Математические модели
Изучение понятия математической модели — приближенного описания объекта моделирования, выраженного с помощью математической символики. Определение инструментария для создания математических моделей: MS Excel, языков программирования (Паскаль, Бейсик).
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 08.06.2014 |
Размер файла | 18,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Математические модели
Математическая модель -- приближенное описание объекта моделирования, выраженное с помощью математической символики.
Математические модели появились вместе с математикой много веков назад. Огромный толчок развитию математического моделирования придало появление ЭВМ. Применение вычислительных машин позволило проанализировать и применить на практике многие математические модели, которые раньше не поддавались аналитическому исследованию. Реализованная на компьютере математическая модель называется компьютерной математической моделью, а проведение целенаправленных расчетов с помощью компьютерной модели называется вычислительным экспериментом.
Этапы компьютерного математического моделирования расписаны далее. Первый этап -- определение целей моделирования. Эти цели могут быть различными:
1.модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (понимание);
2.модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);
3.модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).
Поясним на примерах. Пусть объект исследования -- взаимодействие потока жидкости или газа с телом, являющимся для этого потока препятствием. Опыт показывает, что сила сопротивления потоку со стороны тела растет с ростом скорости потока, но при некоторой достаточно высокой скорости эта сила скачком уменьшается с тем, чтобы с дальнейшим увеличением скорости снова возрасти. Что же вызвало уменьшение силы сопротивления? Математическое моделирование позволяет получить четкий ответ: в момент скачкообразного уменьшения сопротивления вихри, образующиеся в потоке жидкости или газа позади обтекаемого тела, начинают отрываться от него и уноситься потоком.
Пример совсем из другой области: мирно сосуществовавшие со стабильными численностями популяции двух видов особей, имеющих общую кормовую базу, "вдруг" начинают резко менять численность. И здесь математическое моделирование позволяет (с известной долей достоверности) установить причину (или по крайней мере опровергнуть определенную гипотезу). математический программирование excel бейсик
Выработка концепции управления объектом -- другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.
Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным -- на грани выполнимости -- в системах биолого-экономических, социальных. Если ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве относительно легко, то проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства несравненно труднее. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.
Второй этап: определение входных и выходных параметров модели; разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием, или разделением по рангам (см. "Формализация и моделирование").
Третий этап: построение математической модели. На этом этапе происходит переход от абстрактной формулировки модели к формулировке, имеющей конкретное математическое представление. Математическая модель -- это уравнения, системы уравнений, системы неравенств, дифференциальные уравнения или системы таких уравнений и пр.
Четвертый этап: выбор метода исследования математической модели. Чаще всего здесь используются численные методы, которые хорошо поддаются программированию. Как правило, для решения одной и той же задачи подходит несколько методов, различающихся точностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса моделирования.
Пятый этап: разработка алгоритма, составление и отладка программы для ЭВМ -- трудно формализуемый процесс. Из языков программирования многие профессионалы для математического моделирования предпочитают FORTRAN: как в силу традиций, так и в силу непревзойденной эффективности компиляторов (для расчетных работ) и наличия написанных на нем огромных, тщательно отлаженных и оптимизированных библиотек стандартных программ математических методов. В ходу и такие языки, как PASCAL, BASIC, С, -- в зависимости от характера задачи и склонностей программиста.
Шестой этап: тестирование программы. Работа программы проверяется на тестовой задаче с заранее известным ответом. Это -- лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. Обычно тестирование заканчивается тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.
Седьмой этап: собственно вычислительный эксперимент, в процессе которого выясняется, соответствует ли модель реальному объекту (процессу). Модель достаточно адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментально полученными характеристиками с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.
Классификация математических моделей
В основу классификации математических моделей можно положить различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.). Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Наконец, если исходить из общих задач моделирования в разных науках безотносительно к математическому аппарату, наиболее естественна такая классификация:
· дескриптивные (описательные) модели;
· оптимизационные модели;
· многокритериальные модели;
· игровые модели.
Поясним это на примерах.
Дескриптивные (описательные) модели. Например, моделирование движения кометы, вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.
Оптимизационные модели используются для описания процессов, на которые можно воздействовать, пытаясь добиться достижения заданной цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно задаться целью подобрать такой режим, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс хранения.
Многокритериальные модели. Нередко приходится оптимизировать процесс по нескольким параметрам одновременно, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, нужно организовать питание больших групп людей (в армии, детском летнем лагере и др.) физиологически правильно и, одновременно с этим, как можно дешевле. Ясно, что эти цели совсем не совпадают, т.е. при моделировании будет использоваться несколько критериев, между которыми нужно искать баланс.
Игровые модели могут иметь отношение не только к компьютерным играм, но и к весьма серьезным вещам. Например, полководец перед сражением при наличии неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный раздел современной математики -- теория игр, -- изучающий методы принятия решений в условиях неполной информации.
Методические рекомендации
В школьном курсе информатики начальное представление о компьютерном математическом моделировании ученики получают в рамках базового курса. В старших классах математическое моделирование может глубоко изучаться в общеобразовательном курсе для классов физико-математического профиля, а также в рамках специализированного элективного курса.
Основными формами обучения компьютерному математическому моделированию в старших классах являются лекционные, лабораторные и зачетные занятия. Обычно работа по созданию и подготовке к изучению каждой новой модели занимает 3--4 урока. В ходе изложения материала ставятся задачи, которые в дальнейшем должны быть решены учащимися самостоятельно, в общих чертах намечаются пути их решения. Формулируются вопросы, ответы на которые должны быть получены при выполнении заданий. Указывается дополнительная литература, позволяющая получить вспомогательные сведения для более успешного выполнения заданий.
Формой организации занятий при изучении нового материала обычно служит лекция. После завершения обсуждения очередной модели учащиеся имеют в своем распоряжении необходимые теоретические сведения и набор заданий для дальнейшей работы. В ходе подготовки к выполнению задания учащиеся выбирают подходящий метод решения, с помощью какого-либо известного частного решения тестируют разработанную программу. В случае вполне возможных затруднений при выполнении заданий дается консультация, делается предложение более детально проработать указанные разделы в литературных источниках.
Наиболее соответствующим практической части обучения компьютерному моделированию является метод проектов. Задание формулируется для ученика в виде учебного проекта и выполняется в течение нескольких уроков, причем основной организационной формой при этом являются компьютерные лабораторные работы. Обучение моделированию с помощью метода учебных проектов может быть реализовано на разных уровнях. Первый -- проблемное изложение процесса выполнения проекта, которое ведет учитель. Второй -- выполнение проекта учащимися под руководством учителя. Третий -- самостоятельное выполнение учащимися учебного исследовательского проекта.
Результаты работы должны быть представлены в численном виде, в виде графиков, диаграмм. Если имеется возможность, процесс представляется на экране ЭВМ в динамике. По окончанию расчетов и получению результатов проводится их анализ, сравнение с известными фактами из теории, подтверждается достоверность и проводится содержательная интерпретация, что в дальнейшем отражается в письменном отчете.
Если результаты удовлетворяют ученика и учителя, то работа считается завершенной, и ее конечным этапом является составление отчета. Отчет включает в себя краткие теоретические сведения по изучаемой теме, математическую постановку задачи, алгоритм решения и его обоснование, программу для ЭВМ, результаты работы программы, анализ результатов и выводы, список использованной литературы.
Когда все отчеты составлены, на зачетном занятии учащиеся выступают с краткими сообщениями о проделанной работе, защищают свой проект. Это является эффективной формой отчета группы, выполняющей проект, перед классом, включая постановку задачи, построение формальной модели, выбор методов работы с моделью, реализацию модели на компьютере, работу с готовой моделью, интерпретацию полученных результатов, прогнозирование. В итоге учащиеся могут получить две оценки: первую -- за проработанность проекта и успешность его защиты, вторую -- за программу, оптимальность ее алгоритма, интерфейс и т.д. Учащиеся получают отметки и в ходе опросов по теории.
Существенный вопрос -- каким инструментарием пользоваться в школьном курсе информатики для математического моделирования? Компьютерная реализация моделей может быть осуществлена:
· с помощью табличного процессора (как правило, MS Excel);
· путем создания программ на традиционных языках программирования (Паскаль, Бейсик и др.), а также на их современных версиях (Delphi, Visual Basic for Application и т.п.);
· с помощью специальных пакетов прикладных программ для решения математических задач (MathCAD и т.п.).
На уровне основной школы первое средство представляется более предпочтительным. Однако в старшей школе, когда программирование является, наряду с моделированием, ключевой темой информатики, желательно привлекать его в качестве инструмента моделирования. В процессе программирования учащимся становятся доступными детали математических процедур; более того, они просто вынуждены их осваивать, а это способствует и математическому образованию. Что же касается использования специальных пакетов программ, то это уместно в профильном курсе информатики в качестве дополнения к другим инструментам.
Размещено на Allbest.ru
...Подобные документы
Нахождение высоты конуса наименьшего объема, описанного около данного шара радиуса. Определение исследуемой функции, зависящей от одной переменной. Составление математической модели задачи. Построение графика заданной функции с помощью MS Excel.
задача [3,2 M], добавлен 15.02.2010Рассмотрение общих сведений и уровней языков программирования. Ознакомление с историей развития, использования языков программирования. Обзор достоинств и недостатков таких языков как Ассемблер, Паскаль, Си, Си++, Фортран, Кобол, Бейсик, SQL, HTML, Java.
курсовая работа [759,5 K], добавлен 04.11.2014Алгоритм симплекс-метода. Задача на определение числа и состава базисных и свободных переменных, построение математической модели. Каноническая задача линейного программирования. Графический метод решения задачи. Разработки математической модели в Excel.
курсовая работа [1,1 M], добавлен 18.05.2013Оценка современного этапа развития компьютерных технологий. История развития, классификации, сведения и уровни языков программирования. Обзор современных языков программирования: Си, его разовидности, Паскаль, Фортран, Бейсик - тенденция их развития.
курсовая работа [46,5 K], добавлен 22.12.2010Характеристика языков программирования: краткая история, хронология. Основные виды языков программирования: ассемблер; бейсик. Создание и использование формул в Excel. Применение операторов в формулах. Использование функций в Excel. Сайт дома отдыха.
отчет по практике [139,1 K], добавлен 03.06.2011Изучение и укрепление на практике всех моментов графического метода решения задач линейного программирования о производстве журналов "Автомеханик" и "Инструмент". Построение математической модели. Решение задачи с помощью электронной таблицы Excel.
курсовая работа [663,9 K], добавлен 10.06.2014Язык программирования как система обозначений, применяемая в описании алгоритмов для ЭВМ. Разработка программы на языке программирования Бейсик. Освоение приемов работы с электронными таблицами MS Excel. Создание базы данных с помощью СУБД MS Access.
контрольная работа [2,6 M], добавлен 15.02.2010Сущность математических моделей, классификация и принципы их построения. Анализ операционного исследования. Этапы решения задачи принятия оптимальных решений с помощью ЭВМ. Примеры задач линейного программирования. Математические методы экспертных оценок.
курсовая работа [56,0 K], добавлен 20.11.2015Особенности способов описания языков программирования. Язык программирования как способ записи программ на ЭВМ в понятной для компьютера форме. Характеристика языка Паскаль, анализ стандартных его функций. Анализ примеров записи арифметических выражений.
курсовая работа [292,0 K], добавлен 18.03.2013Оптимизационные модели на производстве. Компьютерное моделирование и программные средства. Трехмерное моделирование в T-Flex. Инженерный анализ в ANSYS. Интерфейс табличного процессора MS Excel. Построение математической модели задачи, ее реализация.
курсовая работа [5,2 M], добавлен 13.04.2014Математическая модель задачи: расчет объема производства, при котором средние постоянные издержки минимальны. Построение графика функции с помощью графического редактора MS Excel. Аналитическое исследование функции, зависящей от одной переменной.
курсовая работа [599,7 K], добавлен 13.02.2010Построение концептуальной модели и метод имитационного моделирования. Определение переменных уравнений математической модели и построение моделирующего алгоритма. Описание возможных улучшений системы и окончательный вариант модели с результатами.
курсовая работа [79,2 K], добавлен 25.06.2011Значение вербальных и знаковых информационных моделей для исследования объектов, процессов, явлений. Роль метода формализации в процессе создания компьютерной модели. Использование программы AutoCAD для трехмерного моделирования и визуализации объекта.
курсовая работа [866,5 K], добавлен 08.01.2015Разработка таблиц в Excel методами линейного программирования с целью оптимизации расходов ресурсов и запасов на изготовление продукции: определение переменных величин, структуры целевой функции, построение математической модели и блок-схем решения задач.
курсовая работа [3,7 M], добавлен 07.06.2010Приложения MS Word, MS Excel, Open Office в деятельности менеджера, категории задач, для решения которых они используются. Составление операционной математической модели, максимизирующей общий доход фабрики за месяц. Поиск решения с помощью MS Excel.
контрольная работа [511,4 K], добавлен 27.11.2011Структура математической модели линейной задачи, алгоритм симплекс-метода. Разработка программы: выбор языка программирования, входные и выходные данные, пользовательский интерфейс. Описание программы по листингу, тестирование, инструкция по применению.
курсовая работа [1,2 M], добавлен 31.05.2013Метод решения математической модели на примере решения задач аналитической геометрии. Описание согласно заданному варианту методов решения задачи. Разработка математической модели на основе описанных методов. Параметры окружности минимального радиуса.
лабораторная работа [310,6 K], добавлен 13.02.2009Понятия языка программирования, разновидности и характеристика языков. Исторический обзор их создания и применения. Классификация, примеры использования. Характеристики языков программирования с точки зрения элементов объектной модели, их популярность.
реферат [463,6 K], добавлен 07.09.2009Технология формирования исходной матрицы числовой экономико-математической модели на основе заданной информации. Алгоритм решения задачи программным комплексом на примере использования Excel. Процедура возврата результатов решения в электронную таблицу.
методичка [38,4 K], добавлен 05.07.2010- Математическое моделирование одноходового кожухотрубного противоточного теплообменника-подогревателя
Создание модели какого-либо процесса или объекта как основная цель процесса моделирования. Получение математической модели теплообменника-подогревателя для смесей газ-газ, жидкость-газ и жидкость-жидкость. Принятые допущения при разработке модели.
контрольная работа [351,5 K], добавлен 24.11.2014