Новейшие компьютерные технологии
Принцип работы системы голографической памяти на примере установки, собранной исследовательской группой из Almaden Research Centre. Принцип действия флуоресцентных дисков. Процесс мастеринга (изготовление мастер-копии). Устройства чтения Fm дисков.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 16.08.2014 |
Размер файла | 187,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
НОУ Пермский гуманитарно-технический университет
«Новейшие компьютерные технологии»
Выполнила:
Студентка 1 курса
Группы ЭУ-07-2
Устинова Анна
Проверила:
Чернавина Т.В.
Пермь 2008 г
Введение
Появление в скором будущем задач, требующих очень большой вычислительной мощности, заставляет уже сейчас устремиться к поиску новых технических решений не только в плане совершенствования самих процессоров, но и других компонентов ПК. Независимо от того, какая для изготовления процессора используется технология, количество данных, поставляемых им на обработку, определяется возможностями и других подсистем компьютера. Емкости современных устройств массовой памяти отражают эту тенденцию. Диски СD-ROM позволяют хранить до 700МВ информации, развивающаяся технология DVD-ROM - до 17GB. Технология магнитной записи также развивается очень быстро - за последний год типичная емкость жесткого диска в настольных компьютерах возросла до 15-20 GB и более. Однако в будущем компьютерам придется обрабатывать сотни гигабайт и даже терабайты информации - гораздо больше, чем может вместить любой из существующих сегодня CD-ROM-ов или жестких дисков. Обслуживание таких объемов данных и перемещение их для обработки сверхбыстрыми процессорами требуют радикально новых подходов при создании устройств хранения информации.
Относительно недавно, компанией C3D было объявлено о создании новейшего типа носителей информации, под общим названием FMD ROM (fluorescent multilayer disk), то есть флуоресцентный многослойный диск. Эта перспективная разработка, как ожидают ее создатели, должна после своего выхода заменить все существующие на сегодняшний момент устройства хранения информации, причем не только устаревающие диски CD-ROM, но и относительно новые DVD-ROM. Да, DVD, который на сегодняшний день является самым емким сменным носителем цифровой информации, в скором будущем уступит по всем показателям новому стандарту носителей FMD ROM.
Компьютерные технологии все больше срастаются с реальной жизнью. Однако грань между реальной реальностью и реальностью так сказать, компьютерной или виртуальной остается. Перенести предмет из одной плоскости в другую не так просто. Конечно, если речь идет о тексте, картинках и прочих двухмерных вещах - то принтеры и сканеры уже давно сделали такой обмен делом несложным и совершенно обыденным. Однако в случае с трехмерными физическими объектами все намного сложнее.
1. Голографическая память
Широкие перспективы в этом плане открывает технология оптической записи, известная как голография: она позволяет обеспечить очень высокую плотность записи при сохранении максимальной скорости доступа к данным. Это достигается за счет того, что голографический образ (голограмма) кодируется в один большой блок данных, который записывается всего за одно обращение. А когда происходит чтение, этот блок целиком извлекается из памяти. Для чтения или записи блоков голографически хранимых на светочувствительном материале (за основной материал принят ниобат лития, LiNbO3) данных ("страниц") используются лазеры. Теоретически, тысячи таких цифровых страниц, каждая из которых содержит до миллиона бит, можно поместить в устройство размером с кусочек сахара. Причем теоретически ожидается плотность данных в 1TБ на кубический сантиметр (TB/sm3). Практически же исследователи ожидают достижения плотности порядка 10GB/sm3, что тоже весьма впечатляет, если сравнивать с используемым сегодня магнитным способом - порядка нескольких MB/sm2 - это без учета самого механизма устройства. При такой плотности записи оптический слой, имеющий толщину около 1cm, позволит хранить около 1ТВ данных. А если учесть, что такая запоминающая система не имеет движущихся частей, и доступ к страницам данных осуществляется параллельно, можно ожидать, что устройство будет характеризоваться плотностью в 1GB/sm3 и даже выше.
Необычайные возможности топографической памяти заинтересовали ученых многих университетов и промышленных исследовательских лабораторий. Этот интерес уже довольно давно вылился в две научно-исследовательские программы. Одна из них - программа PRISM (Photorefractive Information Storage Material), целью которой является поиск подходящих светочувствительных материалов для хранения голограмм и исследование их запоминающих свойств. Вторая научно-исследовательская программа - HDSS (Holographic Data Storage System). Так же, как и PRISM, она предусматривает ряд фундаментальных исследований, и ее участниками являются те же компании. В то время как целью PRISM является поиск подходящих сред для хранения голограмм, HDSS ориентирована на разработку аппаратных средств, необходимых для практической реализации голографических запоминающих систем.
1.1 Принцип функционирования системы голографической памяти
Рассмотрим для этого установку собранную исследовательской группой из Almaden Research Centre.
На начальном этапе в этом устройстве происходит разделение луча сине-зеленого аргонового лазера на две составляющие - опорный и предметный лучи (последний является носителем самих данных). Предметный луч подвергается расфокусировке, чтобы он мог полностью освещать пространственный световой модулятор (SLM - Spatial Light Modulator), который представляет собой просто жидкокристаллическую (LCD) панель, на которой страница данных отображается в виде матрицы, состоящей из светлых и темных пикселей (двоичные данные).
Оба луча направляются внутрь светочувствительного кристалла, где и происходит их взаимодействие. В результате этого взаимодействия образуется интерференционная картина, которая и является основой голограммы и запоминается в виде набора вариаций показателя преломления или коэффициента отражения внутри этого кристалла. При чтении данных кристалл освещается опорным лучом, который, взаимодействуя с хранимой в кристалле интерференционной картиной, воспроизводит записанную страницу в виде образа "шахматной доски" из светлых и темных пикселей (голограмма преобразует опорную волну в копию предметной). Затем этот образ направляется в матричный детектор, основой для которого служит прибор с зарядовой связью (CCD - Charge-Coupled Device или ПЗС), захватывающее всю страницу данных. При чтении данных опорный луч должен падать на кристалл под тем же самым углом, при котором производилась запись этих данных, и допускается изменение этого угла не более чем на градус. Это позволяет получить высокую плотность данных: изменяя угол опорного луча или его частоту, можно записать дополнительные страницы данных в том же самом кристалле.
Однако дополнительные голограммы изменяют свойства материала (а таких изменений может быть только фиксированное количество), в результате образы голограмм становятся тусклыми, что может привести к искажению данных при чтении. Этим и объясняется ограничение объема реальной памяти, которой обладает материал. Динамическая область среды определяется количеством страниц, которые она может реально вмещать, поэтому участники PRISM и занимаются исследованием ограничений на светочувствительность материалов.
Используемая в трехмерной голографии процедура заключения нескольких страниц с данными в один и тот же объем называется мультиплексированием. Традиционно используются следующие методы мультиплексирования: по углу падения опорного пучка, по длине волны и по фазе, но, к сожалению, они требуют сложных оптических систем и толстых (толщиной в несколько миллиметров) носителей, что делает их непригодными для коммерческого применения, по крайней мере, в сфере обработки информации. Однако совсем недавно Bell Labs были изобретены три новых метода мультиплексирования: сдвиговое, апертурное и корреляционное, основанные на использовании изменения положения носителя относительно световых пучков. При этом сдвиговое и апертурное мультиплексирование используют сферический опорный пучок, а корреляционное - пучок еще более сложной формы. Кроме того, поскольку при корреляционном и сдвиговом мультиплексировании задействованы механические движущиеся элементы, время доступа при их применении будет примерно таким же, как и у обычных оптических дисков. Bell Labs удалось построить экспериментальный носитель на основе все того же ниобата лития, использующий технику корреляционного мультиплексирования, однако уже с плотностью записи около 220GB на квадратный дюйм.
Другой сложностью, возникшей на пути создания устройств голографической памяти, стал поиск подходящего материала для носителя. Большинство исследований в области голографии проводились с использованием фотореактивных материалов (главным образом, упоминавшегося выше ниобата лития), однако если они годятся для записи голографических изображений ювелирных украшений, то этого никак нельзя сказать в отношении записи информации, да еще в коммерческих устройствах: они дороги, имеют слабую чувствительность и ограниченный динамический диапазон (частотная полоса пропускания). Поэтому был разработан новый класс фотополимерных материалов, обладающих неплохими перспективами с точки зрения коммерческого применения. Фотополимеры представляют собой вещества, в которых под действием света происходят необратимые изменения, выражающиеся во флуктуациях состава и плотности. Созданные материалы имеют более продолжительный жизненный цикл (в плане хранения записанной на них информации) и устойчивы к воздействию температур, а также отличаются улучшенными оптическими характеристиками, в общем, подходят для однократной записи данных (WORM).
Ну и, наконец, еще одна проблема - сложность используемой оптической системы. Так, для голографической памяти не годятся светодиоды на базе полупроводниковых лазеров, применяемые в традиционных оптических устройствах, поскольку они обладают недостаточной мощностью, дают пучок с высокой расходимостью и, наконец, полупроводниковый лазер, генерируемый излучение в среднем диапазоне видимой области спектра, получить очень сложно. Здесь же необходим мощный лазер, дающий как можно более параллельный пучок. То же самое можно сказать и о пространственных световых модуляторах: до недавнего времени не было ни одного подобного устройства, которое можно было бы применять в системах голографической памяти. Однако времена меняются, и сегодня уже стали доступными недорогие твердотельные лазеры, появилась микроэлектромеханическая технология (MEM - Micro-Electrical Mechanical, устройства на ее основе представляют собой массивы микрозеркал размером порядка 17 микрон), как нельзя лучше подходящей на роль SLM.
Так как интерференционные шаблоны однородно заполняют весь материал, это наделяет голографическую память другим полезным свойством - высокой достоверностью записанной информации. В то время как дефект на поверхности магнитного диска или магнитной ленты разрушает важные данные, дефект в голографической среде не приводит к потере информации, а вызывает всего лишь "потускнение" голограммы. Небольшие настольные HDSS-устройства должны появиться к 2003 году. Поскольку аппаратура HDSS для изменения угла наклона луча использует акустооптический дефлектор (кристалл, свойства которого изменяются при прохождении через него звуковой волны), то по общим оценкам, время извлечения смежных страниц данных составит менее 10ms. Любое традиционное оптическое или магнитное устройство памяти нуждается в специальных механических средствах для доступа к данным на различных дорожках, и время этого доступа составляет несколько миллисекунд.
Пожалуй, ошибочно рассматривать устройства голографической памяти как радикально новую технологию, ибо ее основные концепции разработаны около 30 лет назад. Если что и изменилось, так это доступность ключевых компонентов для этой технологии - цены на них стали значительно ниже. Так, полупроводниковый лазер уже не является чем-то диковинным, а давным-давно уже стал стандартом. С другой стороны, SLM - это результат той же технологии, которая применяется при изготовлении LCD-экранов для ПК-блокнотов и калькуляторов, а детекторная матрица CCD позаимствована прямо из цифровой видеокамеры.
Итак, преимуществ у новой технологии более чем достаточно: кроме того, что информация сохраняется и считывается параллельно, можно достичь очень высокой скорости передачи данных и, в отдельных случаях, высокой скорости произвольного доступа. А самое главное - практически отсутствуют механические компоненты, свойственные нынешним хранителям информации (например, шпиндели с гигантским числом оборотов). Это гарантирует не только быстрый доступ (для данной технологии правильней сказать мгновенный) к данным, меньшую вероятность сбоев, но и более низкое потребление электроэнергии, поскольку сегодня жесткий диск - один из наиболее энергоемких компонентов компьютера. Правда, есть трудности с юстировкой оптики, поэтому на первых порах данные устройства, вероятно, будут все еще "бояться" сторонних «механических воздействий».
1.2 Голографическая память через генетически модифицированный белок
Генетически модифицированный бактериальный белок может позволить создать более эффективные устройства хранения информации.
В отличие от обычных двумерных носителей, голографическая память позволяет записывать информацию в трёх измерениях. Первые голографические носители информации уже поступили на рынок, однако перезапись информации в реальном времени пока для них недостижима. Американские исследователи из Университета Коннектикута продемонстрировали возможность создания перезаписываемой голографической памяти, используя лазеры для записи данных на бактериальных белках.
Новая технология основана на использовании бактериородопсина бактерии Halobacterium salinarum - светочувствительного мембранного белка, вырабатываемого микроорганизмом, когда концентрация кислорода в среде становится опасно низкой. Поглощая квант света, белок претерпевает серию химических превращений, приводящую к «прокачке» протона через мембрану, что создаёт разность электрохимических потенциалов на мембране и позволяет бактерии производить энергию.
В течение цепи химических превращений белок проходит через некоторые конфигурации, которые могут быть использованы для создания голографических изображений при освещении. В природных условиях время жизни промежуточных конфигураций чрезвычайно мало: весь цикл длится всего 10-20 миллисекунд. Однако, более ранние исследования продемонстрировали возможность путём освещения красным светом на конечных стадиях цикла перевести белок в состояние, стабильное в течение многих лет - так называемое Q-состояние.
Для создания голографического носителя информации приготавливается суспензия бактериородопсина в полимерном геле. Луч зелёного лазера расщепляется на два, в один из которых кодируются данные, после чего лучи интерферируют в геле. Для считывания данных интерференционная картина освещается одним лучом красного света. Стереть же данные можно синим лазерным лучом.
Использование голографических носителей информации может позволить сократить растущий разрыв между объёмом носителей и скоростью чтения и записи информации. Например, чтобы записать на жёсткий диск компьютера 30-гигабайтный файл с полнометражным фильмом в формате High Definition, сейчас требуется 30-45 минут. Использование голографических устройств (в которых запись информации производится одновременно по всему объёму) способны снизить это время до менее чем 10 секунд.
Что касается плотности записи информации, компания InPhase Technologies уже продемонстрировала устройство с плотностью записи до 80 гигабайт на квадратный сантиметр. Новая технология позволяет создавать перезаписываемые устройства, однако недостатком является то, что запись производится красным светом. Дело в том, что достижимая плотность записи информации возрастает с уменьшением длины волны света - именно этим обусловлен переход от CD (красный свет) к технологиям Blu-Ray и HDDVD, использующим синие лазеры.
Однако, основная проблема состоит в том, что перевести природный бактериородопсин в Q-состояние довольно сложно. Поэтому молекулярные биологи из Коннектикута работают над генетической модификацией бактерий с тем, чтобы получить белок, более легко переводимый в это состояние.
2. FMD - флуоресцентных диск
FM диск прозрачный, и вы можете спросить: а где же отражающий слой, как на СD и DVD дисках? Дело в том, что данная технология не нуждается в присутствии отражающего слоя. Рассмотрим FM диск более детально.
В оптических носителях типа CD, DVD и МО процесс считывания происходит следующим образом. Луч полупроводникового лазера падает на поверхность информационного слоя, затем отражается от алюминиевой (или другой металлической - это роли не играет) подложки и фиксируется детектором-приемником. В носителях FMD не используется отраженный луч лазера, так как при воздействии лазерного луча на информационный слой последний сам начинает излучать.
2.1. Принцип действия флуоресцентных дисков
Принцип действия флуоресцентных дисков основан на явлении фотохромизма. Несколько лет назад российские химики открыли стойкий органический материал "стабильный фотохром", под воздействием лазерного луча приобретающий флуоресцентные свойства (флуоресцентное свечение).Дело в том, что информационный элемент FM-диска (фотохром) может менять свои физические свойства (такие как цвет или наличие флуоресценции) под воздействием лазера определенной мощности и длины волны. Изначально фотохром не обладает флуоресцентными свойствами. При воздействии лазера большой мощности, инициируется фотохимическая реакция, в результате которой и начинают проявляться флуоресцентные свойства. При считывании данное вещество опять же возбуждается, но посредством лазера меньшей мощности, и начинает флуоресцировать. Это свечение улавливается фотоприемником и принимается как значение "1". Также возникает вопрос об устойчивости состояния фотохрома с точки зрения долговечности, так как все физические элементы природы со временем теряют свои свойства. По заявлению компании С3D ухудшения происходить не будет.
Возбужденный фотохром излучает свет, сдвигая спектр падающего на него излучения в сторону красного цвета на определенную величину (в пределах 30-50 нм), что позволяет легко различить сигнал лазера и свет, излучаемый материалом диска. Необходимо отметить, что данная технология позволяет обойти проблему множественной интерференции между слоями, которая может привести к потери луча в многослойном диске, так как излученный фотохромом свет не когерентен и хорошо контрастирует с отраженным лазером, свободно проходит сквозь слои, и легко определяется фотодатчиком. Рассмотрим данную проблему подробнее.
В обычных оптических носителях (СD/DVD) при увеличении числа информационных слоев происходит качественное ухудшение сигнала. Это объясняется тем, что в данных технологиях используется отраженный от информационного слоя сигнал, то есть существует необходимость в зеркальных поверхностях. Поэтому в технологии DVD при изготовлении двухслойных дисков внешний информационный слой делается полупрозрачным для того, чтобы дать возможность лазеру добраться до внутреннего слоя.
При этом сигнал, проходящий через внешний слой, "оставляет" в нем часть энергии вследствие отражения. Причем отраженные от обоих слоев сигналы интерферируют (накладываются друг на друга или складываются) из-за их когерентности (совпадение частоты, и постоянной во времени разности фаз), в результате чего происходят потери полезного сигнала. Увеличение количества слоев усугубляет эффект множественной интерференции между слоями, и усложняется процесс считывания. Эту проблему можно решить путем усовершенствования детекторов-приемников, но это пока возможно осуществить только в лабораторных условиях. В случае флуоресцентных дисков такое качественное ухудшение сигнала при нарастании числа слоев происходит гораздо медленнее. Если это представить в виде графика, то выглядеть все будет примерно так:
По заявлению разработчиков FMD-ROM, даже при количестве слоев больше сотни не будет происходить сильного искажения полезного сигнала, так как все слои диска прозрачны и однородны.
FM диск в разрезе
Как видно из рисунка, диск состоит из нескольких пластиковых (поликарбонатных) слоев, соединенных между собой. Слой содержит поверхностные структуры ("питы"), которые заполняются флуоресцентным материалом. При считывании лазер фокусируется на определенном слое и возбуждает его флуоресцентные элементы, после чего это свечение улавливается фотодетектером.
Разработчики заявляют, что при использовании синего лазера (480 нм) возможно увеличение плотности записи до десятков Тбайт на один FM диск. Другая интересная особенность данной технологии заключается в возможности параллельного считывания. Если записывать последовательность бит не вдоль дорожки, а вглубь по слоям, то можно значительно повысить скорость выборки данных. Вследствие этого разработчиками FM диска, в шутку или всерьез, было предложено название своему детищу как "трехмерный диск.
2.2 Производство FM дисков
Необходимо отметить, что многие этапы производства FM дисков унифицированы под уже существующие методы производства СD и DVD дисков. Конечно, требуются некоторые изменения. В частности, они касаются формы "пита" и способов заполнения флуоресцентным материалом, а также убирается технологическая операция по напылению алюминиего слоя, что уменьшает количество шагов при изготовлении одного информационного слоя.
Процесс мастеринга (изготовление мастер-копии ) очень похож на аналогичный для CD/DVD. Пара слов о самом процессе изготовления CD дисков.
В качестве носителя записанной информации используется стеклянная пластина с нанесенным на нее тонким фоторезистивным слоем. Лазерный луч, интенсивность которого промодулирована цифровой информацией, "врезается" в фоторезист, так что на его поверхности появляются отметины, соответствующие "единицам" цифрового кода. Далее фоторезист проявляют и покрывают металлическим слоем. Это так называемый образец (Master) после записи содержит цифровую информацию в форме питов. Затем гальваническим способом изготавливается точная негативная копия, которая позднее служит в качестве пресс-матрицы. Эту негативную копию уже можно было бы использовать в качестве матрицы и изготавливать CD. Однако для того, чтобы сберечь единственную имеющуюся матрицу, с ее помощью изготавливают одну или несколько промежуточных копий, которые, однако, не применимы в качестве пресс-матрицы, так как являются копиями позитивными. Эти копии в просторечии называют "матками". С "матки" гальваническим способом изготавливается пресс-матрица, которая является негативной копией. И уже с помощью этой матрицы начинается штампование CD. После запрессовывания информации на информационную поверхность в вакууме напыляется тонкий слой алюминия. С наружной стороны металлический слой покрывается защитным слоем лака, во избежание его механических повреждений.
В технологии FMD очень важно получения точной формы пита, так как впоследствии производится его заполнение флуоресцентным материалом. Поэтому технология изготовления СD и FM дисков отличается. Здесь мастер-копией является никелевая матрица (назовем ее штампом). Она, также как и в CD-технологии, является негативной копией производимого диска. FM диск состоит из нескольких слоев, поэтому процесс разбивается на этапы: отдельно изготавливаются информационные слои, после чего они связываются между собой.
Технологическое производство FM дисков имеет две разновидности.В первой используется метод горячего тиснения (выдавливания). Каждый слой получается посредством прессовки поликарбонатового слоя двумя штампами (Мастер-копиями) при высокой температуре. В результате получается так, что один слой несет информацию с двух сторон. Затем производится заполнение питов флуоресцентным материалом. После того, как он затвердевает, изготовленные слои спрессовываются под давлением.
На рисунке представлен пример структуры семислойного диска, производимого по вышеописанному методу.
Второй метод использует процесс фотополимеризации, при котором многослойный диск получается складыванием слоев одним за другим, формирующиеся из "тонких отпечатков" (или информационных слоев). Изготовление одного информационного слоя представляет собой изготовление пластиковой пленки с определенными оптическими характеристиками. Толщина пленки варьируется от 25 до 30 микрон. Пленка (на которую вскоре будет нанесена информация) либо штампуется, либо вырезается лазером до необходимого размера. Приготовленная пленка закрепляется в специальной оснастке и устанавливается на внешнюю поверхность никелевой матрицы, несущую негативную копию изготавливаемого информационного слоя. В процессе вращения фотополимерное вещество равномерно вносится в пространство между поверхностью штампа и пластиковой пленки. Позднее, когда фотополимерное вещество затвердевает, пленка отделяется от поверхности штампа. Подложка теперь содержит питы с определенной геометрией. При этом геометрия пита по качеству превосходит геометрию, получаемую при использовании матриц для изготовления CD или DVD, так как в этих технологиях используется процесс выдавливания питов (штампования). После получения слоя с необходимым расположением питов производится их заполнение флуоресцентным материалом. Во время заполнения питов флуоресцентный материал равномерно наносится на всю информационную сторону. После нанесения полимера производится химическая обработка поверхности для достижения желаемой контрастности питов и флэтов. Далее производится проверка копии на наличие различных дефектов и правильности заполнения питов, для чего производится возбуждение фотоэлементов, и затем вся картина улавливается CCD камерами и производится необходимый анализ. Затем слои "налепляют" на подложку, толщина которой 0,6 мм. Сверху все это заливается защитным слоем, который впоследствии можно использовать для какого-либо графического оформления. Для избежания физического контакта с информационными слоями на кромке диска эта область также заполняется полимерным материалом, аналогично технологиям CD или DVD.
2.3 Устройства чтения Fm дисков
Разработчики заявляют, что приводы, предназначенные для чтения этих дисков, будут легко понимать форматы как CD, так и DVD дисков. В этом есть необходимость, так как рынок переполнен CD и (в меньшей степени) DVD дисками. По строению приводы для FM дисков аналогичны приводам для CD/DVD по многим компонентам, например по таким как: наличие лазера, оптика, сервопривод, система трекинга и фокусировки, различные контроллеры. Добавляются лишь системы, способные улавливать и различать флуоресцентное свечение от лазерного, а также сервис по выборке информационного слоя.
2.4 Запись на FDM-ROM
На момент написания статьи пока еще не был представлен прототип записывающего устройства на FM-диски, но компания C3D заявляет, что оно в стадии разработки. При записи на FMD-ROM используется технология WORM (Write Once Read Many - один раз записал, много раз прочитал). Серия перезаписываемых дисков так и будет называться: FMD WORM. Технология производства данных дисков остается та же, что и при производстве FMD ROM, за исключением того, что будет использоваться иной флуоресцентный материал, способный обратимо менять свое состояние под действием лазера при записи. При этом появляются некоторые правила, согласно которым запись на диск следует 2-м критериям:
Необходимо иметь достаточную мощность записывающего лазера, который наделял бы элемент диска флуоресцентным свойством;
При записи использовать пороговую мощность лазера, при которой происходит изменение флоуресцентных свойств материала, а при чтении использовать меньшую мощность лазера, дабы не испортить записанные на диске данные.
Также очень важно выбрать метод записи на диск. Разработчики FMD технологии предлагают 2 принципа записи.
Первый принцип (термический) предполагает использование материала, изначально обладающего флуоресцентным свойством (логическая единица). При записи же, участки, на которые производится термическое воздействие посредством лазера, теряют это свойство(логический ноль).
Второй принцип (химический) предполагает использование материала не обладающим флуоресцентным свойством. При воздействии лазера происходит фотохимическая реакция, в результате которой материал наделяется флуоресцентным свойством. Для возбуждения данной реакции достаточно маломощного лазера, либо обычного светодиода (или светодиодной матрицы). При использовании светодиодной матрицы возможна одновременная запись целого массива информации, что ускоряет процесс записи.
Записывающие устройства не имеют принципиальных отличий от считывающих устройств. Единственное отличие будет в использовании немного другой формы лазера, позволяющей производить как чтение, так и запись. Необходимо отметить еще одну интересную особенность в плане того, что есть возможность совмещение WORM и ROM на одном носителе! Например, представьте себе 20 слойный диск, у которого 10 слоев уже содержат информацию (записанную при изготовлении), а остальные 10 оставлены под нужды пользователя.
К сожалению, информация, поступающая от официальных источников очень скудна, и нам остается только дождаться первых экземпляров FMD WORM и записывающих устройств.
Компания C-3d также планирует выпуск перезаписываемых FM дисков (в конце 2001 года). Принцип записи остается практически таким же, как и у СD-RW технологии за исключением того, что здесь нет необходимости управлять отражающей способностью слоя - достаточно будет переводить флуоресцентный материал из одного состояние (отсутствие флуоресценции) в другое (наличие флуоресценции). Например, весь слой FM диска будет покрыт флуоресцентным материалом, изначально не обладающим флуоресценцией (логический ноль), и при записи логической единицы в нужном месте посредством маломощного лазера возбуждается фотохимическая реакция, вследствие чего этот участок наделяется флуоресценцией. Стирание будет производится более мощным лазером, под действием которого элементы теряют флуоресценцию. Достоинством данной технологии можно назвать то, что флуоресцентный материал намного устойчивее к фазовым преобразованиям, нежели используемый в CD-RW дисках, поэтому возможно произвести намного больше циклов перезаписи.
2.5 Параллельное чтение
Как уже и упоминалось выше, в данной технологии существует возможность параллельного чтения, то есть последовательность бит записывается не вдоль дорожки, а вглубь по слоям. Таким образом, появляются три способа чтения данных: последовательный, последовательно-параллельный и параллельный.
Немного о том, как происходит параллельное чтение.Процесс чтения производится с помощью фоточувствительного элемента, который представляет собой массив CDD камер. Данный прибор способен считывать маломощное свечение с частотой в несколько десятков МГц. При этом скорость считывания достигает 1 Гбита/с. Надо отметить, что механическая скорость работы привода при этомв 450 раз меньше, чем у DVD.
2.6 DVD и FMD-ROM
По каким же параметрам FMD ROM будет превосходить DVD?
Первый параметр - соотношение размер/емкость. Тут "fluorescent multilayer disk" вне конкуренции. Разработчики заявляют, что уже сейчас первые прототипы способны вмещать при размере диска 12 см в диаметре, то есть на стандартном 5 дюймовом носителе до 140Гб. Это при десяти слоях. А в ближайших планах компании C3D есть желание, как минимум удесятерить число слоев. При этом становится вполне реальной возможность создания сменных носителей информации емкостью в десятки терабайт. Та емкость, которую на сегодняшний день можно получить лишь при использовании громадных дисковых массивов, занимающих подчас целые шкафы и даже комнаты, будет обеспечиваться компактным диском, который с легкостью умещается в кармане!
Насчет скорости доступа еще очень мало данных. Разработчики обещают, что этот параметр будет намного выше, нежели у DVD. Хотелось бы верить, ведь иначе, с существующими скоростями, при работе с терабайтными массивами информации даже простые операции, например, перечитка диска, может затянуться на несколько часов. Новые гигантские объемы требуют и соответствующих скоростей доступа.
Что же касается соотношения емкость/стоимость носителя, то и тут FMD ROM не имеет себе равных. Ведь он представляет собой практически кусок пластмассы, вернее полимерную матрицу с фотохромным веществом, но по стоимости, это просто пластиковый диск. И ни каких затрат по созданию дорогостоящих полупрозрачных слоев, как в DVD. Собственно и никаких слоев в привычном смысле этого слова нет.
3. 3D принтеры
3.1 Лазерная печать
А теперь перейдем к настоящим объемным принтерам. В них используются несколько различных технологий. Исторически, первой было разработана так называемая стереолитография (StereoLithography или SLA). Принцип был изобретен и запатентован Чарльзом Халлом (Charles Hull) еще в 1986 году. Затем Халл основал компанию 3D Systems, которая занималась выпуском соответствующего оборудования. Позже к ней присоединились немецкая EOS GmbH, японские Sony-DMEC и Mitsui Engineering, а также несколько других. Суть стереолитографии в следующем - в рабочей зоне принтера находится жидкий фотополимер. При освещении ультрафиолетовым светом фотополимер затвердевает и превращается в достаточно прочный пластик (фотополимеры активно используются дантистами для пломбирования, так что, думаю, многие из читателей с ними знакомы). Для засветки полимера используется либо ультрафиолетовый лазер, либо обычная ультрафиолетовая лампа (о чем чуть позже). Луч лазера фактически попиксельно сканирует рабочую плоскость и формирует отдельные твердые "пиксели", пока не нарисует на пластике сечение модели. Затем уровень фотополимера повышается (точнее, опускается рабочий стол вместе со сформированной частью модели), и поверх него рисуется следующий слой, пока модель не будет полностью готова. Стереолитография позволяет получить точность "отпечатка" порядка десятых долей миллиметра, хорошо воспроизводит мелкие детали и обеспечивает достаточно ровную поверхность объекта. Эта технология лучше всего обкатана и наиболее широко распространена. Впрочем, не лишена она и недостатков - установки, равно как и расходные материалы, достаточно дороги (цена такого принтера составляет порядка сотен тысяч долларов). К тому же обрабатываемый материал ограничевается только фотополимерами.
Более скоростной вариант этой технологии первоначально был разработан компанией Cubital Inc. (ныне, судя по всему, покойной). Назывался он Solid Ground Curing или, сокращенно, SGC. В качестве рабочего материала в ней тоже использовался фотополимер, но засветка производилась ультрафиолетовой лампой сразу для всего рабочего слоя. Засветка велась через фотошаблон, который для каждого слоя печатался на стекле по технологии, напоминающей лазерную печать. Обработка всего слоя одновременно вместо попиксельного сканирования лазерным лучом как раз и позволяла достичь достаточно высокой скорости построения объекта. Сейчас систему на похожем принципе предлагает, например, немецкая компания Еnvisiontec. Устройство называется Prefactory (весьма говорящее название) и представляет собой систему быстрого прототипирования для конечного пользователя. Машинка занимает всего 0.3 квадратного метра площади, так что ее можно установить даже в небольшом офисе. Засветка производится при помощи технологии DLP (Digital Light Processing), аналогичной используемым в компьютерных проекционных системах. Разрешение (для одного рабочего слоя) составляет 1280x1024 пикселя при размере пикселя 150 или 90 микрон. Толщина слоев варьируется от 150 до 50 микрон. На Prefactory можно делать прототипы размером около 190x152x230 мм, а скорость печати составляет до 15 мм в час (в высоту). Управляется принтер встроенным компьютером под управлением Linux, а связь с внешним миром идет по Ehternet через локальную сеть. Фактически, посылать задания на Prefactory можно, как на обычный сетевой принтер.
3.2 Лазерное спекание
Альтернативный метод трехмерной печати называется лазерным спеканием (Selective Laser Sintering - SLS).Тут, как легко догадаться, тоже используется лазер, но в качестве рабочего материала выступает уже не фотополимер, а порошок какого-нибудь относительно легкоплавкого пластика. Пластик в рабочем объеме SLS-машины нагревается почти до температуры плавления, а чтобы он не загорелся и не стал окисляться, в рабочую зону подается азот. Затем мощный лазер опять же рисует по пластиковому порошку сечение детали, пластик нагревается выше температуры плавления и спекается. Сверху насыпается следующий слой и процедура повторяется. В конце работы лишний порошок просто стряхивается с готовой модели. Этот процесс был разработан в конце 80-х годов в Техасском университете в Остине и запатентован в 1989 году выпускником университета Карлом Декардом (Carl Deckard). Затем процесс был коммерциализирован фирмой DTM Corp. Лазерное спекание тоже обеспечивает достаточно высокое качество деталей, хотя поверхность у них получается пористой. Зато полученные методом SLS модели - самые прочные и эту технологию, в принципе, можно использовать для малосерийного производства. Правда, установка SLS достаточно сложная и дорога, а скорость производства составляет всего несколько сантиметров (высоты) в час (плюс несколько часов на нагревание и остывание установки).
Кроме неплохой точности изготовления и высокой прочности полученных "распечаток", SLS обладает еще несколькими важными достоинствами. Во-первых, лазерное спекание позволяет изготовлять модели с подвижными частями - например, с работающими петлевыми соединениями, нажимающимися кнопками и так далее. Во-вторых, для SLS-процесса разработаны специальные материалы, позволяющие напрямую изготавливать металлические детали. В качестве порошка здесь используются микрочастицы стали, покрытые сверху слоем связующего пластика. Спекание пластика происходит как обычно, а затем "отпечатанная" деталь обжигается в печи. При этом пластик выгорает, а освободившиеся поры заполняются бронзой. В результате, получается объект, состоящий на 60% из стали и на остальные 40% и бронзы. По своим механическим характеристикам он превосходит алюминий и приближается к классической нержавеющей стали. Фактически, SLS уже сейчас позволяет производить полноценные металлические предметы, причем произвольной формы. Кроме того, имеется аналогичный материал с керамической или стеклянной сердцевиной - из него можно делать модели, устойчивые к высоким температурам и агрессивным химическим веществам. Если бы только сам процесс не был так дорог…
3.3 Ламинирование
Еще одна технология объемной печати с использованием лазера - это ламинирование. Разработана она была компанией Helysis и проходила под торговой маркой LOM (Laminated Object Manufacturing). Сама Helysis в 2000 прекратила существование, а на основе ее технологии сейчас разрабатывают свое оборудование несколько других производителей. Суть технологии такова - в машину по очереди заряжаются тонкие листы рабочего материала, из которого затем лазером вырезаются слои будущей модели. После резки слои склеиваются друг с другом. В качестве материала первоначально использовалась специальная бумага со слоем клеящего вещества. Однако таким образом можно также нарезать тонкий пластик, керамику и даже металлическую фольгу.
голографический память флуоресцентный диск
3.4 Струйная печать
Выше были описаны, так сказать, системы лазерной трехмерной печати. Впрочем, струйные принтеры не отстают от лазерных и в этой области. Простейший из процессов "струйной" объемной печати - это так называемый Fused Deposition Modeling (FDM). Идея FDM очень проста - раздаточная головка выдавливает на охлаждаемую платформу-основу капли разогретого термопластика (в качестве материала может использоваться практически любой промышленный термопластик). Капли быстро застывают и слипаются друг с другом, формируя слои будущего объекта (печать здесь тоже ведется по слоям). Техпроцесс FDM позволяет с достаточно высокой точностью (минимальная толщина слоя 0.12 мм) изготовлять полностью готовые к использованию детали довольно большого размера (до 600 x 600 x 500 мм). Основы этой технологии были разработаны еще 1988 Скоттом Крампом (Scott Crump). Основным производителем оборудования для FDM является компания Stratasys.
Кстати, NASA рассматривает технологию FDM в качестве кандидата "космическую фабрику". Ведь в космическую экспедицию нельзя взять неограниченное количество запчастей ко всему оборудованию. Да и разместить полноценный механический цех на космическом корабле вряд ли удастся. А вот загрузить пару сотен килограмм исходного пластика и компактную машину, которая сможет сделать из этого пластика любую деталь - запросто.
Другая технология, явно восходящая к струйной печати - это разработка компании Objet Geometries под названием Polyjet. Здесь струйная головка используется для печати фотополимерным пластиком. Модель, как обычно, печатается слой за слоем, причем разрешение в слое составляет 600 x 300 dpi, а толщина слоя может быть доведена всего до 16 микрон. Каждый отпечатанный слой полимеризируется в твердый пластик под действием ультрафиолетовой лампы. В принципе, все это довольно похоже на SLA, но намного быстрее, точнее, проще и компактнее. При этом цена на принтеры Objet находится на уровне 60K$ -- в несколько раз меньше, чем у установок SLA. Аналогичную систему под названием InVison производит и компания 3D Systems, так что отец-основатель стереолитографии тоже не стоит на месте. Ценник на эту машину установлен около 40K$ -- системы быстрого прототипирования в последние годы явно дешевеют.
И еще одна технология "струйной печати", но с использованием порошковых материалов. Разработана она была в знаменитом Массачусетском Технологическом Институте, а первым и основным производителем оборудования стала компания Z Corporation. Её 3D принтеры относительно недороги (цены от 10 до 30K$) и работают существенно быстрее вышеописанных устройств. Суть технологии такова - специальная струйная головка (кстати, адаптированная из струйных принтеров Hewlett-Packard) набрызгивает на порошковый материал клеящее вещество. В качестве порошка используется обычный гипс или крахмал. В "забрызганных" местах порошок склеивается и формирует модель. Печать, как и в предыдущих случаях, идет послойно, а лишний порошок в конце стряхивается. Однако есть и существенная разница - этот принтер может использовать клеящую жидкость с добавление пигментных красителей - а значит, печатать цветные модели. В цветном принтере от Z Corporation установлены 4 струйные головки с чернилами-клеем основных цветов, так что полученная модель может воспроизводить не только форму, но и окраску (то есть, текстуру) своего виртуального прототипа. Правда, гипсовые модели получаются не очень то прочными, но зато их сразу можно использовать в качестве форм для литья. А что касается детализации "отпечатка", то достаточно посмотреть на приведенные фотографии, чтобы ее оценить.
Кстати, интересный вариант вышеописанной порошковой струйной печати разрабатывает компания ProMetal. Ее фирменный производственный процесс под названием Direct Metal Process работает абсолютно аналогично. Только вместо гипсового порошка применятся порошок металлический. Далее сформованное изделие обжигается в печи, так что порошок либо сплавляется сам, либо связывается более легкоплавким металлом (как и при лазерном спекании металлических порошков). Вот и еще один метод непосредственного производства при помощи трехмерной печати.
Вообще же, перспективы перед 3D печатью открываются самые радужные - эта технология уже позволяет экономить массу времени и сил дизайнерам и инженерам. А что будет, когда она станет доступна на бытовом уровне. Или, хотя бы, в виде недорогой услуги. Представьте себе, что можете сделать любой предмет, который сможете придумать и нарисовать на компьютере… Достаточно нарисовать модель, определить материал и отправить заказ по интернету. Это называется "дистанционное производство по требованию" (Distance Manufacturing on Demand). А вообще такая технология просто обязана рано или поздно стать массовой - и тогда у каждого на столе будет свой персональный механический заводик, заменяющий в мелочах обычное производство.
А между тем, дальнейшие разработки в этой области идут полным ходом, так что постоянно можно ожидать чего-нибудь нового и неожиданного. Вот, например, группа ученых из Калифорнийского университета в Беркли разрабатывает технологию трехмерной печати, которая позволила бы одновременно создавать и форму, и содержание. Под содержанием здесь подразумевается ни много, ни мало - электронная начинка. Скажем, принтер печатает корпус мобильного телефона из пластика и одновременно печатает внутри всю электронику. В принципе, уже существуют способы печати пластиковых полупроводниковых устройств и соединяющих их проводов. Осталось только скомбинировать их с существующими технологиями 3D-принтеров и готов революционный прорыв в современном производстве. Нет, конечно, это непростая задача, но решить ее вполне можно.
Или, вот, например, разработки Университета Миссури, позволяющие при помощи струйника выводить на печать своеобразные заготовки биологических органов. В качестве чернил при этом используются сгустки клеток заданного типа. Вместо "бумаги" выступает специальный био-гель, который фиксирует положение клеточных сгустков в пространстве. Печать производится в несколько слоев, так что в результате получается объемная конструкция из клеток, которая, в принципе, может имитировать любой орган (после вырастания клеток гель растворяется, так что возможно получение полых структур). Конечно, печать полноценного органа для пересадки пока представляется слишком сложной задачей, но работа идет.
Заключение
Благодаря развитию технических средств информация стала более доступной,легко предоставляемой, более простой в обработке и хранении. Развитие FM дисков позволит людям передавать, хранить, создавать и распространять все большее количество информации, а появление 3D-принтеров позволит предоставлять информацию более избычно, поскольку появится более наглядное точное представление информации.
Техника 21 века развивается стремительными быстрыми темпами что, показывает необходимость обладать теоретическими знаниями в этой области. В соответствии с тенденцией быстрого и всестороннего использования достижений научно-технического прогресса в области компьютерной техники и бурно развивающихся процессов информатизации стоит изучить некоторые достижения, их назначение, цели и применение, поскольку, вероятно, это техника уже ближайшего будущего.
Литература
1. http://www.3dnews.ru/storage/fmd-rom/
2. http://intercomp.net.ru/storage/3ddisc.htm
3.http://mail.rambler.ru/mail/mail.cgi?mode=redirect;url=http://www.3dnews.ru%2Fperipheral%2F3d-print%2Fprint;href=1
4.http://mail.rambler.ru/mail/mail.cgi?mode=redirect;url=http://www.supertalent.ru%2Fhome%2Fpress%2FSuper%2520Talent%2520Introduces%2520IDE%2520Flash%2520Disk%2520Modules%2520RU.doc;href=1
5.http://translate.google.com/translate?hl=ru&sl=en&u=http://www.thocp.net/hardware/fmd_rom.htm&sa=X&oi=translate&resnum=3&ct=result&prev=/search%3Fq%3Dfmd%2Brom%26complete%3D1%26hl%3Dru%26lr%3D
Размещено на Allbest.ru
...Подобные документы
Классификация компьютерной памяти. Использование оперативной, статической и динамической оперативной памяти. Принцип работы DDR SDRAM. Форматирование магнитных дисков. Основная проблема синхронизации. Теория вычислительных процессов. Адресация памяти.
курсовая работа [1,5 M], добавлен 28.05.2016Накопитель на жёстких магнитных дисках как основной накопитель данных в большинстве компьютеров. Строение устройства. Блок электроники. Особенности геометрии дисков со встроенными контроллерами. Адресация памяти. Виды интерфейсов. Тенденции развития.
презентация [4,6 M], добавлен 20.11.2013Типы файловых систем, поддерживаемые Windows NT. Методика сжатия данных и динамического кэширования диска. Символы, которые нельзя использовать в имени. Уровень дисководов, логических дисков, устройства чтения компакт-дисков, панель управления, принтеры.
презентация [8,0 K], добавлен 23.10.2013Описание нового вида памяти, в которой данные записываются по всему объему памяти при помощи различных углов наклона лазера. Техническое описание принципа работы голографической памяти. Основные части, обеспечивающие голографическое хранение информации.
курсовая работа [3,1 M], добавлен 17.01.2010Запоминающие устройства на жестких магнитных дисках. Устройство жестких дисков. Интерфейсы жестких дисков. Интерфейс ATA, Serial ATA. Тестирование производительности накопителей на жестких магнитных дисках. Сравнительный анализ Serial ATA и IDE-дисков.
презентация [1,2 M], добавлен 11.12.2013Современные достижения в разработке накопителей информации. Принципы работы запоминающих устройств ЭВМ и голографической памяти. Возможности персональных компьютеров и мультимедийных систем. Перспективы развития оптических накопителей и жестких дисков.
презентация [4,0 M], добавлен 27.02.2012Однокристальный контроллер гибких дисков КР1810ВГ72А, предназначенный для записи, чтения и форматирования дисков с одинарной (режим ЧМ) в формате "IВМ – 3740" и двойной плотностью в формате "IBMSISTEM 34". Фазы выполнения команд. Режимы работы КГМД.
курсовая работа [873,7 K], добавлен 10.02.2011Принцип работы обычных дисководов для гибких дисков. Накопители на дискетах и жёстких дисках. Модемы и факс-модемы. Немного о мышиной "анатомии". Три способа подключения мыши. Устройства ввода: клавиатура, мыши, мониторы, модемы, трекболы, сканеры.
реферат [20,1 K], добавлен 17.06.2010Компьютерная память, ее виды и классификации. Составляющие внутренней памяти процессорной системы (постоянное и оперативное запоминающие устройства). Построение пространства памяти заданного объема. Принцип записи и чтения информации, структура памяти.
контрольная работа [609,8 K], добавлен 12.01.2015Digital Versatile Disk - цифровой многофункциональный диск. Основы устройства DVD. Возможности использования DVD. Новые форматы дисков. Отличие CD от DVD. Емкость хранимых данных. Новейшие стандарты Blu-Ray и HD DVD.
реферат [136,6 K], добавлен 17.02.2007Виды оптических дисков и их устройство. Многократно-записываемые диски. Запись аморфных областей коротким лазерным импульсом. Трудности при проектировании устройства. Расчеты для демонстрационной модели. Схема-рисунок устройства для восстановления.
практическая работа [3,0 M], добавлен 16.05.2014Защита компьютера от вредоносных программ. Принцип работы антивирусных программ: проверка файлов, загрузочных секторов дисков и оперативной памяти и поиск в них известных и новых вредоносных программ. Сигнатуры и их использование при работе с компьютером.
презентация [976,8 K], добавлен 21.05.2019Блок-схема, отражающая основные функциональные компоненты компьютерной системы в их взаимосвязи. Устройства ввода-вывода информации. Определение объема оперативной памяти. Применение карт памяти и flash-дисков для долговременного хранения информации.
презентация [5,3 M], добавлен 28.01.2015Технические характеристики 18 моделей винчестеров с плотностью записи 20 GB на пластину и выше. Тестирование жестких дисков EIDE. Текущая линейка жестких дисков для настольных систем различных производителей (Fujitsu, IBM, Seagate, Maxtor, WD, Samsung).
реферат [1,0 M], добавлен 03.05.2010Иерархия запоминающих устройств ЭВМ. Микросхемы и системы памяти. Оперативные запоминающие устройства. Принцип работы запоминающего устройства. Предельно допустимые режимы эксплуатации. Увеличение объема памяти, разрядности и числа хранимых слов.
курсовая работа [882,6 K], добавлен 14.12.2012Причины "исчезновения" информации с жестких дисков и карт памяти. Принцип работы и обзор программ восстановления данных, восстановление данных с поцарапанных CD и DVD. Архивирование важных данных как лучший метод предупреждения потери информации.
курсовая работа [2,2 M], добавлен 27.12.2010Накопители на жестких магнитных дисках. Винчестеры с интерфейсом Serial ATA. Магнитные дисковые накопители. Приводы для чтения CD-ROM (компакт-дисков). Возможные варианты загрузки диска в привод. Флэш-память, основные ее преимущества перед дискетами.
презентация [26,5 K], добавлен 20.09.2010Проектирование базы данных для организации, занимающейся продажей музыкальных CD-дисков с учетом следующих потоков информации: перечня наименований дисков, поставщиков, сотрудников, поставок и продажи продукции. Создание отчетов с помощью мастера.
курсовая работа [25,9 K], добавлен 28.11.2010Основные возможности Norton Ghost. Создание резервной копии и восстановление данных из нее. Основные возможности Paragon Drive Backup. Клонирование дисков и разделов. Пользовательский интерфейс Drive Image 6.0. Утилиты Image Explorer и Ghost Explorer.
лекция [1,7 M], добавлен 27.04.2009Физическая и логическая структура жёстких дисков персонального компьютера. Методы организации файлов. Процесс форматирования жёсткого диска. Разработка программы, реализующей функции файлового обмена, чтения и записи с образом файловой системы FAT16.
курсовая работа [166,3 K], добавлен 09.06.2015