачах управления, измерения, контроля, там, где компьютер сопрягается с теми или иными внешними устройствами Примерами могут служить различные производственные технологические системы, а также системы управления научными установками и комплексами. Здесь сеть позволяет синхронизировать действия компьютеров, распараллелить и соответственно ускорить процесс обработки данных, то есть сложить уже не только периферийные ресурсы, но и интеллектуальную мощь.

Именно указанные преимущества локальных сетей и обеспечивают их популярность и все более широкое применение, несмотря на все неудобства, связанные с их установкой и эксплуатацией.

1.2 Определение локальной сети

Способов и средств обмена информацией за последнее время предложено множество: от простейшего переноса файлов с помощью дискеты до всемирной компьютерной сети Интернет, способной объединить все компьютеры мира. Какое же место в этой иерархии отводится локальным сетям?

Чаще всего термин "локальные сети" или "локальные вычислительные сети" (LAN, Local Area Network) понимают буквально, то есть это такие сети, которые имеют небольшие, локальные размеры, соединяют близко расположенные компьютеры. Однако достаточно посмотреть на характеристики некоторых современных локальных сетей, чтобы понять, что такое определение не точно. Например, некоторые локальные сети легко обеспечивают связь на расстоянии нескольких десятков километров. Это уже размеры не комнаты, не здания, не близко расположенных зданий, а, может быть, даже целого города. С другой стороны, по глобальной сети (WAN, Wide Area Network или GAN, Global Area Network) вполне могут связываться компьютеры, находящиеся на соседних столах в одной комнате, но ее почему-то никто не называет локальной сетью. Близко расположенные компьютеры могут также связываться с помощью кабеля, соединяющего разъемы внешних интерфейсов (RS232-C, Centronics) или даже без кабеля по инфракрасному каналу (IrDA). Но такая связь тоже почему-то не называется локальной.

Неверно и довольно часто встречающееся определение локальной сети как малой сети, которая объединяет небольшое количество компьютеров. Действительно, как правило, локальная сеть связывает от двух до нескольких десятков компьютеров. Но предельные возможности современных локальных сетей гораздо выше: максимальное число абонентов может достигать тысячи. Называть такую сеть малой неправильно.

Некоторые авторы определяют локальную сеть как "систему для непосредственного соединения многих компьютеров". При этом подразумевается, что информация передается от компьютера к компьютеру без каких-либо посредников и по единой среде передачи. Однако говорить о единой среде передачи в современной локальной сети не приходится. Например, в пределах одной сети могут использоваться как электрические кабели различных типов (витая пара, коаксиальный кабель), так и оптоволоконные кабели. Определение передачи "без посредников" также не корректно, ведь в современных локальных сетях используются репитеры, трансиверы, концентраторы, коммутаторы, маршрутизаторы, мосты, которые порой производят довольно сложную обработку передаваемой информации. Не совсем понятно, можно ли считать их посредниками или нет, можно ли считать подобную сеть локальной.

Наверное, наиболее точно было бы определить как локальную такую сеть, которая позволяет пользователям не замечать связи. Еще можно сказать, что локальная сеть должна обеспечивать прозрачную связь. По сути, компьютеры, связанные локальной сетью, объединяются в один виртуальный компьютер, ресурсы которого могут быть доступны всем пользователям, причем этот доступ не менее удобен, чем к ресурсам, входящим непосредственно в каждый отдельный компьютер. Под удобством в данном случае понимается высокая реальная скорость доступа, скорость обмена информацией между приложениями, практически незаметная для пользователя. При таком определении становится понятно, что ни медленные глобальные сети, ни медленная связь через последовательный или параллельный порты не попадают под понятие локальной сети.

Из данного определения следует, что скорость передачи по локальной сети обязательно должна расти по мере роста быстродействия наиболее распространенных компьютеров. Именно это и наблюдается: если еще десять лет назад вполне приемлемой считалась скорость обмена в 10 Мбит/с, то сейчас уже среднескоростной считается сеть, имеющая пропускную способность 100 Мбит/с, активно разрабатываются, а кое-где используются средства для скорости 1000 Мбит/с и даже больше. Без этого уже нельзя, иначе связь станет слишком узким местом, будет чрезмерно замедлять работу объединенного сетью виртуального компьютера, снижать удобство доступа к сетевым ресурсам.

Таким образом, главное отличие локальной сети от любой другой -- высокая скорость передачи информации по сети. Но это еще не все, не менее важны и другие факторы.

В частности, принципиально необходим низкий уровень ошибок передачи, вызванных как внутренними, так и внешними факторами. Ведь даже очень быстро переданная информация, которая искажена ошибками, просто не имеет смысла, ее придется передавать еще раз. Поэтому локальные сети обязательно используют специально прокладываемые высококачественные и хорошо защищенные от помех линии связи.

Особое значение имеет и такая характеристика сети, как возможность работы с большими нагрузками, то есть с высокой интенсивностью обмена (или, как еще говорят, с большим трафиком). Ведь если механизм управления обменом, используемый в сети, не слишком эффективен, то компьютеры могут подолгу ждать своей очереди на передачу. И даже если эта передача будет производиться затем на высочайшей скорости и безошибочно, для пользователя сети такая задержка доступа ко всем сетевым ресурсам неприемлема. Ему ведь не важно, почему приходится ждать.

Механизм управления обменом может гарантированно успешно работать только в том случае, когда заранее известно, сколько компьютеров (или, как еще говорят, абонентов, узлов) допустимо подключить к сети. Иначе всегда можно включить столько абонентов, что вследствие перегрузки забуксует любой механизм управления. Наконец, сетью можно назвать только такую систему передачи данных, которая позволяет объединять до нескольких десятков компьютеров, но никак не два, как в случае связи через стандартные порты.

Таким образом, сформулировать отличительные признаки локальной сети можно следующим образом:

Высокая скорость передачи информации, большая пропускная способность сети. Приемлемая скорость сейчас -- не менее 10 Мбит/с.

Низкий уровень ошибок передачи (или, что тоже самое, высококачественные каналы связи). Допустимая вероятность ошибок передачи данных должна быть порядка 10-8 -- 10-12.

Эффективный, быстродействующий механизм управления обменом по сети. Заранее четко ограниченное количество компьютеров, подключаемых к сети.

При таком определении понятно, что глобальные сети отличаются от локальных прежде всего тем, что они рассчитаны на неограниченное число абонентов. Кроме того, они используют (или могут использовать) не слишком качественные каналы связи и сравнительно низкую скорость передачи. А механизм управления обменом в них не может быть гарантированно быстрым. В глобальных сетях гораздо важнее не качество связи, а сам факт ее существования.

Нередко выделяют еще один класс компьютерных сетей -- городские, региональные сети (MAN, Metropolitan Area Network), которые обычно по своим характеристикам ближе к глобальным сетям, хотя иногда все-таки имеют некоторые черты локальных сетей, например, высококачественные каналы связи и сравнительно высокие скорости передачи. В принципе городская сеть может быть локальной со всеми ее преимуществами.

Правда, сейчас уже нельзя провести четкую границу между локальными и глобальными сетями. Большинство локальных сетей имеет выход в глобальную. Но характер передаваемой информации, принципы организации обмена, режимы доступа к ресурсам внутри локальной сети, как правило, сильно отличаются от тех, что приняты в глобальной сети. И хотя все компьютеры локальной сети в данном случае включены также и в глобальную сеть, специфики локальной сети это не отменяет. Возможность выхода в глобальную сеть остается всего лишь одним из ресурсов, разделяемых пользователями локальной сети.

По локальной сети может передаваться самая разная цифровая информация: данные, изображения, телефонные разговоры, электронные письма и т.д. Кстати, именно задача передачи изображений, особенно полноцветных динамических, предъявляет самые высокие требования к быстродействию сети. Чаще всего локальные сети используются для разделения (совместного использования) таких ресурсов, как дисковое пространство, принтеры и выход в глобальную сеть, но это всего лишь незначительная часть тех возможностей, которые предоставляют средства локальных сетей. Например, они позволяют осуществлять обмен информацией между компьютерами разных типов. Полноценными абонентами (узлами) сети могут быть не только компьютеры, но и другие устройства, например, принтеры, плоттеры, сканеры. Локальные сети дают также возможность организовать систему параллельных вычислений на всех компьютерах сети, что многократно ускоряет решение сложных математических задач. С их помощью, как уже упоминалось, можно управлять работой технологической системы или исследовательской установки с нескольких компьютеров одновременно.

Однако сети имеют и довольно существенные недостатки, о которых всегда следует помнить:

Сеть требует дополнительных, иногда значительных материальных затрат на покупку сетевого оборудования, программного обеспечения, на прокладку соединительных кабелей и обучение персонала.

Сеть требует приема на работу специалиста (администратора сети), который будет заниматься контролем работы сети, ее модернизацией, управлением доступом к ресурсам, устранением возможных неисправностей, защитой информации и резервным копированием. Для больших сетей может понадобиться целая бригада администраторов.

Сеть ограничивает возможности перемещения компьютеров, подключенных к ней, так как при этом может понадобиться перекладка соединительных кабелей.

Сети представляют собой прекрасную среду для распространения компьютерных вирусов, поэтому вопросам защиты от них придется уделять гораздо больше внимания, чем в случае автономного использования компьютеров. Ведь достаточно инфицировать один, и все компьютеры сети будут поражены.

Сеть резко повышает опасность несанкционированного доступа к информации с целью ее кражи или уничтожения. Информационная защита требует проведения целого комплекса технических и организационных мероприятий.

Ничто не дается даром. И надо хорошо подумать, стоит ли подключать к сети все компьютеры компании, или часть из них лучше оставить автономными. Возможно, что сеть вообще не нужна, так как породит гораздо больше проблем, чем позволит решить.

Здесь же следует упомянуть о таких важнейших понятиях теории сетей, как абонент, сервер, клиент. Абонент (узел, хост, станция) -- это устройство, подключенное к сети и активно участвующее в информационном обмене. Чаще всего абонентом (узлом) сети является компьютер, но абонентом также может быть, например, сетевой принтер или другое периферийное устройство, имеющее возможность напрямую подключаться к сети. Далее в курсе вместо термина "абонент" для простоты будет использоваться термин "компьютер". Сервером называется абонент (узел) сети, который предоставляет свои ресурсы другим абонентам, но сам не использует их ресурсы. Таким образом, он обслуживает сеть. Выделенный (dedicated) сервер -- это сервер, занимающийся только сетевыми задачами. Невыделенный сервер может помимо обслуживания сети выполнять и другие задачи. Специфический тип сервера -- это сетевой принтер. Клиентом называется абонент сети, который только использует сетевые ресурсы, но сам свои ресурсы в сеть не отдает, то есть сеть его обслуживает, а он ей только пользуется. Компьютер-клиент также часто называют рабочей станцией. В принципе каждый компьютер может быть одновременно как клиентом, так и сервером. Под сервером и клиентом часто понимают также не сами компьютеры, а работающие на них программные приложения. В этом случае то приложение, которое только отдает ресурс в сеть, является сервером, а то приложение, которое только пользуется сетевыми ресурсами -- клиентом.

Глава 2. Топологии локальной сети

Конфигурация локальной сети называется топологией.

1. Наиболее простой вид топологии -- шина. В такой сети все компьютеры подключены к одному кабелю.

2. На шину похожа и структура, которую называют кольцо.

3. Для локальных сетей, основанных на файловом сервере, может применяться схема звезда.

4. От схемы зависит состав оборудования и программного обеспечения. Топологию выбирают, исходя из потребностей предприятия. Если предприятие занимает многоэтажное здание, то в нем может быть применена схема снежинка, в которой имеются файловые серверы для разных рабочих групп и один центральный сервер для всего предприятия.

Топологии локальных сетей можно описывать как с физической, так и с логической точки зрения. Физическая топология описывает геометрическое упорядочение компонентов локальной сети. Топологию нельзя рассматривать как обычную схему сети. Это теоретическая конструкция, которая графически передает форму и структуру локальной сети.

Логическая топология описывает возможные способы соединения между парами взаимодействующих конечных точек. С помощью логической топологии удобно определять наборы конечных точек, которые в состоянии взаимодействовать друг с другом, а также пары конечных точек, взаимодействующие с помощью непосредственного физического соединения. В этой главе внимание сосредоточено исключительно на физических топологиях.

2.1 Основные топологии

Существует три основные физические топологии: шинная (bus), кольцевая (ring) и звездообразная (star). Каждая топология продиктована определенной технологией кадров локальной сети. Например, сети Ethernet (по определению) исторически используют звездообразные топологии. Использование коммутации на уровне кадров изменило положение вещей. Все локальные сети, применяющие упомянутый тип коммутации, вне зависимости от типа кадров или метода доступа к среде передачи построены на основе одной и той же топологии. С недавнего времени коммутируемую топологию можно считать полноправным членом привычного трио основных топологий локальных сетей.

Шинная топология

Шинная топология соответствует соединению всех сетевых узлов в одноранговую сеть с помощью единственного открытого (open-ended) кабеля. Кабель должен оканчиваться резистивной нагрузкой - так называемыми оконечными резисторами (terminating resistors). Единственный кабель в состоянии поддерживать только один канал. В данной топологии кабель называют шиной (bus).

Типичная шинная топология предполагает использование единственного кабеля без дополнительных внешних электронных устройств с целью объединения узлов в одноранговую сеть. Все подключенные устройства прослушивают трафик шины и принимают только те пакеты, которые адресованы им. Отсутствие необходимости использования сложных внешних устройств (например, повторителей) в значительной степени упрощает процедуру развертывания шинной локальной сети. Затраты на развертывание также будут незначительными. К недостаткам данной топологии можно отнести ограниченные функциональные возможности, а также недостаточные расстояния передачи данных и расширяемость.

Данную топологию целесообразно применять только в небольших локальных сетях. Поэтому использующие шинную топологию современные коммерческие продукты ориентированы на развертывание недорогой одноранговой сети с ограниченными функциональными возможностями. Такие продукты предназначены для домашних сетей и сетей небольших офисов.

Единственным исключением являлась локальная сеть Token Bus, соответствующая спецификации IEEE 802.4. Эта технология была достаточно здравой и детерминистической, во многом напоминая стандарт Token Ring. Тем не менее сети стандарта Token Bus использовали не кольцевую, а шинную топологию.

Стандарт Token Bus не пользовался популярностью на рынке. Для его реализации приходилось использовать специальную проводку. Технологические усовершенствования других стандартов и топологий локальных сетей сделали эту сложную шинную топологию устаревшей.

Кольцевая топология

Кольцевая топология впервые была реализована в простых одноранговых локальных сетях. Каждая рабочая станция соединялась с двумя ближайшими соседями (см. рисунок 5.2). Общая схема соединения напоминала замкнутое кольцо. Данные передавались только в одном направлении. Каждая рабочая станция работала как ретранслятор, принимая и отвечая на адресованные ей пакеты и передавая остальные пакеты следующей рабочей станции, расположенной «ниже по течению».

Одноранговая кольцевая топология.

В первоначальном варианте кольцевой топологии локальных сетей использовалось одноранговое соединение между рабочими станциями. Поскольку соединения такого типа имели форму кольца, они назывались замкнутыми (closed). Преимуществом локальных сетей этого типа является предсказуемое время передачи пакета адресату. Чем больше устройств подключено к кольцу, тем дольше интервал задержки. Недостаток кольцевой топологии в том, что при выходе из строя одной рабочей станции прекращает функционировать вся сеть.

После появления архитектуры Token Ring, разработанной корпорацией IBM и стандартизированной впоследствии в спецификации IEEE 802.5, первые примитивные версии кольцевой архитектуры были признаны несостоятельными. Архитектура Token Ring отступила от одноранговой схемы соединений в пользу ретранслирующего концентратора. Отказ от топологии однорангового кольца в значительной степени повысил устойчивость всей сети к отказам отдельных рабочих станций. Сети архитектуры Token Ring, несмотря на свое название, реализуют топологию звезды и циклический метод доступа.

Реализующие звездообразную топологию локальные сети в состоянии поддерживать цикличный метод доступа. Проиллюстрированная на этом рисунке сеть Token Ring представляет собой виртуальное кольцо, образованное методом доступа по алгоритму циклического обслуживания (round-robin access method). Сплошные линии соответствуют физическим соединениям, а штриховые обозначают направление логического потока данных. локальный сеть маршрутизация шинный

Если рассматривать функциональное устройство, достаточно сказать, что маркер доступа циклически передается между конечными сетевыми устройствами. В результате большинство людей совершенно искренне относят архитектуру Token Ring к кольцевой топологии, хотя на самом деле эта архитектура близка к звездообразной топологии.

Топология типа «звезда»

Локальные сети звездообразной топологии объединяют устройства, которые как бы расходятся из общей точки - концентратора Если мысленно представить концентратор в качестве звезды, соединения с устройствами будут напоминать ее лучи - отсюда и название топологии. В отличие от кольцевых топологий, физических или виртуальных каждому сетевому устройству предоставлено право независимого доступа к среде передачи. Такие устройства вынуждены совместно использовать доступную полосу пропускания концентратора. Примером локальной сети звездообразной топологии является Ethernet.

Небольшие локальные сети, реализующие звездообразную топологию, в обязательном порядке используют концентратор. Любое устройство в состоянии обратиться с запросом на доступ к среде передачи независимо от других устройств.

Звездообразные топологии широко используются в современных локальных сетях. Причиной такой популярности является гибкость, возможность расширения и относительно низкая стоимость развертывания по сравнению с более сложными топологиями локальных сетей со строгими методами доступа к среде передачи данных. Рассматриваемая архитектура не только сделала шинные и кольцевые топологии принципиально устаревшими, но и сформировала базис для создания следующей топологии локальных сетей - коммутируемой.

Коммутируемая топология

Коммутатор (switch) является многопортовым устройством канального уровня (второй уровень справочной модели OSI). Коммутатор «изучает» МАС-адреса и накапливает данные о них во внутренней таблице. Между автором кадра и предполагаемым получателем коммутатор создает временное соединение, по которому и передается кадр.

В стандартной локальной сети, реализующей коммутируемую топологию, все соединения устанавливаются через коммутирующий концентратор (switching hub), что и проиллюстрировано на рисунке 5.5. Каждому порту, а следовательно, и подключенному к порту устройству, выделена собственная полоса пропускания. Первоначально принцип действия коммутаторов основывался на передаче кадров в соответствии с МАС-адресами, однако технологический прогресс внес свои коррективы. Современные устройства в состоянии коммутировать ячейки (пакеты кадров, имеющие фиксированную длину и соответствующие второму уровню структуры передачи данных). Кроме того, коммутаторы поддерживают протоколы третьего уровня, а также распознают IP-адреса и физические порты коммутатора-концентратора.

Объединенные в последовательную цепочку концентраторы.

Коммутаторы повышают производительность локальной сети двумя способами. Первый способ заключается в расширении полосы пропускания, доступной сетевым устройствам. Например, коммутатор-концентратор Ethernet с восемью портами обладает таким же количеством отдельных доменов по 10 Мбит/с каждый, обеспечивая суммарную пропускную способность 80 Мбит/с.

Второй способ повышения производительности локальной сети сводится к уменьшению количества устройств, которые вынуждены использовать все сегменты полосы пропускания. В каждом выделенном коммутатором домене находятся только два устройства: собственно сетевое устройство и порт коммутатора-концентратора, к которому оно подключено. Вся полоса пропускания 10 Мбит/с принадлежит двум устройствам сегмента. В сетях, которые не поддерживают конкурирующие методы доступа к среде передачи, например, в Token Ring или FDDI, область циркуляции маркера будет ограничена меньшим количеством сетевых устройств.

Открытым вопросом остается изоляция трафика в больших сетях. Приемлемая производительность поддерживается исключительно сегментацией конфликтных, но не передающих доменов. Чрезмерно насыщенный трафик в значительной степени снижает производительность локальной сети.

Выбор подходящей топологии

Четыре рассмотренные топологии можно считать элементарными блоками для построения локальных сетей. Их можно комбинировать всевозможными способами и расширять. При выборе топологии следует учитывать в первую очередь требования к производительности сети конкретных приложений-клиентов. Вполне вероятно, что идеальным вариантом окажется комбинация основных топологий.

2.2 Сложные топологии

Сложные топологии являются расширениями и/или комбинациями основных физических топологий. Сами по себе основные топологии целесообразно использовать только в небольших локальных сетях. Возможность расширения сетей основных топологий чрезвычайно ограничена. Гораздо выгоднее оказывается создать сложную топологию, объединив для этого в одну локальную сеть сегменты различных топологий.

Последовательная цепочка

Простейшая из сложных топологий последовательно соединяет все концентраторы сети. Подобная схема получила название последовательной цепочки (daisy chaining). Соединения между концентраторами устанавливаются с помощью их же портов. В результате построение объединяющей магистрали такого типа не связано с дополнительными расходами.

Создание связи между концентраторами небольших локальных сетей представляет собой довольно привлекательный способ объединения небольших локальных сетей. Последовательную цепочку несложно построить, для ее администрирования не нужны специальные навыки. Исторически сложилось так, что именно эта топология чаще всего использовалась для объединения локальных сетей первого поколения.

Естественно, что последовательная цепочка в состоянии объединить ограниченное количество сегментов. Спецификации локальных сетей, в частности, 802.3 Ethernet, пытаются определить максимальный размер сети исходя из количества концентраторов и/или повторителей, которые могут быть объединены в последовательную цепочку. Предложенные спецификациями физического уровня ограничения на расстояние между устройствами, умноженные на количество устройств, и определяют максимальный размер локальной сети. Эта величина называется максимальным диаметром сети (maximum network diameter). Превышение диаметра отрицательно влияет на работоспособность локальной сети. Количество концентраторов, которые могут быть соединены в последовательную цепочку, чаще всего определяется именно максимальным диаметром сети. Особенно это касается современных высокопроизводительных локальных сетей, например Fast Ethernet, которые накладывают жесткие ограничения на диаметр сети и количество соединенных концентраторов.

В сетях с топологией последовательной цепочки, которые поддерживают конкурирующий метод доступа к среде передачи, проблемы начинают возникать еще до достижения максимального диаметра. Последовательная цепочка увеличивает число соединений и соответственно устройств локальной сети. При этом суммарная полоса пропускания не расширяется и количество доменов конфликтных сегментов не увеличивается. Рассмотренная топология просто увеличивает количество машин, пользующихся общей полосой пропускания. Машины, конкурирующие за доступ к среде передачи, создают конфликтные ситуации и быстро ставят локальную сеть на колени.

Специалисты рекомендуют использовать эту топологию в локальных сетях с ограниченным количеством концентраторов в небольших глобальных сетях.

Иерархии

Иерархические топологии предполагают использование более чем одного уровня концентраторов. Каждый уровень выполняет отдельную сетевую функцию. На нижний ярус концентраторов возлагается задача обработки запросов на соединение между рабочими станциями и серверами. Ярусы более высоких уровней агрегируют низшие ярусы. Иерархическое упорядочение оптимальным образом подходит для локальных сетей среднего и большого размера при условии, что предполагается их дальнейшее расширение и повышение интенсивности трафика.

Иерархические кольца

Для соединения рабочих станций и серверов используется столько колец, сколько необходимо для поддержки необходимой производительности. Кольцо второго яруса, будь то Token Ring или FDDT, используется для межсоединения всех колец пользовательского уровня и обеспечения доступа к глобальной сети.

Небольшие локальные сети расширяются путем установления иерархических соединений между несколькими кольцами. На этом рисунке представлено эстафетное кольцо 16 Мбит/с (логически показано как кольцо, хотя на самом деле является архитектурой типа «звезда»), которое используется для объединения пользовательских станций, а также кольца FDDI, которые используются на уровне серверов и магистрали.

Иерархические звезды

Звездные топологии также могут быть созданы путем иерархического объединения нескольких несложных сетей такой же архитектуры. Иерархические звезды могут состоят из единственного конфликтного домена или с помощью коммутаторов и мостов сегментированы на несколько конфликтных доменов.

Топология иерархической звезды предполагает использование одного яруса концентраторов для обеспечения возможности соединения пользователей и сервера и второго яруса концентраторов, поддерживающих магистраль передачи данных.

Иерархические комбинации

Общая производительность сети может быть повышена только в случае соблюдения всех требований, которые накладываются на отдельные компоненты. Современные коммутирующие концентраторы позволяют одновременно использовать преимущества нескольких технологий. Для поддержки новой топологии достаточно вставить в концентратор соответствующую плату. Иерархическая топология представляет собой комбинацию различных топологий.

В этом примере комбинированной иерархической топологии магистраль, поддерживающая асинхронный режим передачи (Asynchronous Transfer Mode - ATM), используется для соединения пользовательских концентраторов. Серверы объединены в кольцо FDDI, в то время как пользовательские станции используют стандарт Ethernet.

Магистраль

Магистраль (backbone) локальной сети выполняет функции межсоединения всех концентраторов. Область магистрали можно построить в различных топологиях с помощью нескольких сетевых компонентов

Магистраль локальной сети выполняет очень важную функцию, объединяя все локальные сетевые ресурсы и, если это возможно, глобальную сеть. Логическое определение магистрали можно дать несколькими способами.

Выбор корректной топологии магистрали локальной сети представляет собой далеко не простую задачу. Некоторые варианты весьма привлекательны с точки зрения стоимости, их проще реализовать и настроить. Другие требуют дополнительных вложений и сложны в реализации. Следует также учитывать возможность расширения различных магистральных топологий. Некоторые топологии даже после расширения требуют дополнительных затрат на обеспечение приемлемого уровня производительности. Все возможные варианты должны быть тщательно проанализированы исходя из конкретных требований.

Последовательная магистраль представляет собой не что иное, как набор концентраторов, соединенных в последовательную цепочку. Как уже указывалось в предыдущих разделах, подобную топологию целесообразно использовать только в небольших сетях.

Концентраторы, объединяющие в сеть рабочие станции и серверы, могут быть последовательно соединены друг с другом, образуя таким образом своего рода примитивную магистраль. Как упоминалось выше, подобный способ соединения называется последовательной цепочкой.

Распределенная магистраль

Распределенной магистрали (distributed backbone) соответствует иерархическая топология, в которой магистральный концентратор занимает центральное местоположение. В роли магистрального концентратора обычно выступает телефонная станция учреждения с выходом в глобальную сеть. Если учитывать схему проводки в здании, телефонная станция занимает идеальное положение. Центральный концентратор соединен с другими концентраторами здания.

В отличие от последовательной магистрали такая топология позволяет локальной сети охватывать большие здания, не превышая при этом максимальный диаметр сети.

Распределение магистрали подобным образом требует знания топологии проводки здания и ограничений, диктуемых различными средами передачи. Идеальным вариантом при построении распределенной магистрали в достаточно больших сетях является использование волоконно-оптической проводки.

Локализованная магистраль

Топология локализованной магистрали (collapsed backbone) предполагает использование центрального маршрутизатора, соединяющего все сегменты локальной сети. Маршрутизатор эффективно создает конфликтные и передающие домены, увеличивая таким образом производительность каждого сегмента локальной сети.

Маршрутизаторы функционируют на третьем уровне справочной модели OSI и проигрывают в быстродействии концентраторам. В результате существует некоторая вероятность снижения скорости передачи данных между сегментами локальной сети.

Локализованная магистраль является наиболее уязвимым местом (single point of failure) локальной сети (что наглядно иллюстрирует рисунок 5.16). Это не столь существенный недостаток - использование многих других топологий также связано с возможностью выхода из строя всей локальной сети после отказа единственного элемента. Тем не менее это обстоятельство обязательно следует учитывать при выборе топологии сети.

Сегменты локальной сети вполне могут быть объединены маршрутизатором, который выступает в качестве локализованной магистрали. Такая топология поддерживает централизованное управление сетью, но одновременно характеризуется задержками в передаче данных и возможностью выхода из строя всей сети после отказа единственного элемента.

Локализованная магистраль.

Обязательно следует учитывать тот факт, что рабочие станции пользователей очень редко бывают распределены по зданию удобным способом. Скорее всего, возникнет необходимость выделения в сети нескольких сегментов. Вполне вероятно, что некоторые сегменты будут расположены в непосредственной близости. Топологии локализованных магистралей следует планировать с особой тщательностью. Опрометчиво и неудачно спланированные топологии окажут отрицательное влияние на производительность сети.

Заключение

Топология локальной сети является одним из самых критичных факторов, влияющих на производительность. В случае необходимости четыре основные топологии (коммутируемую, звездообразную, кольцевую и шинную) можно комбинировать произвольным образом. Возможные комбинации не ограничены рассмотренными в этой главе. Большинство современных технологий локальных сетей не только приветствуют, но даже обязывают использовать творческий подход. Очень важно разбираться в преимуществах и недостатках топологий, влияющих на производительность сети. Кроме того, следует учитывать и такие казалось бы необъективные факторы, как расположение рабочих станций в здании, пригодность кабеля, а также даже тип и способ проводки.

В конечном счете основным критерием выбора удачной топологии являются требования пользователей к производительности. Такие факторы, как стоимость, предполагаемая модернизация и ограничения существующих технологий, играют второстепенную роль. Сложнее всего будет перевести устные пожелания пользователей в мегабиты в секунду (Мбит/с) и другие характеристики производительности сети.

Сеть с любой физической топологией, логической топологией, топологией управления обменом может считаться звездой в смысле информационной топологии, если она построена на основе одного сервера и нескольких клиентов, общающихся только с этим сервером. В данном случае справедливы все рассуждения о низкой отказоустойчивости сети к неполадкам центра (сервера). Точно так же любая сеть может быть названа шиной в информационном смысле, если она построена из компьютеров, являющихся одновременно как серверами, так и клиентами. Такая сеть будет мало чувствительна к отказам отдельных компьютеров.

Заканчивая обзор особенностей топологий локальных сетей, необходимо отметить, что топология все-таки не является основным фактором при выборе типа сети. Гораздо важнее, например, уровень стандартизации сети, скорость обмена, количество абонентов, стоимость оборудования, выбранное программное обеспечение. Но, с другой стороны, некоторые сети позволяют использовать разные топологии на разных уровнях. Этот выбор уже целиком ложится на пользователя, который должен учитывать все перечисленные в данном разделе соображения.

В данной реферативной работе мы рассмотрели основные представления о локальных сетях, а также изучили топологии локальных сетей.

Список использованной литературы

1. Андерсон К. Минаси М. Локальные сети. Полное руководство: К.: ВЕК+, М.: ЭНТРОП, СПб.: КОРОНА принт, 1999.

2. Е. Хлебалина. Информатика: энциклопедия. Москва: 2003.

3. Косарев В.П. Ерёмин Л.В. Компьютерные системы и сети. - М.: Финансы и статистика, 1999.

4. Косовцева Т.Р., Маховиков А.Б., Муста Л.Г. Информатика. Тексто-вый

5. редактор Word. Электронные таблицы Excel. СПб, 2007.

6. Коуров Л.В. Информационные технологии. Минск, «Ам ал фея», 2000.

7. Макарова Н.В. Информатика. Практикум и технология работы на компьтере. Москва, 2000.

8. Маслова М. В. Компьютерные сети. Мурманск: 2004.

9. Н. Олифер, В. Олифер. Базовые технологии локальных сетей. М., 2008.

10. Симонович С.В., Евсеев Г.А. Практическая информатика: Учебное пособие для средней школы. Универсальный курс. - М.:АСТ-ПРЕСС, 2002.

11. Э.А. Якубайтис, «Информатика-электроника-сети». М., «Финансы и статистика», 1989.

12. Ю.В. Новиков, С.В. Кондратенко. Основы локальных сетей. М., 2009.

Размещено на Allbest.ru

...

Подобные документы

  • Виды сетевых топологий: шинная, кольцевая, звездная, иерархическая и произвольная. Физические топологии, применяемые в локальных сетях в настоящее время: шина (BUS), звезда (STAR), кольцо (RING), физическая звезда и логическое кольцо (Token RING).

    презентация [575,3 K], добавлен 24.04.2017

  • Создание компьютерной программы для администраторов локальных сетей, которая могла бы в режиме реального времени осуществлять централизованный контроль за приложениями, запущенными на компьютерах в локальной сети. Реализация в среде C++ Builder.

    курсовая работа [64,9 K], добавлен 23.06.2016

  • Понятие и структура компьютерных сетей, их классификация и разновидности. Технологии, применяемые для построения локальных сетей. Безопасность проводных локальных сетей. Беспроводные локальные сети, их характерные свойства и применяемые устройства.

    курсовая работа [441,4 K], добавлен 01.01.2011

  • Способы коммутации компьютеров. Классификация, структура, типы и принцип построения локальных компьютерных сетей. Выбор кабельной системы. Особенности интернета и других глобальных сетей. Описание основных протоколов обмена данными и их характеристика.

    дипломная работа [417,7 K], добавлен 16.06.2015

  • Теоретические основы организации локальных сетей. Общие сведения о сетях. Топология сетей. Основные протоколы обмена в компьютерных сетях. Обзор программных средств. Аутентификация и авторизация. Система Kerberos. Установка и настройка протоколов сети.

    курсовая работа [46,3 K], добавлен 15.05.2007

  • Функции компьютерных сетей (хранение и обработка данных, доступ пользователей к данным и их передача). Основные показатели качества локальных сетей. Классификация компьютерных сетей, их главные компоненты. Топология сети, характеристика оборудования.

    презентация [287,4 K], добавлен 01.04.2015

  • Особенности, отличия, топология и функционирование локальных компьютерных сетей. Программное обеспечение информационно-вычислительных сетей. Основные протоколы передачи данных, их установка и настройка. Аутентификация и авторизация; система Kerberos.

    курсовая работа [67,7 K], добавлен 20.07.2015

  • Создание компьютерных сетей с помощью сетевого оборудования и специального программного обеспечения. Назначение всех видов компьютерных сетей. Эволюция сетей. Отличия локальных сетей от глобальных. Тенденция к сближению локальных и глобальных сетей.

    презентация [72,8 K], добавлен 04.05.2012

  • Эволюция вычислительных систем. Базовые понятия и основные характеристики сетей передачи информации. Задачи, виды и топология локальных компьютерных сетей. Модель взаимодействия открытых систем. Средства обеспечения защиты данных. Адресация в IP-сетях.

    лекция [349,0 K], добавлен 29.07.2012

  • Методы проектирования LAN для обеспечения обмена данными, доступа к общим ресурсам, принтерам и Internet. Автоматическая адресация в IP-сетях при помощи протокола DHCP. Алгоритмы маршрутизации, базирующиеся на информации о топологии и состоянии сети.

    дипломная работа [2,7 M], добавлен 01.07.2014

  • Понятие локальных вычислительных сетей, их виды и принципы построения. Топология (кольцо, звезда и шина) и древовидная структура ЛВС. Алгоритм решения экономической задачи по осуществляемой страховой деятельности на территории России по видам полисов.

    курсовая работа [604,2 K], добавлен 23.04.2013

  • Официальные международные организации, выполняющие работы по стандартизации информационных сетей, протоколы IP, ARP, RARP, семиуровневая модель OSI. TCP/IP, распределение протоколов по уровням ISO в локальных и в глобальных сетях, разделение IP-сетей.

    шпаргалка [50,0 K], добавлен 24.06.2010

  • Сущность и значение мониторинга и анализа локальных сетей как контроля работоспособности. Классификация средств мониторинга и анализа, сбор первичных данных о работе сети: анализаторы протоколов и сетей. Протокол SNMP: отличия, безопасность, недостатки.

    контрольная работа [474,8 K], добавлен 07.12.2010

  • Актуальность создания и использования средств и систем. Техническое и информационное обеспечение технологий и средств диагностики локальных сетей. Характеристика протоколов мониторинга. Организация диагностики компьютерной сети и экономические расчеты.

    дипломная работа [1,1 M], добавлен 26.08.2010

  • Передача информации между компьютерами. Анализ способов и средств обмена информацией. Виды и структура локальных сетей. Исследование порядка соединения компьютеров в сети и её внешнего вида. Кабели для передачи информации. Сетевой и пакетный протоколы.

    реферат [1,9 M], добавлен 22.12.2014

  • Локальные сети, строящиеся по стандартам физического и канального уровней. Волоконно-оптический кабель, его виды. Полосы пропускания линий связи и частотные диапазоны. Метод доступа к среде передачи. Технологии локальных сетей, их аппаратные средства.

    презентация [54,7 K], добавлен 24.09.2015

  • Анализ системы распределенных локальных сетей и информационного обмена между ними через Интернет. Отличительные черты корпоративной сети, определение проблем информационной безопасности в Интернете. Технология построения виртуальной защищенной сети – VPN.

    курсовая работа [3,7 M], добавлен 02.07.2011

  • Организация частной сети. Структура незащищенной сети и виды угроз информации. Типовые удаленные и локальные атаки, механизмы их реализации. Выбор средств защиты для сети. Схема защищенной сети с Proxy-сервером и координатором внутри локальных сетей.

    курсовая работа [2,6 M], добавлен 23.06.2011

  • Понятие и назначение локальных вычислительных сетей (ЛВС), их классификация. Топология сетей: "звезда", "кольцо", "общая шина", "дерево", их достоинства и недостатки. Устройства межсетевого интерфейса и их назначение: мосты, маршрутизаторы, шлюзы.

    реферат [112,1 K], добавлен 23.12.2008

  • Классификация компьютерных сетей в технологическом аспекте. Устройство и принцип работы локальных и глобальных сетей. Сети с коммутацией каналов, сети операторов связи. Топологии компьютерных сетей: шина, звезда. Их основные преимущества и недостатки.

    реферат [134,0 K], добавлен 21.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.