Реализация и обслуживание кассовых аппаратов

История развития информационных систем и цели их использования на разных периодах. Основы методологии проектирования АИС на основе CASE-технологий. Разработка информационной системы: реализация и обслуживание кассовых аппаратов. Список должников.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 09.05.2014
Размер файла 946,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

по дисциплине: Разработка и эксплуатация информационных систем
"Реализация и обслуживание кассовых аппаратов"

Содержание

Введение

1. Информационные системы

1.1 Этапы развития АИС

1.2 Жизненный цикл АИС и его этапы

1.3 Основы методологии проектирования АИС на основе CASE-технологий

1.4 Информационное обеспечение АИС

2. Разработка информационной системы "Реализация и обслуживание кассовых аппаратов"

2.1 "Реализация и обслуживание кассовых аппаратов"

2.2 Создание запросов и форм

2.3 Создание кнопочной формы

Заключение

Список использованных источников

Приложения

Введение

Под системой понимают любой объект, который одновременно рассматривается и как единое целое, и как объединенная в интересах достижения поставленных целей совокупность разнородных элементов. Системы значительно отличаются между собой как по составу, так и по главным целям.

Понятие "система" применяется к набору технических средств и программ или аппаратная часть компьютера. Системой может также считаться множество программ для решения конкретных прикладных задач, дополненных процедурами ведения документации и управления расчетами.

Понятие "система" + "информационная" отражает цель ее создания и функционирования. Информационные системы обеспечивают сбор, хранение, обработку, поиск, выдачу информации, необходимой в процессе принятия решений задач из любой области. Они помогают анализировать проблемы и создавать новые продукты.

Информационная система - взаимосвязанная совокупность средств, методов и персонала, используемых для хранения, обработки и выдачи информации в интересах достижения поставленной цели.

Современное понимание информационной системы предполагает использование в качестве основного технического средства переработки информации персонального компьютера. В крупных организациях наряду с персональным компьютером в состав технической базы информационной системы может входить супер ЭВМ. Кроме того, техническое воплощение информационной системы само по себе ничего не будет значить, если не учтена роль человека, для которого предназначена производимая информация и без которого невозможно ее получение и представление, поэтому

АИС - это человеко-машинная система, обеспечивающая автоматизированную подготовку, поиск и обработку информации в рамках интегрированных сетевых, компьютерных и коммуникационных технологий для оптимизации экономической и другой деятельности в различных сферах управления.

На этой основе создаются различные автоматические и автоматизированные системы управления технологическими процессами. Типичным примером таких систем может служить в связи - автоматическая коммутационная станция. В этой системе управление осуществляется с помощью технических устройств типа процессоров или других более простых приборов. Человек-оператор не входит в контур управления, замыкающий связи объекта и органа управления, а лишь следит за ходом технологического процесса и по мере необходимости (например, в случае сбоя) вмешивается. Иначе обстоит дело с автоматизированной системой управления производственным процессом. В АС производственными процессами и объект и орган управления представляет собой единую человеко-машинную систему, человек обязательно входит в контур управления. По определению АС - это человеко-машинная система, предназначенная для сбора и обработки информации, необходимой для управления производственным процессом, то есть управления коллективами людей. Иначе говоря, успех функционирования таких систем во многом зависит от свойств и особенностей жизнедеятельности человеческого фактора. Без человека система АС производством самостоятельно не может работать, так как человек формирует задачи, разрабатывает все виды обеспечивающих подсистем, выбирает из выданных ЭВМ вариантов решений наиболее рациональный. И, разумеется, человек, что очень важно, в конечном счете юридически отвечает за результаты реализации принятых им решений. Как видим, роль человека огромна и не заменима. Человек организует программу подготовительных мероприятий перед созданием АС, следовательно, требуется помимо всего прочего специальное организационное и правовое обеспечение.

1. Информационные системы

1.1 Этапы развития АИС

История развития информационных систем и цели их использования на разных периодах представлены в приложении 1.

1 этап. Первые информационные системы появились в 50-х гг. В эти годы они были предназначены для обработки счетов и расчета зарплаты, а реализовывались на электромеханических бухгалтерских счетных машинах. Это приводило к некоторому сокращению затрат и времени на подготовку бумажных документов.

2 этап. 60-е гг. знаменуются изменением отношения к информационным системам. Информация, полученная из них, стала применяться для периодической отчетности по многим параметрам. Для этого организациям требовалось компьютерное оборудование широкого назначения, способное обслуживать множество функций, а не только обрабатывать счета и считать зарплату, как было ранее.

3 этап. В 70-х - начале 80-х гг. информационные системы начинают широко использоваться в качестве средства управленческого контроля, поддерживающего и ускоряющего процесс принятия решений.

4 этап. К концу 90-х начала 2000 гг. концепция использования информационных систем вновь изменяется. Они становятся стратегическим источником информации и используются на всех уровнях организации любого профиля. Информационные системы этого периода, предоставляя вовремя нужную информацию, помогают организации достичь успеха в своей деятельности, создавать новые товары и услуги, находить новые рынки сбыта, обеспечивать себе достойных партнеров, организовывать выпуск продукции по низкой цене и многое другое.

1.2 Жизненный цикл АИС и его этапы

Жизненный цикл (ЖЦ) - одно из базовых понятий методологии проектирования ИС. Это непрерывный процесс, который начинается с момента принятия решения о необходимости создания ИС и заканчивается в момент ее полного изъятия из эксплуатации.

Основным нормативным документом, регламентирующим ЖЦ, является международный стандарт ISO/IEC (ISO - International Organization of Standardization - Международная организация по стандартизации, IEC - International Electrotechnical Commission - Международная комиссия по электротехнике). Он определяет структуру ЖЦ, содержащую процессы, действия и задачи, которые должны быть выполнены во время создания ИС.

Структура ЖЦ по стандарту ISO/IEC базируется на трех группах процессов:

· основные процессы ЖЦ (приобретение, поставка, разработка, эксплуатация, сопровождение);

· вспомогательные процессы (документирование, управление конфигурацией, обеспечение качества, аттестация, аудит, решение проблем);

· организационные процессы (управление проектами, создание инфраструктуры проекта, улучшение самого ЖЦ, обучение).

Управление конфигурацией позволяет организовать, систематически учитывать и контролировать внесение изменений в ПО на всех стадиях ЖЦ.

Обеспечение качества проекта - верификация, тестирование ПО. Верификация - это процесс определения того, отвечает ли текущее состояние разработки требованиям данного этапа. Для этого проводится тестирование.

Управление проектом - планирование и организация работ, создание коллективов разработчиков, контроль за сроками и качеством выполняемых работ. Техническое и организационное обеспечение проекта включает выбор методов и инструментальных средств для реализации проекта, определение методов описания промежуточных состояний разработки, разработку методов и средств испытаний ПО, обучение персонала и т.п.

Модель ЖЦ - структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач, выполняемых на протяжении ЖЦ.

Наибольшее распространение получили две основные модели ЖЦ:

· каскадная модель (70-85 гг.);

· спиральная модель (86-90 гг.).

Каскадный способ - разбиение всей разработки на этапы, причем переход с одного этапа на следующий происходит только после того, как будет полностью завершена работа на текущем (Приложение 2).

Положительные стороны применения каскадного подхода:

· на каждом этапе формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;

· выполняемые в логичной последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Каскадный подход хорошо зарекомендовал себя при построении ИС, для которых в самом начале разработки можно достаточно точно и полно сформулировать все требования. В эту категорию попадают сложные расчетные системы, системы реального времени и другие подобные задачи.

Однако реально в процессе создания ИС постоянно возникает потребность в возврате к предыдущим этапам, уточнении или пересмотре ранее принятых решений. Реальный процесс создания ИС принимает следующий вид (Приложение 3).

Одно из использовавшихся в западной литературе названий такой схемы организации работ: "водопадная модель" (waterfall model).

Основным недостатком каскадного подхода является существенное запаздывание с получением результатов. Модели (как функциональные, так и информационные) автоматизируемого объекта могут устареть одновременно с их утверждением. Другой недостаток - такое проектирование ИС ведет к примитивной автоматизации (по сути - "механизации") существующих производственных действий работников.

В спиральной модели ЖЦ (Приложение 4), делается упор на начальные этапы ЖЦ: анализ и проектирование. Реализуемость технических решений проверяется путем создания прототипов.

Каждый виток спирали соответствует созданию нового фрагмента или версии ИС, на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Один виток спирали при этом представляет собой законченный проектный цикл по типу каскадной схемы. Такой подход назывался также "Продолжающимся проектированием". Позднее в проектный цикл дополнительно стали включать стадии разработки и опробования прототипа системы. Это называлось: "быстрое прототипирование", rapid prototyping approach или "fast-track".

Однако применение таких методов наряду с быстрым эффектом дает снижение управляемости проектом в целом и стыкуемости различных фрагментов ИС. Основная проблема спирального цикла - определение момента перехода на следующий этап. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. План составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.

1.3 Основы методологии проектирования АИС на основе CASE-технологий

Возрастающая сложность современных автоматизированных систем управления и повышение требовательности к ним обуславливает применение эффективных технологий создания и сопровождения АС в течение всего жизненного цикла. Такие технологии, базирующиеся на методологиях подготовки информационных систем и соответствующих комплексах интегрированных инструментальных средств, а также ориентированные на поддержку полного жизненного цикла АС или его основных этапов, получили название CASE-технологий и CASE-средств. Для успешной реализации проекта АС должны быть построены полные и непротиворечивые функциональные и информационные модели системы управления. Накопленный опыт проектирования указанных моделей показывает, что это логически сложная, трудоемкая и длительная по времени работа, требующая высокой квалификации участвующих в ней специалистов. Однако во многих случаях проектирование АС выполняется в основном на интуитивном уровне с применением неформальных методов, основанных на искусстве, практическом опыте и экспертных оценках. Кроме того, в процессе создания и функционирования АС информационные потребности пользователей могут изменяться или уточняться, что еще более усложняет разработку и сопровождение автоматизированных систем управления. От перечисленных недостатков в наибольшей степени свободны подходы, основанные на программно-технических средствах специального класса - CASE-средствах, реализующих CASE-технологии создания и сопровождения АС.

Под термином CASE (Computer Aided Software Engineering) понимаются программные средства, поддерживающие процессы создания и сопровождения АС, включая анализ и формулировку требований, проектирование прикладного программного обеспечения и баз данных, генерацию кода, тестирование, документирование, обеспечение качества, конфигурационное управление и управление проектом, а также другие процессы. CASE-средства вместе с системным программным обеспечением и техническими средствами образуют полную среду разработки АС.

Одним из базовых понятий методологии проектирования АС является понятие жизненного цикла ее программного обеспечения (ЖЦ ПО).

ЖЦ ПО - это непрерывный процесс, который начинается с момента принятия решения о необходимости создания ПО АС и заканчивается в момент его полного изъятия из эксплуатации

Структура ЖЦ ПО базируется на трех группах процессов: основные процессы ЖЦ ПО (приобретение, поставка, разработка, эксплуатация, сопровождение); вспомогательные процессы, обеспечивающие выполнение основных процессов (документирование, управление конфигурацией, обеспечение качества, верификация, аттестация, оценка, аудит, решение проблем); организационные процессы (управление проектами, создание инфраструктуры проекта, определение, оценка и улучшение самого ЖЦ, обучение). Разработка охватывает все работы по созданию ПО и его компонентов (анализ, проектирование и программирование) в соответствии с заданными требованиями, включая оформление проектной и эксплуатационной документации, подготовку материалов, необходимых для проверки работоспособности и качества программных проектов, материалов, необходимых для организации обучения персонала, и т.д. Эксплуатация включает в себя работы по внедрению компонентов ПО (конфигурирование базы данных и рабочих мест пользователей, обеспечение эксплуатационной документацией, проведение обучения персонала и др.), локализация проблем, возникающих при эксплуатации с устранением причин их возникновения, модификацию ПО в рамках установленного регламента, подготовку предложений по совершенствованию, развитию и модернизации системы. Каждый процесс характеризуется определенными задачами и методами их решения, исходными данными, полученными на предыдущем этапе, и результатами. Результатами анализа, в частности, являются функциональные модели, информационные модели и соответствующие им диаграммы.

ЖЦ ПО носит итерационный характер: результаты очередного этапа часто вызывают изменения в проектных решениях, выработанных на более ранних этапах.

Известно несколько моделей жизненного цикла программного обеспечения. Под моделью жизненного цикла ПО понимается структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач на протяжении всего цикла. Модель ЖЦ зависит от специфики АС и специфики условий, в которых система создается и функционирует. К настоящему времени наибольшее распространение получили следующие две основные модели ЖЦ: каскадный способ и спиральная модель. Каскадная модель применяется, как правило, для разработки однородных АС, представляющих собой единое целое. Ее основной характеристикой является разбиение всей разработки на этапы, причем переход с одного этапа на следующий происходит только после того, как будет полностью завершена работа на текущем (рис.1). Каждый этап завершается выпуском полного комплекта документации, достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков. Преимущества применения каскадного способа заключаются в следующем: на каждом этапе формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности; выполняемые в логичной последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие затраты. Каскадный подход хорошо зарекомендовал себя при построении АС, для которых в самом начале разработки можно достаточно точно и полно сформулировать все требования, с тем чтобы предоставить разработчикам свободу реализовать их технически как можно лучше. В эту категорию попадают сложные расчетные системы, системы реального времени и др. В то же время этот подход обладает рядом недостатков, вызванных прежде всего тем, что реальный процесс создания АС никогда полностью не укладывается в такую жесткую схему, постоянно возникает потребность в возврате к предыдущим этапами уточнении или пересмотре ранее принятых решений.

Такую трансформацию каскадной схемы разработки АС можно рассматривать как "моделирование с промежуточным контролем". Межэтапные корректировки обеспечивают большую надежность каскадной модели, хотя и увеличивают весь период разработки. Основным недостатком каскадного подхода является существенное запаздывание с получением результатов. Согласование результатов с пользователями производится только в точках, планируемых после завершения каждого этапа работ, требования к АС "заморожены" в виде технического задания на все время ее создания. Таким образом, пользователи могут вносить свои замечания только после того, как работа над системой будет полностью завершена. В случае неточного изложения требований или их изменения в течение длительного периода создания АС пользователи получают систему, не удовлетворяющую их потребностям. Модели (как функциональные, так и информационные) автоматизируемого объекта могут устареть одновременно с их утверждением. От перечисленных недостатков свободна спиральная модель разработки АС (рис. 1.2.3), в которой делается упор на начальные этапы ЖЦ: анализ и проектирование. На этих этапах реализуемость технических решений проверяется путем создания прототипов. Каждый виток спирали соответствует созданию фрагмента или версии ПО, на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Таким образом, углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который доводится до реализации. Разработка итерациями отражает объективно существующий спиральный цикл создания автоматизированной системы. Неполное завершение работ на каждом этапе позволяет переходить на следующий этап, не дожидаясь полного завершения работы на текущем. При итеративном способе разработки недостающую работу можно будет выполнить на следующей итерации. Главная же задача - как можно быстрее показать пользователям АС работоспособный продукт, тем самым активизируя процесс уточнения и дополнения требований. Основная проблема спирального цикла - определение момента перехода на следующий этап. Для ее решения необходимо ввести временные ограничения на каждый из этапов жизненного цикла. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. План составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков АС. В рамках спиральной модели ЖЦ широкое распространение получил один из подходов к разработке ПО, известный как методология быстрой разработки приложений RAD (Rapid Application Development). Эта методология включает в себя три составляющие: небольшая команда программистов (от 2 до 10 человек); короткий, но тщательно проработанный производственный график (от 2 до 6 мес.); повторяющийся цикл, при котором разработчики по мере того, как приложение начинает обретать форму, запрашивают и реализуют в продукте требования, полученные через взаимодействие с заказчиком. Команда разработчиков должна представлять собой группу профессионалов, имеющих опыт в анализе, проектировании, генерации кода и тестировании ПО с использованием CASE-средств, способных хорошо взаимодействовать с конечными пользователями и трансформировать их предложения в рабочие прототипы. Жизненный цикл ПО в соответствии с методологией RAD состоит из четырех фаз: анализа и планирования требований; проектирования; построения; внедрения.

На фазе анализа и планирования требований пользователи АС определяют функции, которые она должна выполнять, выделяют наиболее приоритетные из них, требующие проработки в первую очередь, описывают информационные потребности. Формулирование требований к АС осуществляется в основном силами пользователей под руководством специалистов-разработчиков. Ограничивается масштаб проекта АС, устанавливаются временные рамки для каждой из последующих фаз. Кроме того, определяется сама возможность реализации проекта в заданных размерах финансирования, на имеющихся аппаратных средствах и т.д. Результатом этого этапа должен быть список расставленных по приоритету функций будущей АС, а также предварительные функциональные модели АС.

На этапе проектирования часть пользователей принимает участие в техническом проектировании системы под руководством специалистов-разработчиков. CASE-средства используются для быстрого получения работающих прототипов приложений. Пользователи, непосредственно взаимодействуя с ними, уточняют и дополняют требования к системе, которые не были выявлены на предыдущей фазе. Более подробно рассматриваются процессы системы. Анализируется и при необходимости корректируется функциональная модель. Каждый процесс рассматривается детально. При необходимости для элементарного процесса создается частичный прототип: экран, диалог, отчет, устраняющий неясности или неоднозначности. Устанавливаются требования разграничения доступа к данным. На этой же фазе происходит определение необходимой документации. После детального определения состава процессов оценивается количество функциональных элементов разрабатываемой системы и принимается решение о разделении АС на подсистемы, поддающиеся реализации одной командой разработчиков за приемлемое для RAD-проектов время (60 - 90 дней). С использованием CASE-средств проект АС распределяется между различными командами (делится функциональная модель). Результатом данного этапа должны быть: общая информационная модель системы; функциональные модели системы в целом и подсистем, реализуемых отдельными командами разработчиков; точно определенные с помощью CASE-средств интерфейсы между автономно разрабатываемыми подсистемами; построенные прототипы экранов, отчетов, диалогов. Все модели и прототипы должны быть получены с применением тех CASE-средств, которые будут использоваться в дальнейшем при построении системы. Данное требование вызвано тем, что в традиционном подходе при передаче информации о проекте с этапа на этап нередко происходит неконтролируемое искажение данных. Применение единой среды хранения данных о проекте позволяет этого избежать. В отличие от обычных подходов, при которых используются специфические средства прототипирования, не предназначенные для построения реальных приложений, а прототипы выбрасываются после устранения неясностей в проекте АС, в подходе RAD каждый прототип передается будущей системе. Таким образом, на следующую фазу передается более полная и полезная информация.

На этапе построения осуществляется непосредственно сама быстрая подготовка приложения. При этом разработчики выполняют итеративное построение реальной АСУ на основе полученных в предыдущей фазе моделей, а также требований нефункционального характера. Программный код частично формируется CASE-средствами автоматически. Конечные пользователи на этой фазе оценивают получаемые результаты и вносят коррективы, если в процессе разработки система перестает удовлетворять указанным ранее требованиям. Тестирование автоматизированной системы осуществляется в процессе разработки. После окончания работ каждой отдельной команды разработчиков производится постепенная интеграция данной части системы с остальными, формируется полный программный код, выполняется тестирование совместной работы данной части приложения, а затем тестирование АС в целом. Завершается физическое проектирование АС, включающее: определение необходимости распределения данных; анализ использования данных; физическое проектирование базы данных; определение требований к аппаратным ресурсам и способов увеличения производительности, завершение разработки документации проекта. Результатом данного этапа является готовая автоматизированная система, удовлетворяющая всем согласованным требованиям.

На фазе внедрения АС производится обучение пользователей и вносятся организационные изменения. Для этого этапа характерно то, что одновременно с внедрением новой АС осуществляется работа с существующей системой управления до полного внедрения новой. Так как фаза построения достаточно непродолжительна, планирование и подготовка к внедрению должны начинаться заранее, как правило, на этапе проектирования системы. Приведенная схема разработки АС не является окончательной. Возможны различные варианты, зависящие, например, от начальных условий, в которых ведется создание АС: а) разрабатывается совершенно новая система; б) было проведено обследование предприятия и существует модель его деятельности; в) на предприятии уже существует АС, которая может быть использована в качестве начального прототипа или должна быть интегрирована с вновь разрабатываемой системой управления.

1.4 Информационное обеспечение АИС

Информационное обеспечение - совокупность единой системы классификации и кодирования информации, унифицированных систем документации, схем информационных потоков, циркулирующих в организации, а также методология построения баз данных.

Информационное обеспечение (ИО) - предоставление информационных ресурсов в распоряжение какого-либо объекта или субъекта.

Цель информационного обеспечения - своевременная выдача необходимой достоверной информации для выработки и принятия управленческих решений.

ИО - совокупность единой системы классификации и кодирования информации, унифицированных систем документации, схем информационных потоков, циркулирующих в организации, методология построения баз данных.

Данная подсистема предназначена для своевременного представления информации, принятия управленческих решений. ИО предприятия представляет собой информационную модель данного объекта. Для создания ИО нужно ясное понимание целей и задач, функций системы управления; совершение системы документооборота; выявление движения информации от момента ее возникновения и до ее использования на различных уровнях управления; наличие и использование классификации и кодирования информации; создание массивов информации на машинных носителях; владение методологией создания информационных моделей.

При организации ИО используется системный подход, обеспечивающий создание единой информационной базы; разработку типовой схемы обмена данными между различными уровнями системы и внутри каждого уровня; организацию единой схемы ведения и хранения информации; обеспечение решаемых задач исходными данными;

Основными функциями ИО являются наблюдение за ходом производственно-хозяйственной деятельности, выявление и регистрация состояния управляемых параметров и их отклонение от заданных режимов; подготовка к обработке первичных документов, отражающих состояние управляемых объектов; обеспечение автоматизированной обработки данных; осуществление прямой и обратной связи между объектами и субъектами управления.

ИО автоматизированных информационных систем состоит из внемашинного и внутримашинного ИО. (Приложение 5)

2. Разработка информационной системы "Реализация и обслуживание кассовых аппаратов"

2.1 "Реализация и обслуживание кассовых аппаратов"

Фирма продает организациям (не менее 10) кассовые аппараты (3-5 марок) и по желанию клиента заключает договора о последующем техническом обслуживании. Договор об обслуживании заключается на определенный срок (не менее 1 месяца) по выбору клиента; после окончания срока договора его можно продлить. Плата за обслуживание меняется в зависимости от времени заключения договора и его продолжительности. Формы оплаты: предоплата и/или помесячная (например, не позднее 10 числа каждого последующего месяца).

Основное задание:

1. Поиск информации о клиенте.

2. Вывод информации о покупках кассовых аппаратов и заключении договоров на обслуживание за период.

3. Вывод списка клиентов, оплативших вперед на определенный срок.

4. Список должников по запросу на текущий день с выделением "злостных" неплательщиков.

5. Расчет суммы долга и пени по отдельным клиентам.

Дополнительные задания:

1. Учесть возможность изменения тарифов в связи с модификацией кассовых аппаратов и расширением рынка услуг.

2. Предусмотреть систему скидок постоянным и добросовестным клиентам.

Примечание:

В общем виде можно рассмотреть задачу об оказании клиентам определенных услуг. Постановка задачи может быть скорректирована с учетом специфики рассматриваемой фирмы (телефонная сеть, фирма по продаже и обслуживанию компьютеров и т.п.)

Построение таблиц и схемы данных

Для создания таблиц в MS Access можно использовать конструктор таблиц или заполнять поля прямо в режиме таблицы.

Рисунок 1 Создание таблиц

При создании таблицы нужно ввести имена полей и соответствующие типы данных. В данной работе я создал три таблицы: "кассовые аппараты", "клиенты" и "продажи". информационный кассовый должник

После создания таблиц нужно создать отношения между ними. Сделать это можно в меню "схемы данных". Для создания связи между таблицами нужно соединить два поля с одинаковыми типами данных. Эти поля должны нести в себе идентичную информацию. Одно из полей должно быть ключевым.

Рисунок 2 Схема данных

2.2 Создание запросов и форм

После создания связей можно создавать запросы и формы. Запросы проще всего можно сделать с помощью конструктора запросов. Для построения запроса "поиск информации о клиенте" нужно добавить нужные поля из таблицы "клиенты" и добавить условие отбора в поле "название организации".

Like "*" & [Введите название организации] & "*"

Данный запрос будет выводить информацию о клиентах по введенному названию.

Для расчета долга клиентов я использовал в таблице "продажи" вычисляемые поля: "Срок договора", "общая стоимость" и "долг".

Рисунок 3 Создание запросов

Создавая формы, я использовал мастер форм и редактировал их с помощью конструктора. Например, чтобы создать форму для ввода данных в таблицу, нужно выделить таблицу и нажать мастер форм. В окне мастера выбираем нужные ячейки. После этого добавляем кнопки управления с помощью конструктор.

Рисунок 4 Создание форм

Рисунок 5 Форма

2.3 Создание кнопочной формы

Для создания кнопочной формы я использовал конструктор форм. Разделы в основной форме создаем с помощью инструмента "вкладка".

Рисунок 6 Создание кнопочной формы

Добавляем кнопки и редактируем их работу с помощью "обработка событий" в контекстном меню.

Рисунок 7 Создание макросов

Для того чтобы кнопочная форма открывалась при запуске базы данных нужно создать макрос. В меню создание нужно нажать "макрос". В открывшемся окне нужно создать макрос на открытие нужной формы. Сохраняем макрос с именем autoexec.

Заключение

Информационные системы на сегодняшний день - технологии, которые все активнее внедряются в жизнь. Информационные системы помогают автоматизировать процессы на всех уровнях, успешно контролировать работу компании, улучшить качество работы. Информационные системы - это программы самого разного направления. Это могут быть аналитические программы для автоматизации и улучшения работы внутри предприятия: составление отчетов, расчет заработной платы и т.д., контроль движения документов и т.д. Это могут быть удобные корпоративные проекты, позволяющие координировать работу нескольких точек, связывать производство и офис продаж, контролировать выдачу товара и т.д. Информационные системы предназначены для рационализации рабочих процессов любой сферы предприятия (финансы, торговля, склад, производство и т.д.). При этом особым отличием этих программ является то, что они создаются для человека, владеющего компьютером на уровне среднего пользователя.

В данной работе были рассмотрены понятие информационная система, автоматизированная информационная система, этапы развития информационных систем, способы и методы их проектирования. На основе практического задания были рассмотрены возможности MS Access.

Список использованных источников

1. Братищенко В.В. Проектирование информационных систем. - Иркутск: Изд-во БГУЭП, 2004. - 84 с.

2. Вендров А.М. Проектирование программного обеспечения экономических информационных систем. - М.: Финансы и статистика, 2000.

3. Годин В.В., Корнеев И.К. Управление информационными ресурсами; ИНФРА - М Москва, 2000 год.

4. Грекул В.И., Денищенко Г.Н., Коровкина Н.Л. Проектирование информационных систем. - М.: Интернет-университет информационных технологий - ИНТУИТ.ру, 2005.

5. Когаловский М.Р. Энциклопедия технологий баз данных. - М.: Финансы и статистика, 2002. - 800 с.

6. Когаловский М.Р. Перспективные технологии информационных систем. - М.: ДМК Пресс; Компания АйТи, 2003. - 288 с.

7. Маглинец. Ю.А. Анализ требований к автоматизированным информационным системам.

8. Мишенин А.И. Теория экономических информационных систем. - М.: Финансы и статистика, 2000. - 240 с.

9. Петров В.Н. Информационные системы. - Питер, 2003. - 688 с.

10. Ракитина Е.А., Пархоменко В.Л. Информатика и информационные системы в экономике: Учеб. пособие. Ч. 1. - Тамбов: Изд-во тамб. гос. техн. ун-та, 2005. - 148 с.

11. Бизнес медиа холдинг http://bmh.su/index.php?page=service&id=8

12. Википедия свободная энциклопедия http://ru.wikipedia.org/wiki/информационная_система

13. Википедия свободная энциклопедия http://ru.wikipedia.org/wiki/жизненый_цикл_программного_обеспечения

Приложение 1

Изменение подхода к использованию

Концепция использования информации

Вид информационных систем

Цель использования

1950-1960 гг.

Бумажный поток расчетных документов

Информационные системы обработки расчетных документов на электромеханических бухгалтерских машинах

Повышение скорости обработки документов Упрощение процедуры обработки счетов и расчета зарплаты

1960-1970 гг.

Основная помощь в подготовке отчетов

Управленческие ин формационные системы для производственной информации

Ускорение процесса подготовки отчетности

1970-1990 гг.

Управленческий контроль реализации (продаж)

Системы поддержки принятия решений

Системы для высшего звена управления

Выработка наиболее рационального решения

2000--- гг.

Информация - стратегический ресурс, обеспечивающий конкурентное преимущество

Стратегические информационные системы

Автоматизированные офисы

Выживание и процветание фирмы

Приложение 2

Приложение 3

Приложение 4

Приложение 5

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.