Язык программирования С++

Автоматизированные банки данных и знаний, их основные функции. Шина PCI. Магистральный интерфейс AGP. Классификация типов данных С++. Передача дискретных данных на канальном уровне: протоколы передачи, способы связи между отправителем и получателем.

Рубрика Программирование, компьютеры и кибернетика
Вид шпаргалка
Язык русский
Дата добавления 25.06.2014
Размер файла 49,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Классификация ЭВМ по этапам создания.

По этапам создания и используемой элементной базе ЭВМ условно делятся на поколения:

Первое поколение, 50-е годы; ЭВМ на электронных вакуумных лампах.

Второе поколение, 60-е годы; ЭВМ на дискретных полупроводниковых приборах (транзисторах).

Третье поколение, 70-е годы; ЭВМ на полупроводниковых интегральных схемах с малой и средней степенью интеграции (сотни - тысячи транзисторов в одном корпусе).

Четвертое поколение, 80-е годы; ЭВМ на больших и сверхбольших интегральных схемах - микропроцессорах (десятки тысяч - миллионы транзисторов в одном

Пятое поколение, 90-е годы; ЭВМ с многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы;

Шестое и последующие поколения; оптоэлектронные ЭВМ с массовым параллелизмом и нейтронной структурой - с распределенной сетью большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейтронных биологических систем.

Каждое следующее поколение ЭВМ имеет по сравнению с предыдущими существенно лучшие характеристики. Так, производительность ЭВМ и емкость всех запоминающих устройств увеличивается, как правило, больше чем на порядок.

Классификация ЭВМ по назначению

По назначению ЭВМ можно разделить на три группы: универсальные (общего назначения), проблемно-ориентированные и специализированные.

Универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.

Характерными чертами универсальных ЭВМ является:

высокая производительность;

разнообразие форм обрабатываемых данных: двоичных, десятиричных, символьных, при большом диапазоне их изменения и высокой степени их представления;

обширная номенклатура выполняемых операций, как арифметических, логических, так и специальных;

большая емкость оперативной памяти;

развитая организация системы ввода-вывода информации, обеспечивающая подключение разнообразных видов внешних устройств.

Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.

К проблемно-ориентированным ЭВМ можно отнести, в частности, всевозможные управляющие вычислительные комплексы.

Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.

К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения; адептеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами согласования и сопряжения работы узлов вычислительных систем.К таким компьютерам также относятся, например, бортовые компьютеры автомобилей, судов, самолетов, космических аппаратов. Бортовые компьютеры управляют средствами ориентации и навигации, осуществляют контроль за состоянием бортовых систем, выполняют некоторые функции автоматического управления и связи, а также большинство функций оптимизации параметров работы объекта (например, оптимизацию расхода топлива объекта в зависимости от конкретных условий движения). Специализированные мини-ЭВМ, ориентированные на работу с графикой, называют графическими станциями. Специализированные компьютеры, объединяющие компьютеры предприятия в одну сеть, называют файловыми серверами. Компьютеры, обеспечивающие передачу информации между различными участниками всемирной компьютерной сети, называют сетевыми серверами.

Во многих случаях с задачами специализированных компьютерных систем могут справляться и обычные универсальные компьютеры, но считается, что использование специализированных систем все-таки эффективнее. Критерием оценки эффективности выступает отношение производительности оборудования к величине его стоимости.

Классификация ЭВМ по размерам и функциональным возможностям

По размерам и функциональным возможностям ЭВМ можно разделить на сверхбольшие, большие, малые, сверхмалые (микроЭВМ).

Функциональные возможности ЭВМ обусловливают важнейшие технико-эксплуатационные характеристики:

быстродействие, измеряемое усредненным количеством операций, выполняемых машиной за единицу времени;

разрядность и формы представления чисел, с которыми оперирует ЭВМ;

номенклатура, емкость и быстродействие всех запоминающих устройств;

номенклатура и технико-экономические характеристики внешних устройств хранения, обмена и ввода-вывода информации;

типы и пропускная способность устройств связи и сопряжения узлов ЭВМ между собой (внутримашинного интерфейса);

способность ЭВМ одновременно работать с несколькими пользователями и выполнять одновременно несколько программ (многопрограммность);

типы и технико-эксплутационные характеристики операционных систем, используемых в машине;

наличие и функциональные возможности программного обеспечения;

способность выполнять программы, написанные для других типов ЭВМ (программная совместимость с другими типами ЭВМ);

система и структура машинных команд;

возможность подключения к каналам связи и к вычислительной сети;

эксплуатационная надежность ЭВМ;

коэффициент полезного использования ЭВМ во времени, определяемый соотношением времени полезной работы и времени профилактики

Билет №17

1.Массивы и записи как формальные параметры процедур и функций

Параметры, указываемые при описании подпрограммы, называются формальными. Параметры, указываемые при вызове подпрограммы, называются фактическими.

Если формальный параметр описан с предваряющим ключевым словом var или const, то его называют параметром-переменной и говорят, что он передается по ссылке. Если же параметр описан без слов var или const, то его называют параметром-значением и говорят, что он передается по значению.

Если параметр передается по значению, то при вызове подпрограммы значения фактических параметров присваиваются соответствующим формальным параметрам. Типы фактических параметров-значений должны быть совместимы по присваиванию с типами соответствующих формальных параметров.

Если параметр передается по ссылке, то при вызове подпрограммы фактический параметр заменяет собой в теле процедуры соответствующий ему формальный параметр. В итоге любые изменения формального параметра-переменной внутри процедуры приводят к соответствующим изменениям фактического параметра. Фактические параметры-переменные должны быть переменными, а их типы должны быть эквивалентны типам соответствующих формальных параметров.

В качестве фактического параметра-значения можно указывать любое выражение, тип которого совпадает с типом формального параметра или неявно к нему приводится. В качестве фактического параметра-переменной можно указывать только переменную, тип которой в точности совпадает с типом формального параметра.

При передаче параметра по ссылке в подпрограмму передается адрес фактического параметра. Поэтому если параметр занимает много памяти (массив, запись), то обычно он также передается по ссылке. В результате в процедуру передается не сам параметр, а его адрес, что экономит память и время работы. При этом если параметр меняется внутри подпрограммы, то он передается с ключевым словом var, если не меняется - с ключевым словом const.

2.Файловые системы

Фамйловая системма (англ. file system) -- порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании: цифровых фотоаппаратах, мобильных телефонах и т. п. Файловая система определяет формат содержимого и способ физического хранения информации, которую принято группировать в виде файлов. Конкретная файловая система определяет размер имен файлов и (каталогов), максимальный возможный размер файла и раздела, набор атрибутов файла. Некоторые файловые системы предоставляют сервисные возможности, например, разграничение доступа или шифрование файлов.

Файловая система связывает носитель информации с одной стороны и API для доступа к файлам -- с другой. Когда прикладная программа обращается к файлу, она не имеет никакого представления о том, каким образом расположена информация в конкретном файле, так же, как и на каком физическом типе носителя (CD, жёстком диске, магнитной ленте, блоке флеш-памяти или другом) он записан. Всё, что знает программа -- это имя файла, его размер и атрибуты. Эти данные она получает от драйвера файловой системы. Именно файловая система устанавливает, где и как будет записан файл на физическом носителе (например, жёстком диске).

С точки зрения операционной системы (ОС), весь диск представляет собой набор кластеров (как правило, размером 512 байт и больше). Драйверы файловой системы организуют кластеры в файлы и каталоги (реально являющиеся файлами, содержащими список файлов в этом каталоге). Эти же драйверы отслеживают, какие из кластеров в настоящее время используются, какие свободны, какие помечены как неисправные.

Однако файловая система не обязательно напрямую связана с физическим носителем информации. Существуют виртуальные файловые системы, а также сетевые файловые системы, которые являются лишь способом доступа к файлам, находящимся на удалённом компьютере.

Основные функции любой файловой системы нацелены на решение следующих задач:

именование файлов;

программный интерфейс работы с файлами для приложений;

отображения логической модели файловой системы на физическую организацию хранилища данных;

организация устойчивости файловой системы к сбоям питания, ошибкам аппаратных и программных средств;

содержание параметров файла, необходимых для правильного его взаимодействия с другими объектами системы (ядро, приложения и пр.).

В многопользовательских системах появляется ещё одна задача: защита файлов одного пользователя от несанкционированного доступа другого пользователя, а также обеспечение совместной работы с файлами, к примеру, при открытии файла одним из пользователей, для других этот же файл временно будет доступен в режиме «только чтение».

3.Организация кэш-памяти. Целостность данных в кэш-памяти

Кэш-память (КП), или кэш, представляет собой организованную в виде ассоциативного запоминающего устройства (АЗУ) быстродействующую буферную память ограниченного объема, которая располагается между регистрами процессора и относительно медленной основной памятью и хранит наиболее часто используемую информацию совместно с ее признаками (тегами), в качестве которых выступает часть адресного кода.

Кэш-память находится между процессором и оперативной памятью и служит для хранения команд и данных, к которым происходило обращение процессора в предыдущий раз. Поскольку микропроцессор чаще всего обращается к соседним данным (то есть происходит последовательное чтение данных из сегмента кода и данных), то вероятность найти эти данные в кэше высока, и они будут взяты из кэша, а не оперативной памяти. Поскольку кэш-память работает быстрее, чем оперативная, ускоряется скорость работы системы.

Кэш память хранит копии последних считанных команд, операндов и других данных. Когда процессор запрашивает информацию, уже находящуюся в кэш-памяти (попадание), обращение к оперативной памяти через шину (цикл шины) не нужно. Когда же процессор запрашивает информацию, отсутствующую в кэш-памяти (промах), информация считывается в кэш-память за один или несколько циклов шины, называемых заполнением строки кэш-памяти.

Если процессор, запрашивает запись в область, находящуюся в кэш-памяти, выполняются два действия: обновляется кэш-память и записанные данные передаются в основную память. Эти действия называются сквозной записью. Как правило, запись в память не кэшируется. Это значит, что при кэш промахе при записи в память обновляется только оперативная память, тот есть строка кэш памяти не заполняется.

В кэш-память данные передаются блоками, которые для процессора i486 равны 16 байт. Кэш-память передает данные в другие устройства по двум 32-х разрядным шинам. Она воспринимает линейные адреса по 32-х битной шине и соответствующие физические адреса по 20-битной шине. Внутренняя кэш-память и устройство предвыборки команд тесно связаны. Блоки команд кэш-памяти можно быстро передать в устройство предвыборки команд, причем эти блоки имеют одинаковый размер. К кэш-памяти можно обращаться при каждом такте синхронизации. Она работает с физическими адресами, что делает минимальным число раз очистки кэш-памяти.

Внутренняя кэш-память имеет (по крайней мере, в микропроцессорах архитектуры x86) четырехнаправленную (или 1четырехканальную) ассоциативную организацию. Для хранения данных из конкретной области памяти в кэш-памяти есть четыре места. Эта четырехнаправленная ассоциативная организация является компромиссом между быстродействием кэш-памяти с 1прямым отображением при попадании и большим коэффициентом попаданий полностью ассоциативной кэш памятью

Целостность данных в кэш-памяти

Когерентность кэша (англ. cache coherence) -- свойство кэшей, означающее целостность данных, хранящихся в локальных кэшах для разделяемого ресурса. Когерентность кэшей -- частный случай когерентности памяти (en:memory coherence).

Когда клиенты в системе используют кэширование общих ресурсов, например, памяти, могут возникнуть проблемы с противоречивостью данных. Это особенно справедливо в отношении процессоров в многопроцессорной системе. На рисунке «Несколько кэшей для разделяемого ресурса памяти», если клиент в верхней части имеет копию блока памяти из предыдущего чтения, а нижний клиент изменяет блок памяти, копия данных в кэше верхнего клиента становится устаревшей, если не используются какие-либо уведомления об изменении или проверки изменений. Когерентность кэша предназначена для управления такими конфликтами и поддержания соответствия между разными кэшами.

Когерентность определяет поведение чтений и записей в одно и то же место памяти. Кэш называется когерентным, если выполняются следующие условия:

1.Если процессор Р записывает значение в переменную Х, то при следующем считывании Х он должен получить ранее записанное значение, если между записью и чтением Х другой процессор не производил запись в Х. Это условие связано с сохранением порядка выполнения программы, это должно выполняться и для однопоточной архитектуры.

2.Операция чтения Х процессором P_{1}, следующая после того, как другой процессор P_{2} осуществил запись в Х, должна вернуть записанное значение, если другие процессоры не изменяли Х между двумя операциями. Это условие определяет понятие когерентной видимости памяти.

3.Записи в одну и ту же ячейку памяти должны быть последовательными. Другими словами, если два процессора записывают в переменную Х два значения: А, затем В -- не должно случиться так, чтобы при считывании процессор сначала получал значение В, а затем А.

В этих условиях предполагается, что операции чтения и записи происходят мгновенно. Однако этого не происходит на практике из-за задержек памяти и других особенностей архитектуры. Изменения, сделанные процессором P_{1}, могут быть не видны процессору P_{2}, если чтение произошло через очень маленький промежуток времени после записи. Модель консистентности памяти определяет, когда записанное значение будет видно при чтении из другого потока.

Билет №18

1.Имена процедур и функций как формальные параметры. Процедурный тип

Процедуры и функции в Паскале являются удобным средством для однократного автономного описания тех фрагментов алгоритма, которые повторяются в разных его частях. Такие описания образуют раздел, который должен быть последним из числа разделов описаний программы. Для выполнения описанных в этом разделе фрагментов алгоритма в разделе операторов программы должны содержаться обращения к соответствующим процедурам и функциям. .

Описание подпрограммы состоит из заголовка и блока. Заголовок процедуры имеет вид:

Procedure < имя > (< список формальных параметров >);

Заголовок функции:

Function < имя >(< список формальных параметров >): < тип >;

Список формальных параметров необязателен и может отсутствовать. Если же он есть, то в нем должны быть перечислены имена формальных параметров и их тип. Несколько однотипных параметров можно объединять в подсписки, например:

Procedure SB( a : Real; b,d : Integer; c : Char);

Операторы подпрограммы рассматривают список формальных параметров как своеобразное расширение раздела описаний: все переменные из этого списка могут использоваться внутри подпрограммы.

Обращение к подпрограммам осуществляется указанием имени подпрограммы и списка фактических параметров, в качестве которых могут выступать константы, переменные и выражения, отделяемые друг от друга запятой. Количество и типы фактических параметров при обращении к подпрограмме должны точно соответствовать количеству и типам ее формальных параметров. В момент обращения к подпрограмме происходит замена формальных параметров на фактические. Таким образом осуществляется настройка алгоритма подпрограммы на конкретную задачу. Само обращение к процедурам и функциям происходит по разному. Для обращения к процедуре используется специальный оператор, состоящий из имени процедуры и списка фактических параметров. Для обращения к функции ее имя со списком фактических параметров должно войти как операнд в некоторое выражение. Отсюда вытекает несколько отличий описания функции от описания процедуры:

- в виде функции описывается алгоритм, результатом выполнения которого является скалярная величина;

- в блоке функции должен быть хотя бы один оператор присваивания с именем функции в левой части;

- в заголовке функции должен быть указан тип функции (тип возвращаемого через имя функции результата).

Любой из формальных параметров подпрограммы может быть либо параметром-значением, либо параметром-переменной.

В предыдущем примере параметры были определены как параметры-значения. Если параметры определяются как параметры-переменные, перед ними необходимо ставить зарезервированное слово Var, например:

Procedure FF( Var a : Real);

Если формальный параметр объявлен как параметр-переменная, то при обращении к подпрограмме ему должен соответствовать фактический параметр в виде переменной нужного типа; если формальный параметр объявлен как параметр-значение, то при обращении ему может соответствовать выражение.

Для того, чтобы понять, в каких случаях использовать параметры-значения, а в каких - параметры переменные, рассмотрим, как осуществляется замена формальных параметров на фактические в момент обращения к подпрограмме.

Если параметр определен как параметр-значение, то перед вызовом подпрограммы это значение вычисляется, полученный результат копируется во временную память и передается подпрограмме. Если же параметр определен как параметр-переменная, то при вызове подпрограммы передается сама переменная, а не ее копия. Любые возможные изменения в подпрограмме параметра-значения никак не воспринимаются вызывающей программой, так как в этом случае изменяется копия фактического параметра, в то время как изменения параметра-переменной приводит к изменению самого фактического параметра в вызывающей программе.

Поэтому параметры-переменные могут использоваться как "средство связи" алгоритма, реализованного в подпрограмме, с “внешним миром”, в частности, с помощью этих параметров процедура передает результаты своей работы вызывающей программе.

Однако, злоупотребление этими возможностями делает программу, как правило, трудной в понимании и сложной в отладке. В соответствии с требованиями хорошего стиля программирования рекомендуется использовать передачу результатов через фактические параметры для процедур и через имя для функций.

Переменные, описанные в разделе описаний переменных подпрограммы, называются локальными переменными этой подпрограммы и доступны только в ней.

Концепция глобальных и локальных имен относится не только к переменным но и к другим описываемым объектам Паскаля: константам, типам, процедурам и функциям.

Процедурный тип

Описание процедурного типа состоит из слова procedure или function, за которым в круглых скобках записывается список формальных параметров. Для функции после списка формальных параметров через двоеточие указывается тип функции. После того, как определен процедурный тип, можно описать переменные процедурного типа. Переменным процедурного типа можно присваивать значения конкретных процедур и функций. Естественно, что процедурная переменная и та процедура, которая присваивается ей в качестве значения, должны иметь одинаковое число формальных параметров, совпадающих по типам. Если переменная имеет тип функции, то для функций кроме формальных параметров должны совпадать типы функций. Те процедуры и функции, которые будут использоваться либо в качестве значений для процедурных переменных, либо в качестве фактических параметров при вызове процедур и функций, должны удовлетворять следующим правилам:

-должны компилироваться с ключом компилятора

-не должны быть стандартными процедурами или функциями

-не должны объявляться внутри других процедур или функций

Размещено на Allbest.ru

...

Подобные документы

  • Последовательный интерфейс для передачи данных. Синхронный и асинхронный режимы передачи данных. Формат асинхронной посылки. Постоянная активность канала связи при синхронном режиме передачи. Реализация последовательного интерфейса на физическом уровне.

    реферат [106,9 K], добавлен 28.04.2010

  • Разработка протоколов передачи данных электросвязи для систем сотовой и кабельной связи по аналого-цифровым телефонным линиям связи. Одновременная передача данных и голоса, коррекция ошибок и сжатия; их возможности. История и прогноз на будущее.

    реферат [72,9 K], добавлен 06.04.2010

  • Понятие и классификация систем передачи данных. Характеристика беспроводных систем передачи данных. Особенности проводных систем передачи данных: оптико-волоконных и волоконно-коаксиальных систем, витой пары, проводов. Оценка производителей аппаратуры.

    курсовая работа [993,0 K], добавлен 04.03.2010

  • Информационные банки данных, документов и знаний. Фактографические информационные системы управления базами данных. Прикладные программы и языковые средства, предназначенных для создания, ведения и использования баз данных. Механизмы обработки данных.

    презентация [14,0 K], добавлен 14.10.2013

  • Особенности организации передачи данных в компьютерной сети. Эталонная модель взаимодействия открытых систем. Методы передачи данных на нижнем уровне, доступа к передающей среде. Анализ протоколов передачи данных нижнего уровня на примере стека TCP/IP.

    курсовая работа [1,0 M], добавлен 07.08.2011

  • Сущность и характеристика типов моделей данных: иерархическая, сетевая и реляционная. Базовые понятия реляционной модели данных. Атрибуты, схема отношения базы данных. Условия целостности данных. Связи между таблицами. Общие представления о модели данных.

    курсовая работа [36,1 K], добавлен 29.01.2011

  • Беспроводные и проводные системы передачи данных. Методы обеспечения безошибочности передачи данных в сетях. Оценка зависимости показателей эффективности. Снижение вероятности появления ошибки сбора данных в соответствии с предъявленными требованиями.

    дипломная работа [309,0 K], добавлен 14.10.2014

  • Назначение и классификация компьютерных сетей. Распределенная обработка данных. Классификация и структура вычислительных сетей. Характеристика процесса передачи данных. Способы передачи цифровой информации. Основные формы взаимодействия абонентских ЭВМ.

    контрольная работа [36,8 K], добавлен 21.09.2011

  • Архитектура персональных компьютеров, классификация сетей (глобальные, региональные, локальные), методы доступа к передаче данных и протоколы. Динамические структуры данных; списки, их основные виды и способы реализации; технологии программирования.

    шпаргалка [584,9 K], добавлен 09.03.2010

  • Понятие автоматизированной информационной системы, ее структурные компоненты и классификация. Основные функции систем управления процессом. Применение базы данных процесса для мониторинга и управления. Доступ к базе данных процесса, запросы и протоколы.

    реферат [457,1 K], добавлен 18.12.2012

  • Понятие базы данных, их цели и задачи, требования к БД; система управления базами данных. Файловые системы: именование и структуры файлов, программное обеспечение. Уровни абстракции в СУБД, функции абстрактных данных. Экспертные системы и базы знаний.

    презентация [301,6 K], добавлен 17.04.2013

  • Иерархические, сетевые и реляционные модели данных. Различия между OLTP и OLAP системами. Обзор существующих систем управления базами данных. Основные приемы работы с MS Access. Система защиты базы данных, иерархия объектов. Язык программирования SQL.

    курс лекций [1,3 M], добавлен 16.12.2010

  • Компьютерные сети и протоколы передачи данных. Устройства, взаимодействующие с компьютерными сетями при помощи протоколов передачи данных. Мобильные вычислительные устройства и операционные системы. Клиент-серверное приложение для управления расписанием.

    дипломная работа [1,8 M], добавлен 11.12.2015

  • Базовые технологии, протоколы и стандарты построения локальных и глобальных сетей. Протоколы передачи данных в телекоммуникационных системах. Стеки коммуникационных протоколов, линии связи, стандарты кабелей, коаксиальные и волоконно-оптические кабели.

    курсовая работа [47,9 K], добавлен 15.07.2012

  • Понятия банка и базы данных, ее компоненты. Многоуровневые модели предметной области, их представление в базе данных. Идентификация объектов и записей. Способы обращения к записям или отдельным элементам данных, их поиск. Определение структуры данных.

    контрольная работа [39,6 K], добавлен 10.04.2010

  • Определение базы данных и банков данных. Компоненты банка данных. Основные требования к технологии интегрированного хранения и обработки данных. Система управления и модели организации доступа к базам данных. Разработка приложений и администрирование.

    презентация [17,1 K], добавлен 19.08.2013

  • Тенденция к увеличению скорости передачи данных, расширению выполняемых функций в развитии периферийных устройств. Интерфейс шины ISА. Описание работы принципиальной схемы, выбор элементной базы и интегральных схем. Прикладная программа и её возможности.

    курсовая работа [128,5 K], добавлен 28.10.2009

  • Цель информационного программирования; алгоритмический язык как система обозначений и правил для единообразной и точной записи алгоритмов и их исполнения. Языки программирования низкого и высокого уровня; классификация и использование структуры данных.

    реферат [383,1 K], добавлен 07.01.2012

  • Разработка программных продуктов на языке программирования Borland Delphi. Применяемые таблицы и связи между ними. Пользовательский интерфейс работы с базой данных. Алгоритм работы программы "Футбольные команды и игроки". Защита от ввода неверных данных.

    курсовая работа [788,1 K], добавлен 22.06.2011

  • Обзор пакетов программ, предназначенных для визуализации и анализа данных. Обоснование выбора среды программирования. Организация аварийного буфера. Передача данных от нижнего уровня к верхнему и сохранение данных. Отображение данных в графической форме.

    дипломная работа [512,4 K], добавлен 28.08.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.