Нечеткая система типа Мамдани
Особенности нечеткой системы управления. Процесс фазификации, разработки нечетких правил и дефазификации, их характеристика. Применение стандартных функций принадлежности, структура нечеткой модели типа Мамдани, значение лингвистических переменных.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 16.05.2014 |
Размер файла | 179,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Министерство Образования Российской Федерации
Санкт Петербургского Государственного Университета
Аэрокосмического Приборостроения
Контрольная работа
По дисциплине «Интеллектуальный анализ данных»
На тему «Нечеткая система типа Мамдани»
г.Санкт-Петербург2011г.
Введение
Нечеткая логика основана на использовании оборотов естественного языка. Вы сами определяете необходимое число терминов и каждому из них ставите в соответствие некоторое значение описываемой физической величины. Для этого значения степень принадлежности физической величины к терму (слову естественного языка, характеризующего переменную) будет равна единице, а для всех остальных значений - в зависимости от выбранной функции принадлежности. Например, можно ввести переменную «возраст» и определить для нее термы «юношеский», «средний» и «преклонный». Диапазон ее применения очень широк - от бытовых приборов до управления сложными промышленными процессами. Многие современные задачи управления просто не могут быть решены классическими методами из-за очень большой сложности описывающих их математических моделей. Вместе с тем, чтобы использовать теорию нечеткости на цифровых компьютерах, необходимы математические преобразования, позволяющие перейти от лингвистических переменных к их числовым аналогам в ЭВМ.
Нечеткие системы управления
Нечеткая система (НС) -- это система, особенностью описания которой является:
· нечеткая спецификация параметров;
· нечеткое описание входных и выходных переменных системы;
· нечеткое описание функционирования системы на основе продукционных «ЕСЛИ…ТО…»правил.
Важнейшим классом нечетких систем являются нечеткие системы управления (НСУ). Одним из важнейших компонентов НСУ является база знаний, которая представляет собой совокупность нечетких правил «ЕСЛИ--ТО», определяющих взаимосвязь между входами и выходами исследуемой системы. Существуют различные типы нечетких правил: лингвистическая, реляционная, модель Takagi-Sugeno.
Для многих приложений, связанных с управлением технологическими процессами, необходимо построение модели рассматриваемого процесса. Знание модели позволяет подобрать соответствующий регулятор (модуль управления). Применение теории нечетких множеств для управления технологическими процессами не предполагает знания моделей этих процессов.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Рис. 1. Структура нечеткой системы управления
Процесс управления системой напрямую связан с выходной переменной нечеткой системы управления, но результат нечеткого логического вывода является нечетким, а физическое исполнительное устройство не способно воспринять такую команду. Необходимы специальные математические методы, позволяющие переходить от нечетких значений величин к вполне определенным. В целом весь процесс нечеткого управления можно разбить на несколько стадий: фазификация, разработка нечетких правил и дефазификация.
Фазификация (переход к нечеткости)
На данной стадии точные значения входных переменных преобразуются в значения лингвистических переменных посредством применения некоторых положений теории нечетких множеств, а именно - при помощи определенных функций принадлежности.
Лингвистические переменные
В нечеткой логике значения любой величины представляются не числами, а словами естественного языка и называются «термами». Так, значением лингвистической переменной «Дистанция» являются термы «Далеко», «Близко» и т. д. Для реализации лингвистической переменной необходимо определить точные физические значения ее термов. Допустим переменная «Дистанция» может принимать любое значение из диапазона от 0 до 60 метров. Согласно положениям теории нечетких множеств, каждому значению расстояния из диапазона в 60 метров может быть поставлено в соответствие некоторое число, от нуля до единицы, которое определяет степень принадлежности данного физического значения расстояния (допустим, 10 метров) к тому или иному терму лингвистической переменной «Дистанция». Тогда расстоянию в 50 метров можно задать степень принадлежности к терму «Далеко», равную 0,85, а к терму «Близко» - 0,15. Задаваясь вопросом, сколько всего термов в переменной необходимо для достаточно точного представления физической величины принято считать, что достаточно 3-7 термов на каждую переменную для большинства приложений. Большинство применений вполне исчерпывается использованием минимального количества термов. Такое определение содержит два экстремальных значения (минимальное и максимальное) и среднее. Что касается максимального количества термов, то оно не ограничено и зависит целиком от приложения и требуемой точности описания системы. Число 7 же обусловлено емкостью кратковременной памяти человека, в которой, по современным представлениям, может храниться до семи единиц информации.
мамдани фазификация лингвистическая переменная
Функции принадлежности
Принадлежность каждого точного значения к одному из термов лингвистической переменной определяется посредством функции принадлежности. Ее вид может быть абсолютно произвольным, однако сформировалось понятие о так называемых стандартных функциях принадлежности
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Рис. 2. Стандартные функции принадлежности
Стандартные функции принадлежности легко применимы к решению большинства задач. Однако если предстоит решать специфическую задачу, можно выбрать и более подходящую форму функции принадлежности, при этом можно добиться лучших результатов работы системы, чем при использовании функций стандартного вида.
Модели нечеткого логического вывода
Нечеткий логический вывод -- это аппроксимация зависимости «входы-выход» на основе лингвистических высказываний типа «ЕСЛИ-ТО» и операций над нечеткими множествами. Нечеткая модель содержит следующие блоки:
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Нечеткая модель типа Мамдани
В модели типа Мамдани взаимосвязь между входами X = (x1, x2,…, xn)и выходом y определяется нечеткой базой знаний следующего формата
где ai,jp -- лингвистический терм, которым оценивается переменная xi в строке с номером jp-- количество строк-конъюнкций, в которых выход y оценивается лингвистическим термомdj; m -- количество термов, используемых для лингвистической оценки выходной переменной y.
(1)
Все лингвистические термы в базе знаний (1) представляются как нечеткие множества, заданные соответствующими функциями принадлежности.
Нечеткая база знаний (1) может трактоваться как некоторое разбиение пространства влияющих факторов на подобласти с размытыми границами, в каждой из которых функция отклика принимает значение, заданное соответствующим нечетким множеством. Правило в базе знаний представляет собой «информационный сгусток», отражающий одну из особенностей зависимости «входы-выход». Такие «сгустки насыщенной информации» или «гранулы знаний» могут рассматриваться как аналог вербального кодирования, которое, как установили психологи, происходит в человеческом мозге при обучении. Видимо поэтому формирование нечеткой базы знаний в конкретной предметной области, как правило, не составляет трудностей для эксперта.
Введем следующие обозначения:
µjp(xi) -- функция принадлежности входаxiнечеткому терму
ai,jp, ,, , т.е.
-- функция принадлежности выхода y нечеткому терму , т.е.
Степень принадлежности входного вектора нечетким термамdjиз базы знаний (1) определяется следующей системой нечетких логических уравнений:
(2)
Нечеткое множество , соответствующее входному вектору X*, определяется следующим образом:
где imp-- импликация, обычно реализуемая как операция нахождения минимума; agg-- агрегирование нечетких множеств, которое наиболее часто реализуется операцией нахождения максимума.
Четкое значение выхода y, соответствующее входному вектору X*, определяется в результате дефазификации нечеткого множества. Наиболее часто применяется дефазификация по методу центра тяжести:
Заключение
Основными потребителями нечеткой логики на рынке СНГ являются банкиры и финансисты, а также специалисты в области политического и экономического анализа.
Элементы нечеткой логики можно найти в десятках промышленных изделий - от систем управления электропоездами и боевыми вертолетами до пылесосов и стиральных машин. Без применения нечеткой логики немыслимы современные ситуационные центры руководителей западных стран, где принимаются ключевые политические решения и моделируются разные кризисные ситуации. Одним из впечатляющих примеров масштабного применения нечеткой логики стало комплексное моделирование системы здравоохранения и социального обеспечения Великобритании (NationalHealthService - NHS), которое впервые позволило точно оценить и оптимизировать затраты на социальные нужды.
Используемая литература
· Орлов А.И. Теория принятия решений. Учебное пособие / А.И.Орлов.- М.: Издательство «Март», 2004. - 656 с.
· Нейронные сети, генетические алгоритмы и нечеткие системы. Д. Рутковская, M. Пилиньский, Л. Рутковский. 1999.
· Понятие лингвистической переменной и его применение к принятию приближенных решений. - Заде Л.А. М.: Мир, 1976.
Размещено на Allbest.ru
...Подобные документы
Параметры автомобиля, используемые в экспертной системе. Задание нечетких и лингвистических переменных, виды термов. Список правил для функционирования системы, результаты анализа ее работы. Применение алгоритма Мамдани в системах нечеткой логики.
курсовая работа [1,5 M], добавлен 10.02.2013Задание термов лингвистических переменных. Выбор четких входных переменных. Степени истинности правил. Построение нечеткой базы знаний для задачи об эффективности работы предприятия, проверка ее на полноту. Нечеткий вывод для конкретных значений.
контрольная работа [170,2 K], добавлен 19.11.2014Начальное представление систем нечеткого вывода: логический вывод, база знаний. Алгоритм Мамдани в системах нечеткого вывода: принцип работы, формирование базы правил и входных переменных, агрегирование подусловий, активизация подзаключений и заключений.
курсовая работа [757,3 K], добавлен 24.06.2011Разработка программного обеспечения автоматизированной системы безопасности. Задание лингвистических переменных в среде MatLAB. Развитие нечеткой логики. Характеристика нечетких систем; смещение центра их исследований в сторону практических применений.
курсовая работа [2,2 M], добавлен 10.02.2013Основные этапы систем нечеткого вывода. Правила нечетких продукций, используемые в них. Нечеткие лингвистические высказывания. Определение алгоритмов Цукамото, Ларсена, Сугено. Реализации нечеткого вывода Мамдани на примере работы уличного светофора.
курсовая работа [479,6 K], добавлен 14.07.2012Изучение методов разработки систем управления на основе аппарата нечеткой логики и нейронных сетей. Емкость с двумя клапанами с целью установки заданного уровня жидкости и построение нескольких типов регуляторов. Проведение сравнительного анализа.
курсовая работа [322,5 K], добавлен 14.03.2009Исследование нечеткой модели управления. Создание нейронной сети, выполняющей различные функции. Исследование генетического алгоритма поиска экстремума целевой функции. Сравнительный анализ нечеткой логики и нейронной сети на примере печи кипящего слоя.
лабораторная работа [2,3 M], добавлен 25.03.2014Использование нечеткой логики при управлении техническими объектами, основанными на имитации действия человека-оператора при помощи ЭВМ, в соединении с пропорционально-интегрально-дифференциальным регулированием и алгоритмах управления процессом флотации.
доклад [74,7 K], добавлен 21.12.2009Рождение искусственного интеллекта. История развития нейронных сетей, эволюционного программирования, нечеткой логики. Генетические алгоритмы, их применение. Искусственный интеллект, нейронные сети, эволюционное программирование и нечеткая логика сейчас.
реферат [78,9 K], добавлен 22.01.2015Решение задачи аппроксимации поверхности при помощи системы нечёткого вывода. Определение входных и выходных переменных, их термы; алгоритм Сугено. Подбор функций принадлежности, построение базы правил, необходимых для связи входных и выходных переменных.
курсовая работа [1,8 M], добавлен 31.05.2014Мобильные роботы и их применение. Главные особенности разработки шарового робота типа "колобок". Робот с шаровым движителем. Разработка и исследование системы прямого компьютерного управления роботом. Программное оборудование системного управления.
дипломная работа [1,6 M], добавлен 28.05.2012Исследование методов автоматического проектирования нечетких систем управления (НСУ). Методы автоматической настройки семантики лингвистических переменных. Искусственные нейронные сети, генетические алгоритмы. Коэволюционный алгоритм для формирования НСУ.
дипломная работа [2,3 M], добавлен 02.06.2011Прогнозирование валютных курсов с использованием искусственной нейронной сети. Общая характеристика среды программирования Delphi 7. Существующие методы прогнозирования. Характеристика нечетких нейронных сетей. Инструкция по работе с программой.
курсовая работа [2,2 M], добавлен 12.11.2010Понятие о современных вычислительных системах. Структура ВС типа "Обобщенный nD-куб". Определения, необходимые для разработки алгоритма распределения программных модулей по вычислительным модулям вычислительной сети. Структура типа обобщенный гиперкуб.
курсовая работа [1,1 M], добавлен 09.03.2013Особенности проектирования нечетких систем, создание функций принадлежности и продукционных правил. Методы устранения нечеткости. Порядок создания библиотек компонентов, электрической принципиальной схемы в DipTrace, проверка топологии печатной платы.
курсовая работа [1,9 M], добавлен 11.12.2012Разработка системы управления проектами для компании ЗАО "Диакон". Экономические параметры разработки и внедрения электронной информационной системы. Технология разработки программного обеспечения. Выбор типа графического интерфейса, его составляющие.
дипломная работа [1,4 M], добавлен 10.06.2014История возникновения стандарта IDEF0. Особенности процесса и концепции методологии функционального моделирования SADT, ее структура и применение. Пример практической разработки модели информационной системы "Управления федерального казначейства".
курсовая работа [731,5 K], добавлен 09.10.2012Системы визуального объектно-ориентированного программирования. Среда разработки Delphi. Microsoft Access как система управления базами данных реляционного типа. Структурированный язык запросов SQL. Программирование базы данных Библиотечного фонда.
курсовая работа [2,5 M], добавлен 08.01.2012Понятие и суть нечеткой логики и генетических алгоритмов. Характеристика программных пакетов для работы с системами искусственного интеллекта в среде Matlab R2009b. Реализация аппроксимации функции с применением аппарата нечеткого логического вывода.
курсовая работа [2,3 M], добавлен 23.06.2012Анализ и разработка информационной системы, структура сети предприятия. Описание процесса разработки конфигураций и выявление потребностей в автоматизации функций. Средства разработки проектирования и архитектура базы данных. Разработка модели угроз.
дипломная работа [1,4 M], добавлен 13.07.2011