Характеристика и структура экспертных систем

Основные преимущества в использовании программных средств, базирующихся на технологии экспертных систем. Характеристика архитектуры клиент-сервер. Основное предназначение базы данных. Особенности предметной области с точки зрения методов реализации.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 27.05.2014
Размер файла 16,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Введение

В начале восьмидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название "экспертные системы" (ЭС). Цель исследований по ЭС состоит в разработке программ, которые при решении задач, трудных для эксперта-человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. Исследователи в области ЭС для названия своей дисциплины часто используют также термин "инженерия знаний", введенный Е. Фейгенбаумом как "привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов".

Программные средства (ПС), базирующиеся на технологии экспертных систем, получили значительное распространение в мире. Важность экспертных систем состоит в следующем:

· технология экспертных систем существенно расширяет круг практически значимых задач, решаемых на компьютерах, решение которых приносит значительный экономический эффект;

· технология ЭС является важнейшим средством в решении глобальных проблем традиционного программирования: длительность и, следовательно, высокая стоимость разработки сложных приложений;

· высокая стоимость сопровождения сложных систем, которая часто в несколько раз превосходит стоимость их разработки; низкий уровень повторной используемости программ и т.п.;

По мнению ведущих специалистов, в недалекой перспективе ЭС найдут следующее применение:

· ЭС будут играть ведущую роль во всех фазах проектирования, разработки, производства, распределения, продажи, поддержки и оказания услуг;

· технология ЭС, получившая коммерческое распространение, обеспечит революционный прорыв в интеграции приложений из готовых интеллектуально-взаимодействующих модулей.

ЭС предназначены для так называемых неформализованных задач, т.е. ЭС не отвергают и не заменяют традиционного подхода к разработке программ, ориентированного на решение формализованных задач.

Коммерческие успехи к фирмам-разработчикам систем искусственного интеллекта (СИИ) пришли не сразу. На протяжении 1960 - 1985 гг. успехи ИИ касались в основном исследовательских разработок, которые демонстрировали пригодность СИИ для практического использования. Начиная примерно с 1985 г. (в массовом масштабе с 1988 - 1990 гг.), в первую очередь ЭС, а в последние годы системы, воспринимающие естественный язык (ЕЯ-системы), и нейронные сети (НС) стали активно использоваться в коммерческих приложениях.

Следует обратить внимание на то, что некоторые специалисты (как правило, специалисты в программировании, а не в ИИ) продолжают утверждать, что ЭС и СИИ не оправдали возлагавшихся на них ожиданий и умерли. Причины таких заблуждений состоят в том, что эти авторы рассматривали ЭС как альтернативу традиционному программированию, т.е. они исходили из того, что ЭС в одиночестве (в изоляции от других программных средств) полностью решают задачи, стоящие перед заказчиком. Надо отметить, что на заре появления ЭС специфика используемых в них языков, технологии разработки приложений и используемого оборудования (например, Lisp-машины) давала основания предполагать, что интеграция ЭС с традиционными, программными системами является сложной и, возможно, невыполнимой задачей при ограничениях, накладываемых реальными приложениями. Однако в настоящее время коммерческие инструментальные средства (ИС) для создания ЭС разрабатываются в полном соответствии с современными технологическими тенденциями традиционного программирования, что снимает проблемы, возникающие при создании интегрированных приложений.

Причины, приведшие СИИ к коммерческому успеху, следующие:

Интегрированность. Разработаны инструментальные средства искусственного интеллекта (ИС ИИ), легко интегрирующиеся с другими информационными технологиями и средствами (с CASE, СУБД, контроллерами, концентраторами данных и т.п.).

Открытость и переносимость. ИС ИИ разрабатываются с соблюдением стандартов, обеспечивающих открытость и переносимость.

Использование языков традиционного программирования и рабочих станций. Переход от ИС ИИ, реализованных на языках ИИ (Lisp, Prolog и т.п.), к ИС ИИ, реализованным на языках традиционного программирования (С, C++ и т.п.), упростил обеспечение интегрированности, снизил требования приложений ИИ к быстродействию ЭВМ и объемам оперативной памяти. Использование рабочих станций (вместо ПК) резко увеличило круг приложений, которые могут быть выполнены на ЭВМ с использованием ИС ИИ.

Архитектура клиент-сервер. Разработаны ИС ИИ, поддерживающие распределенные вычисления по архитектуре клиент-сервер, что позволило снизить стоимость оборудования, используемого в приложениях, децентрализовать приложения, повысить надежность и общую производительность (так как сокращается количество информации, пересылаемой между ЭВМ, и каждый модуль приложения выполняется на адекватном ему оборудовании).

Проблемно/предметно-ориентированные ИС ИИ. Переход от разработок ИС ИИ общего назначения (хотя они не утратили свое значение как средство для создания ориентированных ИС) к проблемно/предметно-ориентированным ИС ИИ обеспечивает: сокращение сроков разработки приложений; увеличение эффективности использования ИС; упрощение и ускорение работы эксперта; повторную используемость информационного и программного обеспечения (объекты, классы, правила, процедуры).

1. Структура экспертных систем

ЭС обычно состоит из следующих основных компонентов:

· решателя (интерпретатора);

· рабочей памяти (РП), называемой также базой данных (БД);

· базы знаний (БЗ);

· компонентов приобретения знаний;

· объяснительного компонента;

· диалогового компонента.

База данных (БД) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (в первую очередь долгосрочных), хранимых в системе.

База знаний (БЗ) в ЭС предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области.

Решатель, используя исходные данные из рабочей памяти и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными к исходным данным, приводят к решению задачи.

Компонент приобретения знаний автоматизирует процесс наполнения ЭС знаниями, осуществляемый пользователем-экспертом.

Объяснительный компонент объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату.

В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ его получения. Необходимо отметить, что в зависимости от назначения ЭС пользователь может не быть специалистом в данной проблемной области (в этом случае он обращается к ЭС за результатом, не умея получить его сам), или быть специалистом. В этом случае пользователь может сам получить результат, но он обращается к ЭС с целью либо ускорить процесс получения результата, либо возложить на ЭС рутинную работу. В режиме консультации данные о задаче пользователя после обработки их диалоговым компонентом поступают в рабочую память. Решатель на основе входных данных из рабочей памяти, общих данных о проблемной области и правил из БЗ формирует решение задачи. ЭС при решении задачи не только исполняет предписанную последовательность операции, но и предварительно формирует ее.

2. Разработка экспертных систем

На сегодняшний день сложилась определенная технология разработки экспертных систем, включающая 6 этапов:

Этап 1. Идентификация

Определяются задачи, которые подлежат решению. Планируется ход разработки прототипа экспертной системы, определяются: нужные ресурсы (время, люди, ЭВМ и т.д.). Источники знаний (книги, дополнительные специалисты, методики), имеющиеся аналогичные экспертные системы, цели (распространение опыта, автоматизация рутинных действий и др.), классы решаемых задач и т.д. Этап идентификации - это знакомство и обучение коллектива разработчиков. Средняя длительность 1-2 недели.

На этом же этапе разработки экспертных систем проходит извлечение знаний. Инженер по знаниям помогает эксперту выявить и структурировать знания, необходимые для работы экспертной системы, с использованием различных способов: анализ текстов, диалоги, экспертные игры, лекции, дискуссии, интервью, наблюдение и другие. Извлечение знаний - это получение инженером по знаниям более полного представления о предметной области и методах принятия решения в ней. Средняя длительность 1-3 месяца.

Этап 2. Концептуализация.

Выявляется структура полученных знаний о предметной области. Определяются: терминология, перечень главных понятий и их атрибутов, структура входной и выходной информации, стратегия принятия решений и т.д. Концептуализация - это разработка неформального описания знаний о предметной области в виде графа, таблицы, диаграммы либо текста, которое отражает главные концепции и взаимосвязи между понятиями предметной области. Средняя длительность этапа 2-4 недели.

Этап 3. Формализация.

На этапе формализации все ключевые понятия и отношения, выявленные на этапе концептуализации, выражаются на некотором формальном языке, предложенном (выбранном) инженером по знаниям. Здесь он определяет, подходят ли имеющиеся инструментальные средства для решения рассматриваемой проблемы или необходим выбор другого инструментария, или требуются оригинальные разработки. Средняя длительность 1-2 месяца.

Этап 4. Реализация.

Создается прототип экспертной системы, включающий базу знаний и другие подсистемы. На данном этапе применяются следующие инструментальные средства: программирование на обычных языках (Паскаль, Си и др.), программирование на специализированных языках, применяемых в задачах искусственного интеллекта (LISP, FRL, SmallTalk и др.) и др.

Четвертый этап разработки экспертных систем в какой-то степени является ключевым, так как здесь происходит создание программного комплекса, демонстрирующего жизнеспособность подхода в целом. Средняя длительность 1-2 месяца.

Этап 5. Тестирование.

Прототип проверяется на удобство и адекватность интерфейсов ввода-вывода, эффективность стратегии управления, качество проверочных примеров, корректность базы знаний. Тестирование - это выявление ошибок в выбранном подходе, выявление ошибок в реализации прототипа, а также выработка рекомендаций по доводке системы до промышленного варианта.

Этап 6. Опытная эксплуатация.

Проверяется пригодность экспертной системы для конечных пользователей. По результатам этого этапа может потребоваться существенная модификация экспертной системы.

Процесс разработки экспертной системы не сводится к строгой последовательности перечисленных выше этапов. В ходе работ приходится неоднократно возвращаться на более ранние этапы и пересматривать принятые там решения.

Использовать ЭС следует только тогда, когда разработка ЭС возможна, оправдана и методы инженерии знаний соответствуют решаемой задаче. Чтобы разработка ЭС была возможной для данного приложения, необходимо одновременное выполнение, по крайней мере, следующих требований:

· существуют эксперты в данной области, которые решают задачу значительно лучше, чем начинающие специалисты;

· эксперты сходятся в оценке предлагаемого решения, иначе нельзя будет оценить качество разработанной ЭС;

· эксперты способны вербализовать (выразить на естественном языке) и объяснить используемые ими методы, в противном случае трудно рассчитывать на то, что знания экспертов будут "извлечены" и вложены в ЭС;

· решение задачи требует только рассуждений, а не действий;

· задача не должна быть слишком трудной (т.е. ее решение должно занимать у эксперта несколько часов или дней, а не недель);

· задача хотя и не должна быть выражена в формальном виде, но все же должна относиться к достаточно "понятной" и структурированной области, т.е. должны быть выделены основные понятия, отношения и известные (хотя бы эксперту) способы получения решения задачи;

· решение задачи не должно в значительной степени использовать "здравый смысл" (т.е. широкий спектр общих сведений о мире и о способе его функционирования, которые знает и умеет использовать любой нормальный человек), так как подобные знания пока не удается (в достаточном количестве) вложить в системы искусственного интеллекта.

Использование ЭС может быть, возможно, но не оправдано. Применение ЭС может быть оправдано одним из следующих факторов:

· решение задачи принесет значительный эффект, например, экономический;

· использование человека-эксперта невозможно либо из-за недостаточного количества экспертов, либо из-за необходимости выполнять экспертизу одновременно в различных местах;

· использование ЭС целесообразно в тех случаях, когда при передаче информации эксперту происходит недопустимая потеря времени или информации;

· использование ЭС целесообразно при необходимости решать задачу в окружении, враждебном для человека.

3. Методы поиска решений в экспертных системах

программный экспертный сервер

Особенности предметной области с точки зрения методов решения можно характеризовать следующими параметрами:

· размер, определяющий объем пространства, в котором предстоит искать решение;

· изменяемость области, характеризует степень изменяемости области во времени и пространстве (здесь будем выделять статические и динамические области);

· полнота модели, описывающей область, характеризует адекватность модели, используемой для описания данной области. Обычно если модель не полна, то для описания области используют несколько моделей, дополняющих друг друга за счет отражения различных свойств предметной области;

· определенность данных о решаемой задаче, характеризует степень точности (ошибочности) и полноты (неполноты) данных. Точность (ошибочность) является показателем того, что предметная область с точки зрения решаемых задач описана точными или неточными данными; под полнотой (неполнотой) данных понимается достаточность (недостаточность) входных данных для однозначного решения задачи.

Требования пользователя к результату задачи, решаемой с помощью поиска, можно характеризовать количеством решений и свойствами результата и (или) способом его получения. Параметр "количество решений" может принимать следующие основные значения: одно решение, несколько решений, все решения. Параметр "свойства" задает ограничения, которым должен удовлетворять полученный результат или способ его получения. Так, например, для системы, выдающей рекомендации по лечению больных, пользователь может указать требование не использовать некоторое лекарство (в связи с его отсутствием или в связи с тем, что оно противопоказано данному пациенту). Параметр "свойства" может определять и такие особенности, как время решения ("не более чем", "диапазон времени" и т.п.). Объем памяти, используемой для получения результата, указание об обязательности (невозможности) использования каких-либо знаний (данных) и т.п.

Итак, сложность задачи, определяемая вышеприведенным набором параметров, варьируется от простых задач малой размерности с неизменяемыми определенными данными и отсутствием ограничений на результат и способ его получения до сложных задач большой размерности с изменяемыми, ошибочными и неполными данными и произвольными ограничениями на результат и способ его получения. Из общих соображений ясно, что каким-либо одним методом нельзя решить все задачи. Обычно одни методы превосходят другие только по некоторым из перечисленных параметров.

Рассмотренные ниже методы могут работать в статических и динамических проблемных средах. Для того чтобы они работали в условиях динамики, необходимо учитывать время жизни значений переменных, источник данных для переменных, а также обеспечивать возможность хранения истории значений переменных, моделирования внешнего окружения и оперирования временными категориями в правилах.

Существующие методы решения задач, используемые в экспертных системах, можно классифицировать следующим образом:

· методы поиска в одном пространстве - методы, предназначенные для использования в следующих условиях: области небольшой размерности, полнота модели, точные и полные данные;

· методы поиска в иерархических пространствах - методы, предназначенные для работы в областях большой размерности;

· методы поиска при неточных и неполных данных;

· методы поиска, использующие несколько моделей, предназначенные для работы с областями, для адекватного описания которых одной модели недостаточно.

Предполагается, что перечисленные методы при необходимости должны объединяться для того, чтобы позволить решать задачи, сложность которых возрастает одновременно по нескольким параметрам.

Заключение

Написание экспертных систем требует сравнительно больших трудозатрат и материальных ресурсов. Чтобы избежать дорогостоящих и безуспешных попыток необходимо определить, является ли проблема подходящей для решения с помощью экспертной системы:

· Потребность в решении должна соответствовать затратам на ее разработку. Суммы затрат и полученная выгода должны быть реалистичными.

· Невозможно использовать знания человека-эксперта там, где это необходимо. Если экспертные знания широко распространены, то маловероятно, что стоит разрабатывать экспертную систему. Однако, в таких областях, как разведка нефти и медицина, могут быть редкие специализированные знания, которыми можно недорого снабдить экспертную систему, и не использовать очень высоко оплачиваемого эксперта.

Как при проектировании большинства прикладных программ, если пользователь не доволен разработанной системой, то затрачиваются дополнительные деньги, так что разработка должна включать близкое сотрудничество с потенциальными пользователями. Базисный цикл развития должен включать быструю разработку начального прототипа и итерационного процесса испытания и изменения прототипа совместно с экспертами и пользователем.

Экспертная система, пусть даже с элементами искусственного интеллекта, останется лишь инструментом грамотного пользователя: инженера, изобретателя, учёного, способным многократно повысить эффективность их работы.

Список использованной литературы

1. Автоматизированное проектирование информационно-управляющих систем. Проектирование экспертных систем на основе системного моделирования: / Науч. ред.: Куликов Г.Г. - Уфа: Уфим. гос. авиац. техн. ун-т, 2009. - 223с.

2. Автоматизированные информационные системы, базы и банки данных. Вводный курс: Учебное пособие. / Гайдамакин Н.А. -- М.: Гелиос АРЕ, 2002. - 204с.

3. Инжиниринг информационных и деловых процессов: Сб. науч. тр. / М-во общ. и проф. образования Рос. Федерации. Моск. гос. ун-т экономики, статистики и информатики; [Редкол.: Ю.Ф. Тельнов (отв. ред.) и др.]. - М.: Моск. гос. ун-т экономики, статистики и информатики, 2008. - 137с.

4. Информационные технологии: учеб. пособие / О.Л. Голицына, Н.В. Максимов, Т.Л. Партыка, И.И. Попов. М.: ФОРУМ: ИНФРА-М, 2006. -198с.

5. Компьютерные технологии обработки информации: Учеб. пособие / С.В. Назаров, В.И. Першиков, В.А. Тафинцев и др.; Под ред. С.В. Назарова. - М.: Финансы и статистика, 2009. - 248с.

6. Основы информатики (учебное пособие для абитуриентов экономических ВУЗов) / К.И. Курбаков, Т.Л. Партыка, И.И. Попов, В.П. Романов. М.: Экзамен, 2010. - 157с.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение характеристик, классификации, функций и основных элементов экспертных систем. Исследование их структуры и отличительных особенностей от другого программного обеспечения. Описания методов проектирования и области применения экспертных систем.

    реферат [38,1 K], добавлен 18.09.2013

  • Понятие и особенности экспертных систем, способных накапливать, обрабатывать знания из некоторой предметной области, на их основе выводить новые знания и решать на основе этих знаний практические задачи. История и устройство юридических экспертных систем.

    реферат [58,4 K], добавлен 17.03.2015

  • Функциональная модель системы. Проектирование схемы базы данных. Проектирование архитектуры системы. Принцип технологии клиент-сервер. Построение схемы ресурсов. Выбор программных средств. Разработка базы данных с использованием Microsoft SQL Server.

    дипломная работа [1,1 M], добавлен 30.03.2015

  • Механизм автоматического рассуждения. Основные требования к экспертным системам. Наделение системы способностями эксперта. Типовая структура и классификация интерфейсов пользователей экспертных систем. Основные термины в области разработки систем.

    презентация [252,6 K], добавлен 14.08.2013

  • Исследование технологии проектирования базы данных. Локальные и удаленные базы данных. Архитектуры и типы сетей. Программная разработка информационной структуры предметной области. Обоснование выбора архитектуры "клиент-сервер" и операционной системы.

    дипломная работа [1,1 M], добавлен 15.02.2017

  • Сущность экспертных систем и их научно-познавательная деятельность. Структура, функции и классификация ЭС. Механизм вывода и система объяснений. Интегрированные информационные системы управления предприятием. Применение экспертных систем в логистике.

    курсовая работа [317,3 K], добавлен 13.10.2013

  • Определение экспертных систем, их достоинство и назначение. Классификация экспертных систем и их отличие от традиционных программ. Структура, этапы разработки и области применения. Классификация инструментальных средств и технология разработки систем.

    курсовая работа [78,0 K], добавлен 03.06.2009

  • Многоуровневые архитектуры клиент–сервер. Диаграммы классов, реализующих уровни презентации, бизнес–логики и базы данных приложения. Словесное описание процесса выполнения транзакций. Создание, изменение и удаление хранимых процедур, их выполнение.

    курсовая работа [3,4 M], добавлен 23.03.2013

  • Структура экспертных систем, их классификация и характеристики. Выбор среды разработки программирования. Этапы создания экспертных систем. Алгоритм формирования базы знаний с прямой цепочкой рассуждений. Особенности интерфейса модулей "Expert" и "Klient".

    курсовая работа [1,1 M], добавлен 18.08.2009

  • Понятие и содержание экспертных систем, принципы взаимосвязи элементов: интерфейса пользователя, собственно пользователя, эксперта, средств объяснения, рабочей памяти и машины логического вывода. Классификация, преимущества, недостатки экспертных систем.

    реферат [33,9 K], добавлен 25.02.2013

  • Преимущества и недостатки использования двух типов базовых архитектур Клиент-сервер и Интернет/Интранет, их компоненты и экономическая целесообразность. Информационные взаимосвязи компонентов WEB-узла, взаимодействие браузера, сервера и сценария CGI.

    реферат [324,4 K], добавлен 22.06.2011

  • Общее понятие и признаки классификации информационных систем. Типы архитектур построения информационных систем. Основные компоненты и свойства базы данных. Основные отличия файловых систем и систем баз данных. Архитектура клиент-сервер и ее пользователи.

    презентация [203,1 K], добавлен 22.01.2016

  • Проектирование информационной системы на основе архитектуры "файл-сервер", "клиент-сервер", многоуровневой архитектуры, Intranet-системы. Преимущества и недостатки файл-серверного подхода при обеспечении многопользовательского доступа к базе данных.

    лабораторная работа [220,5 K], добавлен 02.02.2015

  • Описание предметной области и разработка электронного учебника на основе архитектуры "клиент – сервер". Тестирование программы менеджера и создание интерфейса главного меню. Вход в программу в качестве пользователя и обеспечение перехода к данным лекций.

    курсовая работа [1,5 M], добавлен 26.02.2015

  • Основные концепции разработки приложения в архитектуре MVVM. Проектирование базы данных, предназначенной для сбора информации о дорожно-транспортных происшествиях. Классификация и типы архитектуры "клиент–сервер", ее основные достоинства и недостатки.

    курсовая работа [4,1 M], добавлен 25.11.2015

  • Основные этапы при создании экспертных систем: идентификация, концептуализация, формализация, выполнение, отладка и тестирование, опытная эксплуатация и внедрение. Соответствия между этапами проекта RAD и стадиями технологии быстрого прототипирования.

    лекция [38,8 K], добавлен 07.11.2013

  • Сущность, виды, направления использования и основные понятия экспертных систем. Понятие и характеристика основных элементов структуры экспертной системы. Основные виды классификаций экспертных систем: по решаемой задаче и по связи с реальным временем.

    доклад [104,5 K], добавлен 09.06.2010

  • Понятия, классификация и структура экспертных систем. Базы знаний и модели представления знаний. Механизмы логического вывода. Инструментальные средства проектирования и разработки экспертных систем. Предметная область ЭС "Выбор мобильного телефона".

    курсовая работа [2,2 M], добавлен 05.11.2014

  • Особенности архитектуры Java. Технология Java Database Connectivity. Кроссплатформенность Java-приложений. Преимущества языка программирования. Логическая структура базы данных. Структура программного комплекса. Верификация программных средств.

    курсовая работа [962,8 K], добавлен 13.01.2016

  • Системный анализ предметной области. Выбор инструментальных средств для создания программного обеспечения. Программирование на стороне SQL-сервера. Создание клиентского Win-приложения, пользовательский интерфейс. Физическое проектирование базы данных.

    курсовая работа [3,7 M], добавлен 20.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.