Единицы измерения информации

Понятие информации как одного из базовых для информатики, ее специфический набор признаков. Подходы и единицы измерения информации. Характеристика формулы для вычисления ее количества, учитывающая неодинаковую вероятность событий. Сущность битов и байтов.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 03.09.2014
Размер файла 15,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Введение

Понятие информация является одним из фундаментальных в современной науке и базовым для информатики. Наряду с такими понятиями, как вещество и энергия, пространство и время, оно составляет основу современной картины мира, ее относят к фундаментальным философским категориям. Понятие информации многозначно и имеет множество определений, раскрывающих ту или иную грань этого понятия. В зависимости от области знания существуют различные подходы к определению понятия информации.

В философском словаре говорится, что информация (лат. informatio -- разъяснение, изложение) -- это, во-первых, некоторые сведения, совокупность каких-либо данных, знаний; во-вторых -- одно из основных понятий кибернетики .

В неживой природе понятие информации связывают с понятием отражения, отображения. В быту под информацией понимают сведения, которые нас интересуют, т.е. сведения об окружающем мире и протекающем в нем процессах, воспринимаемые человеком или специальными устройствами (субъективный подход).

В лингвистике под информацией понимают не любые сообщения, а только те из них, которые обладают новизной или полезностью, т.е. учитывается смысл сообщения.

Под информацией в технике понимают сообщения, передаваемые в форме знаков или сигналов.

В теории связи под информацией принято понимать любую последовательность символов, не учитывая их смысл.

В теории информации под информацией понимают не любые сведения, а лишь те, которые снимают полностью или уменьшают существующую до их получения неопределенность. По определению К. Шеннона, информация -- это снятая неопределенность.

1. Подходы к измерению информации

При всем многообразии подходов к определению понятия информации, с позиций измерения информации нас интересуют два из них: определение К. Шеннона, применяемое в математической теории информации, и определение А.Н. Колмогорова, применяемое в отраслях информатики, связанных с использованием компьютеров (computer science).

В содержательном подходе возможна качественная оценка информации: новая, срочная, важная и т.д. Согласно Шеннону, информативность сообщения характеризуется содержащейся в нем полезной информацией - той частью сообщения, которая снимает полностью или уменьшает неопределенность какой-либо ситуации. Неопределенность некоторого события - это количество возможных исходов данного события. Так, например, неопределенность погоды на завтра обычно заключается в диапазоне температуры воздуха и возможности выпадения осадков.

Содержательный подход часто называют субъективным, так как разные люди (субъекты) информацию об одном и том же предмете оценивают по-разному. Но если число исходов не зависит от суждений людей (случай бросания кубика или монеты), то информация о наступлении одного из возможных исходов является объективной.

Алфавитный подход основан на том, что всякое сообщение можно закодировать с помощью конечной последовательности символов некоторого алфавита. С позиций computer science носителями информации являются любые последовательности символов, которые хранятся, передаются и обрабатываются с помощью компьютера. Согласно Колмогорову, информативность последовательности символов не зависит от содержания сообщения, а определяется минимально необходимым количеством символов для ее кодирования. Алфавитный подход является объективным, т.е. он не зависит от субъекта, воспринимающего сообщение. Смысл сообщения учитывается на этапе выбора алфавита кодирования либо не учитывается вообще. На первый взгляд определения Шеннона и Колмогорова кажутся разными, тем не менее, они хорошо согласуются при выборе единиц измерения.

2. Единицы измерения информации

Решая различные задачи, человек вынужден использовать информацию об окружающем нас мире. И чем более полно и подробно человеком изучены те или иные явления, тем подчас проще найти ответ на поставленный вопрос. Так, например, знание законов физики позволяет создавать сложные приборы, а для того, чтобы перевести текст на иностранный язык, нужно знать грамматические правила и помнить много слов.

Часто приходится слышать, что сообщение или несет мало информации или, наоборот, содержит исчерпывающую информацию. При этом разные люди, получившие одно и то же сообщение (например, прочитав статью в газете), по-разному оценивают количество информации, содержащейся в нем. Это происходит оттого, что знания людей об этих событиях (явлениях) до получения сообщения были различными. Поэтому те, кто знал об этом мало, сочтут, что получили много информации, те же, кто знал больше, чем написано в статье, скажут, что информации не получили вовсе. Количество информации в сообщении, таким образом, зависит от того, насколько ново это сообщение для получателя.

Однако иногда возникает ситуация, когда людям сообщают много новых для них сведений (например, на лекции), а информации при этом они практически не получают (в этом нетрудно убедиться во время опроса или контрольной работы). Происходит это оттого, что сама тема в данный момент слушателям не представляется интересной.

Итак, количество информации зависит от новизны сведений об интересном для получателя информации явлении. Иными словами, неопределенность (т.е. неполнота знания) по интересующему нас вопросу с получением информации уменьшается. Если в результате получения сообщения будет достигнута полная ясность в данном вопросе (т.е. неопределенность исчезнет), говорят, что была получена исчерпывающая информация. Это означает, что необходимости в получении дополнительной информации на эту тему нет. Напротив, если после получения сообщения неопределенность осталась прежней (сообщаемые сведения или уже были известны, или не относятся к делу), значит, информации получено не было (нулевая информация).

Если подбросить монету и проследить, какой стороной она упадет, то мы получим определенную информацию. Обе стороны монеты "равноправны", поэтому одинаково вероятно, что выпадет как одна, так и другая сторона. В таких случаях говорят, что событие несет информацию в 1 бит. Если положить в мешок два шарика разного цвета, то, вытащив вслепую один шар, мы также получим информацию о цвете шара в 1 бит. Единица измерения информации называется бит (bit) - сокращение от английских слов binary digit, что означает двоичная цифра.

В компьютерной технике бит соответствует физическому состоянию носителя информации: намагничено - не намагничено, есть отверстие - нет отверстия. При этом одно состояние принято обозначать цифрой 0, а другое - цифрой 1. Выбор одного из двух возможных вариантов позволяет также различать логические истину и ложь. Последовательностью битов можно закодировать текст, изображение, звук или какую-либо другую информацию. Такой метод представления информации называется двоичным кодированием (binary encoding).

В информатике часто используется величина, называемая байтом (byte) и равная 8 битам. И если бит позволяет выбрать один вариант из двух возможных, то байт, соответственно, 1 из 256 (28). В большинстве современных ЭВМ при кодировании каждому символу соответствует своя последовательность из восьми нулей и единиц, т. е. байт. Соответствие байтов и символов задается с помощью таблицы, в которой для каждого кода указывается свой символ. Так, например, в широко распространенной кодировке Koi8-R буква "М" имеет код 11101101, буква "И" - код 11101001, а пробел - код 00100000.

Наряду с байтами для измерения количества информации используются более крупные единицы:

1 Кбайт (один килобайт) = 210 байт = 1024 байта;

1 Мбайт (один мегабайт) = 210 Кбайт = 1024 Кбайта;

1 Гбайт (один гигабайт) = 210 Мбайт = 1024 Мбайта.

В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:

1 Терабайт (Тб) = 1024 Гбайта = 240 байта,

1 Петабайт (Пб) = 1024 Тбайта = 250 байта.

Рассмотрим, как можно подсчитать количество информации в сообщении, используя содержательный подход.

Пусть в некотором сообщении содержатся сведения о том, что произошло одно из N равновероятных событий. Тогда количество информации х, заключенное в этом сообщении, и число событий N связаны формулой: 2x = N. Решение такого уравнения с неизвестной х имеет вид: x=log2N. То есть именно такое количество информации необходимо для устранения неопределенности из N равнозначных вариантов. Эта формула носит название формулы Хартли. Получена она в 1928 г. американским инженером Р. Хартли. Процесс получения информации он формулировал примерно так: если в заданном множестве, содержащем N равнозначных элементов, выделен некоторый элемент x, о котором известно лишь, что он принадлежит этому множеству, то, чтобы найти x, необходимо получить количество информации, равное log2N.

Если N равно целой степени двойки (2, 4, 8, 16 и т.д.), то вычисления легко произвести "в уме". В противном случае количество информации становится нецелой величиной, и для решения задачи придется воспользоваться таблицей логарифмов либо определять значение логарифма приблизительно (ближайшее целое число, большее ).

При вычислении двоичных логарифмов чисел от 1 до 64 по формуле x=log2N поможет следующая таблица.

N

x

N

x

N

x

N

x

1

0,00000

17

4,08746

33

5,04439

49

5,61471

2

1,00000

18

4,16993

34

5,08746

50

5,64386

3

1,58496

19

4,24793

35

5,12928

51

5,67243

4

2,00000

20

4,32193

36

5,16993

52

5,70044

5

2,32193

21

4,39232

37

5,20945

53

5,72792

6

2,58496

22

4,45943

38

5,24793

54

5,75489

7

2,80735

23

4,52356

39

5,28540

55

5,78136

8

3,00000

24

4,58496

40

5,32193

56

5,80735

9

3,16993

25

4,64386

41

5,35755

57

5,83289

10

3,32193

26

4,70044

42

5,39232

58

5,85798

11

3,45943

27

4,75489

43

5,42626

59

5,88264

12

3,58496

28

4,80735

44

5,45943

60

5,90689

13

3,70044

29

4,85798

45

5,49185

61

5,93074

14

3,80735

30

4,90689

46

5,52356

62

5,95420

15

3,90689

31

4,95420

47

5,55459

63

5,97728

16

4,00000

32

5,00000

48

5,58496

64

6,00000

При алфавитном подходе, если допустить, что все символы алфавита встречаются в тексте с одинаковой частотой (равновероятно), то количество информации, которое несет каждый символ (информационный вес одного символа), вычисляется по формуле:

x=log2N,

где N - мощность алфавита (полное количество символов, составляющих алфавит выбранного кодирования). В алфавите, который состоит из двух символов (двоичное кодирование), каждый символ несет 1 бит (21) информации; из четырех символов - каждый символ несет 2 бита информации(22); из восьми символов - 3 бита (23) и т.д. Один символ из алфавита мощностью 256 (28) несет в тексте 8 битов информации. Как мы уже выяснили, такое количество информации называется байт. Алфавит из 256 символов используется для представления текстов в компьютере. Один байт информации можно передать с помощью одного символа кодировки ASCII. Если весь текст состоит из K символов, то при алфавитном подходе размер содержащейся в нем информации I определяется по формуле:

I=K-x,

где x - информационный вес одного символа в используемом алфавите.

Например, книга содержит 100 страниц; на каждой странице - 35 строк, в каждой строке - 50 символов. Рассчитаем объем информации, содержащийся в книге.

Страница содержит 35 x 50 = 1750 байт информации. Объем всей информации в книге (в разных единицах):

1750 x 100 = 175000 байт.

175000 / 1024 = 170,8984 Кбайт.

170,8984 / 1024 = 0,166893 Мбайт.

3. Вероятностный подход к измерению информации

Формулу для вычисления количества информации, учитывающую неодинаковую вероятность событий, предложил К. Шеннон в 1948 году. Количественная зависимость между вероятностью события р и количеством информации в сообщении о нем x выражается формулой:

x=log2 (1/p).

Качественную связь между вероятностью события и количеством информации в сообщении об этом событии можно выразить следующим образом - чем меньше вероятность некоторого события, тем больше информации содержит сообщение об этом событии.

Рассмотрим некоторую ситуацию. В коробке имеется 50 шаров. Из них 40 белых и 10 черных. Очевидно, вероятность того, что при вытаскивании "не глядя" попадется белый шар больше, чем вероятность попадания черного. Можно сделать заключение о вероятности события, которые интуитивно понятны. Проведем количественную оценку вероятности для каждой ситуации. Обозначим pч - вероятность попадания при вытаскивании черного шара, рб - вероятность попадания белого шара. Тогда: рч=10/50=0,2; рб40/50=0,8. Заметим, что вероятность попадания белого шара в 4 раза больше, чем черного. Делаем вывод: если N - это общее число возможных исходов какого-то процесса (вытаскивание шара), и из них интересующее нас событие (вытаскивание белого шара) может произойти K раз, то вероятность этого события равна K/N. Вероятность выражается в долях единицы. Вероятность достоверного события равна 1 (из 50 белых шаров вытащен белый шар). Вероятность невозможного события равна нулю (из 50 белых шаров вытащен черный шар).

Заключение

информация бит байт вероятность

В настоящее время не существует единого определения термина информация. С точки зрения различных областей знания, данное понятие описывается своим специфическим набором признаков. В информатике широко используется такое определение: информация - сведения, передаваемые источником получателю (приёмнику). Без информации не может существовать жизнь в любой форме и не могут функционировать созданные человеком любые информационные системы.

Свойства информации можно рассматривать в трех аспектах: техническом - это точность, надежность, скорость передачи сигналов и т.д.; семантическом - это передача смысла текста с помощью кодов и прагматическом - это насколько эффективно информация влияет на поведение объекта.

Единицы измерения информации служат для измерения объёма информации - величины, исчисляемой логарифмически. Соответствующая ему единица - бит - является основой исчисления информации в цифровой технике.

Чаще всего измерение информации касается объёма компьютерной памяти и объёма данных, передаваемых по цифровым каналам связи. Объёмы информации можно представлять как логарифм количества состояний.

Список используемой литературы

1. Философский словарь / Под ред. М.М. Розенталя, П.Ф. Юдина, М., 1963

2. Кибернетика. Становление информатики: Сб. статей. М., 1986

3. Информатика. Базовый курс / Симонович С.В. и др. - СПб: Издательство "Питер", 2000

4. Меняев, М.Ф.Информатика и основы программирования / М.Ф. Меняев. - М.: Омега-Л, 2007

Размещено на Allbest.ru

...

Подобные документы

  • Информатика - техническая наука, определяющая сферу деятельности, связанную с процессами хранения, преобразования и передачи информации с помощью компьютера. Формы представления информации, ее свойства. Кодирование информации, единицы ее измерения.

    презентация [117,7 K], добавлен 28.03.2013

  • Механизм передачи информации, ее количество и критерии измерения. Единицы информации в зависимости от основания логарифма. Основные свойства и характеристики количества информации, ее энтропия. Определение энтропии, избыточности информационных сообщений.

    реферат [33,9 K], добавлен 10.08.2009

  • Информация и ее свойства. Единицы измерения данных. Вероятностный и объемный подход к измерению количества информации, способы ее передачи. Рассмотрение поставщиков финансовой информации в Интернете; технологии финансовых инвестиций в компьютерной сети.

    контрольная работа [61,5 K], добавлен 08.06.2013

  • Сущность термина "информация". Информация как соотношения между сообщением и его потребителем. Свойства информации: философский, кибернетический подход. Характеристика носителей информации. Единицы количества информации: вероятностный и объемный подходы.

    реферат [63,4 K], добавлен 27.03.2010

  • Субъективный, кибернетический, содержательный и алфавитный подходы. Способы восприятия и форма представления информации. Язык как способ ее представления и единицы измерения. Информационная культура человека. Применение информатики и компьютерной техники.

    презентация [192,6 K], добавлен 04.12.2013

  • Символьное и образное представление информации. Единицы ее измерения. Язык как способ символьного представления информации. Знак как элемент конечного множества. Алфавитный подход к измерению информации. Решение задач на определение ее количества.

    презентация [178,2 K], добавлен 12.12.2012

  • Сущность и характеристика цифровой и аналоговой информации. Бит как основа исчисления информации в цифровой технике. Компьютерная система счисления как способ записи (изображения) чисел. Сущность и понятие позиционных и непозиционных систем исчисления.

    доклад [15,7 K], добавлен 04.06.2010

  • Основные единицы измерения времени, массы и объема. Исчисления между битами и байтами. Двоичные приставки в ОС Windows и у производителей ОЗУ. Расчет информационного размера изображения. Объём компьютерных информационных носителей, пример определения.

    презентация [638,9 K], добавлен 27.01.2014

  • Методы и единицы измерения количества и объема информации. Общее понятие, виды, классификация программного обеспечения. Классическая архитектура электронной вычислительной машины. Основополагающие принципы логического устройства компьютера Фон Неймана.

    реферат [272,3 K], добавлен 16.02.2014

  • Основные направления информатики. Единицы измерения информации. Принципы построения компьютеров, сформулированные Джоном Нейманом. Функции центрального процессора. Устройства, образующие внутреннюю и внешнюю память. Классификация компьютерных сетей.

    лекция [46,0 K], добавлен 10.04.2014

  • Информация относится к фундаментальным, неопределяемым понятиям науки информатика. В настоящее время наука пытается найти общие свойства и закономерности, присущие многогранному понятию информация, но пока это понятие во многом остается интуитивным.

    шпаргалка [132,6 K], добавлен 27.06.2008

  • Способы передачи и хранения информации наиболее надежными и экономными методами. Связь между вероятностью и информацией. Понятие меры количества информации. Энтропия и ее свойства. Формула для вычисления энтропии. Среднее количество информации.

    реферат [99,7 K], добавлен 19.08.2015

  • Понятие информационного общества, его культуры, ресурсов, продуктов, интерфейса и его виды. Сущность и предмет информатики, ее задачи. Данные и информация, методы кодирования и расчет параметров. Единицы измерения информации, характеристики ее качества.

    презентация [330,8 K], добавлен 19.12.2011

  • Вычисление количества информации, приходящейся на один символ по формуле Шеннона. Изменения информационной энтропии в текстах экономического, естественнонаучного и литературного содержания. Максимальное количество информации на знак по формуле Хартли.

    лабораторная работа [28,2 K], добавлен 06.12.2013

  • Актуальность (своевременность) информации. Информационные ресурсы и информационные технологии. Подходы к определению количества информации. Свойства информации, ее качественные признаки. Роль информатики в развитии общества. Бит в теории информации.

    презентация [200,9 K], добавлен 06.11.2011

  • Понятие вероятности случайного события. Зависимость количества информации в сообщении о некотором событии от вероятности этого события. Формула Хартли, которая определяет зависимость количества информации в битах от количества равновероятных событий.

    презентация [1,4 M], добавлен 01.12.2015

  • Основные свойства информации. Минимальная единица измерения количества информации, ее аналогия со знаниями с точки зрения процесса познания. Характеристика основных информационных процессов: поиск, сбор, обработка, передача и хранение информации.

    контрольная работа [28,8 K], добавлен 01.10.2011

  • Сущностные характеристики информации. Классификация информации по форме представления, области возникновения, способу передачи и восприятия и способам кодирования. Анализ основных единиц измерения информации, служащих для измерения объёма информации.

    реферат [77,6 K], добавлен 04.10.2011

  • История появления и развития единиц измерения. Метрические и неметрические единицы измерения, использование в мировой практике. Изучение среды программирования Borland Delphi. Разработка программы-переводчика единиц измерения веса и ее интерфейса.

    курсовая работа [635,7 K], добавлен 08.09.2021

  • Содержательный и кибернетический подходы к определению и измерению информации. Кодирование символьной информации в компьютере. Линия информации и информационных процессов. Обзор процесса передачи информации по техническим каналам связи. Языки информатики.

    презентация [173,0 K], добавлен 19.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.