Моделювання та оптимізація систем керування в умовах невизначеності

Підвищення ефективності роботи систем керування в умовах комбінованої стохастичної та нечіткої невизначеності. Розробка алгоритмічного та програмного забезпечення для моделювання та покрокової оптимізації, а також метод перетворень невизначених даних.

Рубрика Программирование, компьютеры и кибернетика
Вид автореферат
Язык украинский
Дата добавления 27.07.2014
Размер файла 74,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ВІННИЦЬКИЙ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ

АВТОРЕФЕРАТ

МОДЕЛЮВАННЯ ТА ОПТИМІЗАЦІЯ СИСТЕМ КЕРУВАННЯ В УМОВАХ НЕВИЗНАЧЕНОСТІ

Дисертацією є рукопис.

Робота виконана у Вінницькому національному технічному університеті Міністерства освіти і науки України

Науковий керівник: доктор технічних наук, професор Дубовой Володимир Михайлович, Вінницький національний технічний університет, завідувач кафедри комп'ютерних систем управління.

Офіційні опоненти: доктор технічних наук, професор Лисогор Василій Микитович, Вінницький державний аграрний університет, професор кафедри менеджменту аграрно- промислового комплексу доктор технічних наук, професор Раскін Лев Григорович, Національний технічний університет "Харківський політехнічний інститут", професор кафедри системного аналізу та управління

Провідна установа: Національний університет “Львівська політехніка”, кафедра автоматики та телемеханіки, Міністерство освіти і науки України, м. Львів.

З дисертацією можна ознайомитись у бібліотеці ВНТУ за адресою: 21021, м. Вінниця, Хмельницьке шосе, 95.

Автореферат розісланий “ 16 04 2004 р.

Вчений секретар спеціалізованої вченої ради Захарченко С.М.

Загальна характеристика роботи

Актуальність теми. Системи керування використовуються в різних галузях науки та техніки. В основному вони працюють в умовах невизначеності. Джерелом невизначеності використовуваної інформації може бути недостатньо повне знання предметної області, недостатня інформація про конкретну ситуацію, недостатність достовірної інформації про значення даного, яка може бути зумовлена багатьма причинами. Ступінь неповної визначеності залежить від способів отримання інформації та її достовірності. У подальшому для скорочення будемо називати неповністю визначені дані незалежно від ступеня просто невизначеними, а функціонування різноманітних систем з неповністю визначеними параметрами або впливовими величинами - функціонуванням в умовах невизначеності. Невизначеність може носити стохастичний характер, при якому невизначені параметри описуються законами розподілу ймовірностей, або нечіткий характер, при якому невизначені параметри описуються функціями належності. Під “достовірними” даними будемо розуміти чіткі дані у порівнянні з нечіткими, та детерміновані у порівнянні з стохастичними.

Існуючі методи моделювання розглядають функціонування систем керування в умовах невизначеності одного типу - або стохастичного, або нечіткого. Але створення систем, які використовують статистичну інформацію разом з експертними оцінками вимагає розробки нового методу моделювання. Це обумовлює актуальність дисертаційної роботи, яка присвячена розв'язанню задачі моделювання систем керування в умовах комбінованої невизначеності.

Зв'язок роботи з науковими програмами, планами, темами. Дисертаційне дослідження проводиться протягом 2001-2003 згідно з напрямком досліджень за держбюджетною науково-дослідною роботою на тему “Розробка теорії та алгоритмічних засобів моделювання та дослідження систем в умовах невизначеності” № 46-Д-254 (номер держ. реєстрації 0102U002258) у відповідності до пріоритетних напрямків розвитку науки і техніки в Україні. Автор є відповідальним виконавцем.

Мета і задачі дослідження.

Мета досліджень полягає в підвищенні ефективності роботи систем керування в умовах комбінованої стохастичної та нечіткої невизначеності.

Задачі дослідження:

Аналіз існуючих методів моделювання та оптимізації систем керування в умовах невизначеності.

Розробка методу перетворень невизначених даних стохастичного та нечіткого типу.

Розробка узагальненої моделі системи керування в умовах комбінованої стохастичної та нечіткої невизначеності.

Вдосконалення методу покрокової оптимізації систем керування в умовах комбінованої невизначеності.

Розробка алгоритмічного та програмного забезпечення для моделювання та покрокової оптимізації систем керування в умовах комбінованої стохастичної та нечіткої невизначеності.

Розробка методики моделювання систем керування в умовах комбінованої стохастичної та нечіткої невизначеності.

Дослідження ефективності та достовірності розробленого методу та програмного забезпечення.

Об'єктом дослідження є процеси керування в умовах комбінованої стохастичної та нечіткої невизначеності.

Предметом дослідження є обробка та перетворення невизначених даних у системах керування.

Методи дослідження базуються на використанні теорії ймовірності, нечіткої логіки, регресійного, кореляційного та функціонального аналізів для розробки методу моделювання; елементів теорії оптимізації для вдосконалення методу покрокової оптимізації в умовах невизначеності; комп'ютерного моделювання для дослідження ефективності та достовірності розробленого методу та програмного забезпечення; математичної статистики для оцінки похибок моделювання.

Наукова новизна одержаних результатів:

Запропоновано новий метод моделювання систем керування в умовах невизначеності. Новий метод відрізняється від відомих методів моделювання способом узагальнення математичних операцій над невизначеними даними, який грунтується на формальній системі узагальнюючих функцій. Запропонований метод забезпечує розширення області застосування на умови комбінованої стохастичної та нечіткої невизначеності.

Розроблено узагальнену модель системи керування в умовах невизначеності. Вона грунтується на операторному методі та системі узагальнюючих функцій і відрізняється від відповідних існуючих моделей тим, що враховує різний характер невизначеності даних. Нова модель дозволяє покращити роботу систем керування у випадку невизначених даних.

Вдосконалено метод покрокової оптимізації систем керування в умовах невизначеності. Вдосконалений метод відрізняється врахуванням можливої нестійкості процесу оптимізації в умовах невизначеності. Вдосконалений метод забезпечує збіжність оптимізації систем керування в умовах комбінованої стохастичної і нечіткої невизначеності.

Практичне значення одержаних результатів:

Розроблено методику узагальнення невизначених даних та алгоритми їх перетворення при моделюванні систем керування в умовах невизначеності.

Розроблено алгоритм покрокової оптимізації систем керування в умовах стохастичної та нечіткої невизначеності.

Розроблено програмне забезпечення для моделювання і покрокової оптимізації систем керування в умовах комбінованої невизначеності.

Розроблено технічні засоби моделювання в умовах невизначеності.

Практичні результати дисертаційних досліджень впроваджені на підприємствах ВАТ “Вінницягаз” та ЗАТ “Утерм”, а теоретичні положення роботи впроваджено у навчальний процес кафедри комп'ютерних систем управління Вінницького національного технічного університету. Впровадження результатів дослідження підтверджено відповідними актами.

Особистий внесок здобувача. Всі основні результати дисертаційної роботи були отримані автором особисто. В роботах, що опубліковані у співавторстві, здобувачеві належить: спосіб узагальнення математичних операцій над невизначеними даними, який грунтується на формальній системі узагальнюючих функцій [1]; узагальнена модель та підхід до моделювання та оптимізації систем керування в умовах невизначеності з використанням спеціалізованих блоків для виконання узагальнених обчислень [2,5]; дослідження ефективності та достовірность розробленого методу та програмного забезпечення для моделювання систем керування в умовах комбінованої невизначеності [3]; дослідження властивостей алгебри узагальнюючих функцій [6]; основні алгоритми перетворення невизначених даних [7]; структури пристроїв для моделювання одночасної обробки невизначених даних [8-10]; шляхи застосування обробки невизначених даних при моделюванні систем керування [13].

Апробація результатів дисертації. Результати дисертаційної роботи доповідались та обговорювались на десяти науково-технічних конференціях: міжнародній конференції “Modelling and Simulation - 2001” (м.Львів, 2001р.); VI Міжнародній конференції КУСС-2001 (м.Вінниця, 2001р.); міжнародній науково-технічній конференції студентів, аспірантів та молодих вчених “Оптико-електронні інформаційно-енергетичні технології” (м.Вінниця, 2001р.); Всеукраїнській науково-технічній конференції аспірантів та студентів “Автоматизація технологічних об'єктів і процесів. Пошук молодих” (м.Донецьк, 2001р.); міжнародній науково-практичній конференції “Автоматизація виробничих процесів” МНПК АВП-2002 (м.Хмельницький, 2002р.); міжнародній конференції “Photonics-ODS 2002” (м.Вінниця, 2002р.); міжнародній науково-практичній конференції “Інтернет-Освіта-Наука-2002” (м.Вінниця, 2002р.); V Міжнародній конференції КУСС-2003 (м. Вінниця, 2003р.); двох науково-практичних конференціях професорсько-викладацького складу співробітників і студентів ВДТУ (м.Вінниця, 2001, 2003р.).

Публікації. Результати теоретичних і експериментальних досліджень викладені в 15 друкованих працях, серед яких 7 статей, 4 з них в журналах, що входять до переліку ВАК України, 4 тези, 3 патенти України та 1 свідоцтво про державну реєстрацію прав автора на алгоритм.

Структура і обсяг дисертації. Дисертаційна робота складається із вступу, 4 розділів, висновків, списку використаних джерел і додатків. Основний зміст викладено на 149 сторінках друкованого тексту, містить 42 рисунки, 14 таблиць, 153 літературних джерела, 5 додатків. Повний обсяг дисертації 211 сторінок.

Основний зміст роботи

У вступі обґрунтовано актуальність теми дисертації, зазначено зв'язок з науковими програмами, планами та темами, сформульовано мету та задачі досліджень. Також охарактеризовано наукову новизну та практичне значення одержаних результатів, наведено інформацію про впровадження результатів роботи, їх апробацію та публікації.

У першому розділі проведено аналіз та порівняння методів моделювання та оптимізації систем керування в умовах невизначеності. Розглянуто основні види невизначеності, її характеристики та основні існуючі методи побудови моделей обробки даних різної форми. Проведено огляд і аналіз методів обробки стохастичних та нечітких даних. Проведено аналіз взаємозв'язку між теорією ймовірності та нечіткою логікою.

Аналіз існуючих методів моделювання СК в умовах невизначеності показав, що існуючі методи перетворень не дозволяють одночасно оперувати з невизначеними даними, які мають різний характер. Існуючі математичні моделі СК розроблені для роботи в умовах або стохастичної, або нечіткої невизначеності, але вони неефективні в умовах комбінованої невизначеності. Не існує і відповідної методики моделювання СК. Розробка такої єдиної методології можлива, на що вказують певні наукові публікації. Разом з тим слід враховувати розбіжності аксіоматики теорії ймовірності й нечіткої математики.

Результат аналізу методів оптимізації СК також доводить необхідність вдосконалення методу оптимізації СК, який би ефективно працював в умовах комбінованої стохастичної та нечіткої невизначеності.

У другому розділі розроблено метод узагальнюючих функцій (УФ) для систем керування з комбінованою невизначеністю.

Формальна система узагальнюючих функцій G складається з правил утворення формул; правил переходу від формальних систем чітких чисел R, випадкових величин P, нечітких чисел A до системи узагальнюючих функцій G і назад; системи аксіом та правил виводу.

Запропонована система аксіом алгебри узагальнюючих функцій. Метод побудови аксіоматичної основи формальної системи узагальнюючих функцій G грунтується на усвідомленні того факту, що система УФ призначена для узагальнення двох систем: системи випадкових величин (стохастичних даних) Р і системи нечітких чисел (нечітких даних) А, тому за основу прийнята спільна частина зазначених аксіоматичних систем.

Обгрунтована відповідність розробленої системи аксіом наступним вимогам: незалежності аксіом, повноти аксіоматичної системи та відсутності протиріч.

Проведено порівняння аксіом теорії ймовірностей, нечіткої математики і системи узагальнюючих функцій.

Визначено новий математичний об'єкт - узагальнююча функція в(х).

Для стохастичного даного УФ співпадає за властивостями з щільністю розподілу ймовірностей в(х)=fX(x).

Для достовірного даного Х УФ визначається як

в(х)=[х-Х]

де (x) - дельта-функція Дірака.

Для нечіткого даного УФ визначається нормованою за площею функцією належності.

в(х)=н(x),

де н(x) - нормована функція належності;

де (x) - функція належності нечіткого числа,

- нижня (верхня) границя нечіткого числа х.

а) - функція належності,

б) - узагальнююча функція.

Для функції належності (x) виконуються операції диз'юнкції і кон'юнкції де R - характеристика взаємозв'язку нечітких змінних x1 і x2.

Визначенні операції з узагальнюючою функцією: унарна, бінарна операції, операції порівняння невизначених даних та загострення.

Визначення 1. Результатом унарної операції о над невизначеним даним є таке невизначене дане, для якого

, (1)

причому , , В - універсальна множина, о - операція над визначеними даними, о - операція над невизначеними даними.

Визначення 2. Результатом бінарної операції над невизначеними даними і є таке невизначене дане , для якого

, (2)

причому, .

Визначення 3. Невизначені дані x, y вважаються рівними X = Y якщо .

Визначення 4. Для невизначених даних X > Y, якщо і

(3)

Визначення 5. Невизначене дане х` є загостренням невизначеного даного х якщо:

Визначенні також правила виконання операцій з УФ. За основу визначення цих операцій прийнятий операторний метод перетворення законів розподілу ймовірностей.

Нелінійна операція для об'єкту “узагальнююча функція” визначається оператором (4), бінарна визначається оператором (5) та інтегро-диференціальна операція визначається оператором (6):

, (4)

де ядро - дельта-функія Дірака;

, (5)

де ;

mx1 - перший початковий момент X1;

mx2 - перший початковий момент X2;

Dx1 - другий центральний момент X1;

Dx2 - другий центральний момент X2;

rX1,X2 - другий змішаний нормований центральний момент X1 та X2;

, (6)

де

W - передаточна функція інтегро-диференціальної операції;

;

g(t) - імпульсна перехідна характеристика;

;

- інтервал дискретизації;

n=ent[t/].

Більш складні перетворення визначаються шляхом декомпозиції на розглянуті три типи перетворень.

На основі визначених аксіом та операцій формальної системи G узагальнюючих функцій були досліджені властивості алгебри узагальнюючих функцій:

Невизначене дане x0, якому відповідає узагальнююча функція , еквівалентне достовірному даному відносно операцій системи G.

Операціям над невизначеними даними властива асоціативність

.

Операції над невизначеними даними не комутативні

.

Послідовність унарних операцій представляється добутком операторів.

Бінарна операція над двома функціями невизначеної змінної представляється добутком оператора другого порядку на добуток операторів гілок. керування стохастичний невизначеність

Існує одиничний оператор 1, що задовольняє правилу множення

.

Існує обернений оператор Ф-1

.

Також у другому розділі розроблено узагальнену модель СК в умовах невизначеності. Модель представлена у вигляді

,

де - вектор сигналів системи; - матриця перетворень; - матриця суміжності графа структурної моделі.

Модель враховує алгоритмічну, параметричну і структурну невизначеності, які присутні в системі керування.

Алгоритмічна невизначеність включає:

- невизначеність вхідних даних алгоритму;

- невизначеність деяких параметрів алгоритму;

- невизначеність результату операції вибору послідовності дій.

Модель параметричної невизначеності окремого блоку СК у загальному випадку може бути представлена у вигляді

,

де - множина параметрів; - підмножина невизначених параметрів; - підмножина визначених параметрів; - узагальнююча функція вектору вхідних сигналів блоку; - узагальнююча функція вектору вихідних сигналів блоку; - оператор перетворення.

Структурна невизначеність переважно викликана обмеженою надійністю зв'язків у СК. Поверхня на рис.5 побудована у припущенні про Пуасонівський потік відмов.

Рис. 5. Функція структурної невизначеності наявності зв'язків

Відповідно, узагальнююча функція елементу матриці суміжності

де b=2 - нормалізуючий коефіцієнт;

P(t) - ймовірність безвідмовної роботи зв'язку;

аij - наявність зв'язку.

Розглянуто характеристики невизначеності основних підсистем СК, табл.1.

Таблиця 1 Характеристики невизначеності основних підсистем СК

Підсистема

Тип функціо-нальної моделі

Тип невизначе-ності

Характерні причини невизначеності

Характер невизначеності

Об'єкт управління

N, W

параметрична

Вплив зовнішніх факторів

Передба-чених

стохастична

A

алгоритмічна

Неперед-бачених

нечітка

Виконавча підсистема

N, W

параметрична

Адитивна похибка

стохастична

Мультиплікативна похибка

стохастична

Динамічна похибка

нечітка або стохастична

Підсистема контролю

N, W

параметрична

Адитивна похибка

стохастична

Мультипл. похибка

стохастична

Методична похибка

нечітка

Підсистема формування закону керування

N, W

парамет.

Обчислювальна похибка

стохастична

A

алгоритмічна

Припущення про рівень складності системи

нечітка

параметрична

Залежність часу розра-хунків від стану системи

стохастична

Інтерфейс та передавання даних

W

парамет.

затримка сигналу

стохастична

A

алгоритмічна

Невідповідність дисципліни обслуговування реальному стану процесу

нечітка

Людина-оператор

W

параметрична

Залежність швидкості реакції від психофізичного стану

стохастична

A

алгоритмічна

Залежність помилкових дій від психофізичного стану

нечітка або стохастична

В таблиці 1 позначено N, W, А - вид рівняння, яким може описуватися блок СК: N - нелінійне, W - диференціальне, А - алгоритм.

У третьому розділі розроблено засоби для моделювання та покрокової оптимізації систем керування в умовах невизначеності.

Розроблено алгоритми нелінійного, бінарного та інтегро-диференціального перетворень узагальнюючих функцій. Алгоритми реалізовані у вигляді програмного забезпечення та захищені авторським свідоцтвом.

Розроблені технічні засоби моделювання в умовах невизначеності, а саме: пристрій для узагальнення суми нечітких та стохастичних даних, пристрій для узагальнення нелінійного перетворення нечітких та стохастичних даних, пристрій для узагальнення лінійного інтегро-диференціального перетворення нечітких та стохастичних даних, що захищені патентами України, а також структура спеціалізованого контролера, який виконує обробку невизначених даних. Розроблені пристрої є фізичною моделлю відповідних перетворень та алгоритмів.

Розглянуто застосування моделі СК в умовах невизначеності для оптимізації СК. Невизначеність може приводити до нестійкості процесу оптимізації, тому запропоновано поняття та критерій стійкості алгоритму в умовах невизначеності.

Будемо називати покроковий (ітераційний) алгоритм нестійким в умовах узагальненої невизначеності (G-нестійким), якщо існує така точка в просторі станів, для якої функція порівняння для двох послідовних точок траєкторії оптимізації х1 та х2 задовольняє умові

де Q - критерій оптимізації,

- узагальнююча функція порівняння у відповідності до визначення (3);

.

Ступінь нестійкості

.

Тоді будемо називати алгоритм абсолютно нестійким, якщо S = 0 і умовно нестійким, якщо 0 < S < 1.

Вдосконалений метод оптимізації враховує можливу нестійкість покрокової оптимізувати в умовах комбінованої стохастичної і нечіткої невизначеності та автоматично змінює крок для забезпечення стійкості.

Розроблено відповідне алгоритмічне та програмне забезпечення покрокової оптимізації СК в умовах невизначеності.

Алгоритм покрокової оптимізації в умовах невизначеності:

Введення початкових даних;

Обчислення значення кроків дискретизації по кожному параметру;

Обчислення значення УФ критерію оптимальності;

Обчислення значення УФ часткових похідних критерію по кожному параметру;

Обчислення значення УФ координат наступної точки на шляху пошуку.

Обчислення значення критерію оптимальності у наступній точці.

Визначаємо значень критерію оптимальності у точках і .

Визначаємо критерій нестійкості в умовах невизначеності

Якщо при пошуку мінімуму то рухаємося далі;

Якщо ні, то повертаємося назад у точку і робимо з неї два пробних кроки з параметром і

Повторюємо для обох точок дії, починаючи з кроку 5. Якщо для якоїсь точки , то приймаємо її за наступну. Якщо ні, то продовжуємо змінювати h. Якщо досягнуто , то оптимум знайдено.

Проведено дослідження ефективності та достовірності розробленого методу та програмного забезпечення. В результаті доведено, що метод УФ та програмне забезпечення дають достовірні результати моделювання, які є наближеними до результатів, одержаних за допомогою методу операторної обробки стохастичних даних та відповідних принципів узагальнення обробки нечітких даних. Метод УФ виявився більш універсальним за метод Заде та модифікований метод узагальнення, але найскладнішим у комп'ютерній реалізації.

Проведено оцінку похибок моделювання, зокрема похибка розробленого методу моделювання нечітких перетворень склала 11 - 15 %.

У четвертому розділі проведено практичну реалізацію отриманих результатів. Розроблено методику та відповідний алгоритм для системи керування вентиляційно-калориферною установкою. Алгоритм керування передбачає підтримання оптимальних кліматичних умов для певного режиму роботи на протязі певного часу. В алгоритмі використовуються нечіткі дані: - к.к.д. обладнання, Mвн0 - адитивна складова інтенсивності внутрішніх джерел вологи, KM - мультиплікативна складова інтенсивності внутрішніх джерел вологи, вх - коефіцієнт місцевого опору конструкцій входу, Kт - категорія тяжкості праці; та стохастичні дані: NП - кількість персоналу у приміщенні, N - кількість чоловік за годину, які проходять крізь двері, е - еквівалентний час проходження людини крізь двері, Pа - атмосферний тиск.

Використання розробленої методики дозволяє підвищити економічність використання енергоресурсів шляхом зменшення необхідної потужності вентиляції за рахунок використання більш повної інформації про невизначені дані.

Розроблено методику визначення витрат природного газу, яка дозволяє визначати оптимальне розрахункове значення з врахуванням узгоджених постачальником і споживачем газу ризиків. Методика використовує невизначені дані стохастичного типу: температуру газу Т, тиск газу P і перепад тиску на звужуючому пристрої , та нечіткого типу: об'ємний вміст компонентів N1,…,Nn і показник адіабати .

В результаті розрахунків за методом узагальнюючих функцій отримується узагальнююча функція витрат газу, на основі якої приймається рішення про розрахункову кількість газу, наведений приклад .

Наведений графік є основою для визначення розрахункового значення витрат газу з врахуванням заданої достовірності і ризиків постачальника і споживача . На графіку рівень граничної достовірності показаний пунктиром. Відповідно постачальник зацікавлений використовувати розрахункове значення , а споживач . Тоді оптимальне розрахункове значення витрат

.

На основі розробленої моделі розглянуті деякі питання адаптації СК в умовах невизначеності. Запропоновано методику уточнення оцінок узагальнюючої функції в процесі роботи системи. Розглянуті деякі питання задачі індентифікації, проведено оцінку параметрів нелінійних систем; розроблена методики дослідження метрологічних характеристик вимірювальних каналів в умовах комбінованої стохастичної та нечіткої невизначеності.

Висновки

Відсутність загальних підходів до моделювання та проектування систем керування в умовах комбінованої нечіткої та стохастичної невизначеності обумовило необхідність та актуальність розв'язання у дисертаційній роботі задачі підвищення ефективності роботи таких систем.

В результаті проведених досліджень було розроблено теоретичне, алгоритмічне та програмне забезпечення для моделювання систем керування в умовах невизначеності та вдосконалено метод покрокової оптимізації в умовах невизначеності.

Основні наукові та практичні результати дисертаційної роботи наступні:

Вперше розроблено новий метод моделювання систем керування в умовах невизначеності. Новий метод відрізняється від відомих методів моделювання способом узагальнення математичних операцій над невизначеними даними, який грунтується на формальній системі узагальнюючих функцій. Запропонований метод забезпечує розширення області застосування на умови комбінованої стохастичної та нечіткої невизначеності.

Розроблено узагальнену модель системи керування в умовах невизначеності. Вона грунтується на операторному методі та системі узагальнюючих функцій і відрізняється від відповідних існуючих моделей тим, що враховує різний характер невизначеності даних. Нова модель дозволяє покращити роботу систем керування у випадку невизначених даних.

В результаті дослідження методів покрокової оптимізації вдосконалено градієнтний метод оптимізації систем керування в умовах невизначеності. Вдосконалений метод відрізняється врахуванням можливої нестійкості процесу оптимізації в умовах невизначеності. Вдосконалений метод забезпечує збіжність оптимізації систем керування в умовах комбінованої стохастичної та нечіткої невизначеності.

На основі запропонованих методів і моделей розроблено комплекс методичних, алгоритмічних, програмних та технічних засобів моделювання систем керування в умовах невизначеності:

методика узагальнення невизначених даних та алгоритми їх перетворення при моделюванні систем керування в умовах невизначеності;

алгоритм покрокової оптимізації систем керування в умовах невизначеності;

програмне забезпечення для моделювання і оптимізації систем керування в умовах невизначеності.

технічні засоби: пристрій для узагальнення суми нечітких та стохастичних даних, пристрій для узагальнення нелінійного перетворення нечітких та стохастичних даних, пристрій для узагальнення лінійного інтегро-диференціального перетворення нечітких та стохастичних даних, що захищені патентами України, а також структура спеціалізованого контролера, який виконує обробку невизначених даних.

Проведено дослідження ефективності та достовірності розробленого методу та програмного забезпечення. Отже, метод УФ та програмне забезпечення дали достовірні результати, які є наближеними до результатів, одержаних за допомогою методу операторної обробки даних та відповідних принципів узагальнення. Метод УФ є складним у комп'ютерній реалізації, але універсальним.

Розроблено методики моделювання системи керування калориферами та системи контролю та прогнозування витрат газу в умовах невизначеності. Одержані практичні результати досліджень впроваджено на підприємстві ВАТ “Вінницягаз” та ЗАТ “Утерм”.

Список опублікованих праць за темою дисертації

1. Дубовой В.М., Глонь О.В. Обработка результатов косвенных измерений при нечетко заданных параметрах параметрах // Научные труды Кременчугского государственного политехнического университета. Вып.2. - 2000. - №9. - С.262-265

2. Дубовой В.М. Глонь О.В. Использование обобщенной вычислительной модели в интеллектуальных системах управления // Вісник Технологічного університету Поділля - 2002.- №3 Т.1(41). - С.122-125

3. Дубовой В.М., Глонь О.В. Порівняння методів узагальнення математичних операцій на випадок неповністю визначених даних // Вісник Вінницького політехнічного інституту. - 2003. - №4. - С.75-80.

4. Глонь О.В. Оцінка достовірності висновків експертної системи // Вісник Вінницького політехнічного інституту. - 2001. - №6.- С.52-55

5. Дубовой В.М., Глонь О.В. Перетворення нечітких даних динамічною системою // Матеріали VI Міжнародної конференції “Контроль і управління в складних системах” (КУСС-2001). - Вінниця: УНІВЕРСУМ.- 2001. - С.15-19

6. Дубовой В.М., Глонь О.В. Властивості моделей інформаційних систем в умовах невизначеності // Матеріали ІІІ міжнародної конференції “Інтернет - Освіта - Наука” (ІОН-2002). Том 2, - Вінниця: УНІВЕРСУМ. - 2002. - С.410-412

7. Дубовой В.М., Глонь О.В. Программа обобщенных вычислений Свідоцтво про державну реєстрацію прав автора на твір ПА № 4705, від 06.09.2001

8. Патент України № 46342 А, МПК G 06F 15/00. Пристрій для узагальнення суми нечітких та стохастичних даних / Дубовой В.М., Глонь О.В.; Заявл. 23.06.2001; Опубл. 15.05.2002; Бюл. №5 - 5с.

9. Патент України № 53377 А, МПК G 06F 15/36. Пристрій для узагальнення нелінійного перетворення нечітких та стохастичних даних / Дубовой В.М., Глонь О.В.; Заявл. 29.05.02; Опубл. 15.01.2003. Бюл. №1 - 4с.

10. Патент України № 55643 А, МПК G 06F 15/00. Пристрій для узагальнення лінійного інтегро-диференціального перетворення нечітких та стохастичних даних / Дубовой В.М., Глонь О.В.; Заявл. 15.04.2002; Опубл. 15.04.2003. Бюл. № 4 - 4с.

11. Глонь О.В. Оценка информационных характеристик систем с нечеткой логикой // Збірник наукових праць І Всеукраїнської науково-технічної конференції аспірантів та студентів в м.Донецьку. - Донецьк, ДонДТУ. - 2001 - С.68

12. Глонь О.В. Узагальнення аналітичних залежностей у випадку спільної обробки сигналів у нечіткій та статистичній формах // Збірник тез доповідей міжнародної науково-технічної конференції молодих вчених, аспірантів та студентів. - Вінниця: ВДТУ. - 2001. - С.30

13. Дубовой В.М., Глонь О.В. Проектування оптоелектронних пристроїв в умовах невизначеності // Збірник тез доповідей міжнародної науково-технічної конференції “Фотоніка-ОДС-2002”. - Вінниця: УНІВЕРСУМ. -2002 - C.28

Анотації

Глонь О.В. Моделювання та оптимізація систем керування в умовах невизначеності. - Рукопис.

Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 01.05.02 - математичне моделювання та обчислювальні методи. Вінницький національний технічний університет, Вінниця, 2004.

Дисертація присвячена розв'язанню задачі моделювання систем керування в умовах комбінованої невизначеності.

Для моделювання систем керування в умовах комбінованої стохастичної та нечіткої невизначеності запропоновано новий метод, який використовує новий спосіб узагальнення математичних операцій над невизначеними даними, який грунтується на формальній системі узагальнюючих функцій. Розроблено узагальнену модель системи керування в умовах невизначеності. Вона грунтується на операторному методі та системі узагальнюючих функцій.

Вдосконалено метод покрокової оптимізації систем керування в умовах комбінованої невизначеності. Метод дозволяє врахувати можливу нестійкість процесу оптимізації в умовах стохастичної та нечіткої невизначеності.

На основі запропонованих методів і моделей розроблено комплекс методичних, алгоритмічних, програмних та технічних засобів моделювання систем керування в умовах комбінованої невизначеності.

Глонь О.В. Моделирование и оптимизация систем управления в условиях неопределенности. - Рукопись.

Диссертация на соискание ученой степени кандидата технических наук по специальности 01.05.02 - математическое моделирование и вычислительные методы. Винницкий национальный технический университет. Винница, 2004.

Диссертация посвящена решению задачи моделирования систем управления в условиях неопределенности.

Проведен анализ и сравнение методов моделирования и оптимизации систем управления в условиях неопределенности. Рассмотрены основные виды неопределенности, ее характеристики и основные существующие методы построения моделей обработки данных разной формы. Проведен обзор и анализ методов обработки стохастических и нечетких данных.

Для моделирования систем управления в условиях комбинированной стохастической и нечеткой неопределенности предложен новый метод, который использует новый способ обобщения математических операций над неопределенными данными, который основывается на формальной системе обобщающих функций. Разработана обобщенная модель системы управления в условиях неопределенности. Обобщенная модель системы управления включает в себя алгоритмическую, параметрическую и структурную неопределенности. Она основывается на операторном методе и системе обобщающих функций.

Усовершенствован метод пошаговой оптимизации систем управления в условиях комбинированной неопределенности. Предложено понятие и критерий устойчивости алгоритма в условиях неопределенности. Усовершенствованный метод оптимизации позволяет учитывать возможную неустойчивость процесса оптимизации в условиях стохастической и нечеткой неопределенности и автоматически изменяет шаг для обеспечения устойчивости.

Проведены исследования эффективности и достоверности разработанного метода и программного обеспечения. В результате доказано, что метод обобщающих функций и программное обеспечение дают достоверные результаты моделирования, которые являются приближенными к результатам, которые получены с помощью метода операторной обработки стохастических данных и соответствующих принципов обобщения. Метод обобщающих функций оказался более универсальным по сравнению с методом Заде и модифицированным методом обобщения, но более сложным в компьютерной реализации. Проведена оценка погрешностей моделирования.

На основе предложенных методов и моделей разработан комплекс методических, алгоритмических, программных и технических средств моделирования систем управления в условиях комбинированной неопределенности.

Разработанные модели и методы моделирования систем управления в условиях неопределенности использованы для разработки проекта системы управления вентиляционно-калориферной установкой и проекта системы контроля и прогнозирования расхода газа.

Glon О. Modeling and optimization of control systems in conditions of uncertainty.- Manuscript.

The dissertation on competition of a scientific degree of the candidate of engineering science on a speciality 01.05.02 - mathematical modeling and computational methods. Vinnytsia National Technical University. Vinnytsia, 2004.

The dissertation is devoted to the decision of a task of modeling of control systems in conditions of uncertainty.

The new method for modeling control systems in conditions of the combined stochastic and fuzzy uncertainty is offered. The new method uses a new way of generalization of mathematical operations with the uncertain data. It is based on formal system of generalizing functions. The generalized model of a control system in conditions of uncertainty is created. It is based on operator method and generalizing functions system.

The method of step-by-step optimization of control systems in conditions of the combined uncertainty is advanced. The method allows to take into consideration possible instability of optimization process in conditions of stochastic and fuzzy uncertainty.

The complex methodical and algorithmic means, software and hardware for modeling of control systems in conditions of the combined uncertainty is developed on the basis of the offered methods and models.

Размещено на Allbest.ru

...

Подобные документы

  • Тривимірна модель мобільного робота. Алгоритмізація моделі та її програмної реалізації з використанням бібліотек MFC та OpenGL. Розробка програмного забезпечення. Середовище розробки проекту Microsoft Visual Studio 2010. Керування рухами маніпулятора.

    курсовая работа [462,9 K], добавлен 03.04.2014

  • Опис підрозділу гнучких виробничих систем (ГВС) як об‘єкта управління. Проектування алгоритмічного забезпечення системи оперативного управління. Складання розкладу роботи технологічного обладнання. Розробка програмного забезпечення підсистем СОУ ГВС.

    курсовая работа [2,0 M], добавлен 11.07.2012

  • Класифікація інформаційних систем. Дослідження особливостей мови UML як засобу моделювання інформаційних систем. Розробка концептуальної моделі інформаційної системи поліклініки з використанням середи редактора програмування IBM Rational Rose 2003.

    дипломная работа [930,4 K], добавлен 26.10.2012

  • Аналіз технічного забезпечення, вибір інструментального програмного забезпечення та середовища розробки програм. Створення класів для реалізації необхідних функцій для роботи програмного засобу. Розробка інтерфейсу для користувача та лістинг програми.

    курсовая работа [343,9 K], добавлен 24.08.2012

  • Технології об'єктно-орієнтованого аналізу та проектування інформаційних систем. Історія та структура мови UML. Опис функціональної моделі засобами UML. Використання UML в проектуванні програмного забезпечення. Характеристика CASE-засобів Visual Paradigm.

    дипломная работа [7,9 M], добавлен 26.05.2012

  • Алгоритмічна структура алгоритму керування. Вибір конфігурації контролера, схем підключення, технічних засобів автоматизації. Схеми підключення зовнішніх пристроїв. Розроблення прикладного програмного забезпечення для реалізації алгоритму керування.

    курсовая работа [3,5 M], добавлен 22.01.2014

  • Основні поняття моделювання систем, етапи створення, надійність, ефективність. Життєвий цикл та структурне інформаційне забезпечення модельованої системи. Зміст сase-технології, програмне забезпечення та кодування інформації. Головні завдання контролінгу.

    курсовая работа [151,3 K], добавлен 27.05.2014

  • Проектування програми керування мікропроцесорним пристроєм світлової індикації на мові С та Assembler. Розробка алгоритму роботи програми, структурної та електричної принципових схем. Здійснення комп’ютерного моделювання для перевірки розроблених програм.

    курсовая работа [710,7 K], добавлен 04.12.2014

  • Аналіз задач, які вирішуються з використанням інформаційної системи. Вибір серверного вирішення, клієнтської частини, мережного вирішення, системного програмного забезпечення. Розробка підсистеми діагностики, керування, забезпечення безпеки даних.

    курсовая работа [1,5 M], добавлен 22.04.2011

  • Моделювання в області системотехніки та системного аналізу. Імітація випадкових величин, використання систем масового обслуговування, дискретних і дискретно-безперервних марковських процесів, імовірнісних автоматів для моделювання складних систем.

    методичка [753,5 K], добавлен 24.04.2011

  • Програми лінійної та розгалуженої структури. Програмна реалізація функцій для роботи з датою та часом. Робота з візуальними компонентами керування. Створення інтерфейсу користувача стандартними подіями. Глобальні ідентифікатори Screen, Mouse, Application.

    отчет по практике [1,3 M], добавлен 24.02.2015

  • Дослідження цифрових систем автоматичного керування. Типові вхідні сигнали. Моделювання цифрової та неперервної САК із використання MatLab. Результати обчислень в програмі MatLab. Збільшення періоду дискретизації цифрової системи автоматичного керування.

    лабораторная работа [173,7 K], добавлен 14.03.2009

  • Засоби візуального моделювання об'єктно-орієнтованих інформаційних систем. Принципи прикладного системного аналізу. Принцип ієрархічної побудови моделей складних систем. Основні вимоги до системи. Розробка моделі програмної системи засобами UML.

    курсовая работа [546,6 K], добавлен 28.02.2012

  • Розподілена обробка та розподілені бази даних, їх внутрішня структура та принцип функціонування. Порядок і технологія рішення задач оперативного контролю в умовах роботи та на базі сучасних автоматизованих інформаційних систем, оцінка ефективності.

    контрольная работа [746,0 K], добавлен 18.02.2015

  • Розробка інформаційної системи зберігання, обробки і моделювання алгоритмів обчислення статистичних даних для спортивний змагань. Характеристика предметної області, архітектури бази даних, установки і запуску системи, основних етапів роботи користувача.

    курсовая работа [2,0 M], добавлен 26.12.2011

  • Загальні відомості про С++ Builder. Метод найменших квадратів. Побудова лінійної емпіричної формули. Робота з базою даних MSql засобами PHP. Розрив з’єднання з сервером. Екранування спец-символів. Знаходження функції за методом найменших квадратів.

    курсовая работа [1,4 M], добавлен 11.12.2012

  • Аналіз областей застосування та технічних рішень до побудови систем керування маніпуляторами. Виведення рівнянь, які описують маніпулятор як виконавчий об’єкт керування. Зв’язок значень кутів акселерометра з формуванням сигналів управління маніпулятором.

    дипломная работа [2,3 M], добавлен 26.07.2013

  • Методологія швидкої розробки застосувань RAD, оцінка її переваг та аналіз розповсюдженості на сучасному етапі. Етапи розробки програмного забезпечення та його життєвий цикл. Мета та порядок реалізації процесу моделювання даних. Організація проекту.

    контрольная работа [32,4 K], добавлен 12.04.2010

  • Розробка програми для моделювання роботи алгоритму Дейкстри мовою C# з використанням об’єктно-орієнтованих принципів програмування. Алгоритм побудови робочого поля. Програмування графічного інтерфейсу користувача. Тестування програмного забезпечення.

    курсовая работа [991,4 K], добавлен 06.08.2013

  • Автоматизування розрахункових задач проектування (рішення систем рівнянь, побудова графіків залежності, оптимізація, моделі об'єктів) і графічне проектування офісу на підставі вихідних даних. Графічне моделювання офісу Сапр-хімія. Математичне моделювання.

    курсовая работа [6,8 M], добавлен 22.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.