Тепловой режим лазерного дальномера

Теоретические основы лазерного дальномера. Моделирование его схемы в программе Electronics Workbench и расчет теплового режима устройства, определение требуемого расхода воздуха в канале. Характеристика некоторых импульсных полупроводниковых лазеров.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 14.09.2014
Размер файла 279,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Основная часть

1.1 Теоретические основы электронного устройства

2. Практическая часть

Введение

В 1964 г. на церемонии вручения Нобелевской премии в Стокгольме акад. А. М. Прохоров сказал: «Квантовая электроника возникла в конце 1954 и начале 1955 г., фундаментом квантовой электроники следует считать явление индуцированного излучения, предсказанное А. Эйнштейном в 1917 г.».

Сущность этого явления заключается в том, что возбужденные атомы под воздействием внешнего излучения переходят в состояние с меньшей энергией, излучая при этом электромагнитные волны.

Однако только много лет спустя появилась мысль использовать это явление практически. В авторском свидетельстве СССР № 123209 от 18.06.51 г., выданном В.А. Фабриканту и его сотрудникам, записано: «Способ усиления электромагнитных излучений (ультрафиолетового, видимого, инфракрасного и радио диапазонов волн), отличающийся тем, что усиливаемое излучение пропускают через среду, в которой с помощью вспомогательного излучения или другим путем создают избыточную по сравнению с равновесной концентрацию атомов других частиц или их систем на верхних энергетических уровнях, соответствующих возбужденным состояниям». Эта формулировка практически охватывает все, что можно представить себе под термином «квантовое усиление».

Явление вынужденного излучения легло в основу современной квантовой электроники и лазерной техники.

Первый действующий лазер на рубиновом стержне был создан Т. Майманом в 1960 г., а 13.06.61 г. ему был выдан патент № 3353115. Это открытие дало толчок бурному развитию лазерной техники. Элементы лазера Маймана лежат в основе всех современных лазеров. Пророческими оказались и его слова, что когда будет решена задача управления лучом лазеров и обеспечен приемлемый к.п.д., применения лазеров будут ограничены лишь воображением и изобретательностью инженеров.

А. Джаван построил первый газовый лазер, работающий на смеси неона и гелия, в котором инфракрасное когерентное излучение испускали атомы неона. На основании спектроскопических исследований он предположил, что электрический разряд в смеси неона и гелия должен создать инверсии населенностей уровней, и, несмотря на скептицизм ученых, знакомых с его работой, упорно искал экспериментальное подтверждение лазерного эффекта в газах. В конце 1960 г. его усилия увенчались успехом.

Создание первых лазеров ускорило развитие новой области физики -- нелинейной оптики, изучающей нелинейные оптические эффекты при воздействии на среды мощного вынужденного излучения. Значительный вклад в исследование нелинейных оптических явлений внесли ученые-физики С.И. Вавилов, С.А. Ахманов, Г.С. Горелик, Р.В. Хохлов, Н. Бломберген, Д. Джордмэйн, Р. Терхьюн и др.

Первый молекулярный лазер был создан Р. Пателем в 1964 г. Этот лазер имел к.п.д. примерно 10 % и значительную мощность (около 10 Вт). Разработке первого полупроводникового инжекционного лазера на арсениде галлия (Р. Холл, 1962 г.) предшествовали теоретические исследования полупроводниковых монокристаллов, выполненные Н.Г. Басовым, Б.М. Вулом и Ю.М. Поповым (1958--1961 гг.). Последующие два года были насыщены техническими усовершенствованиями и изобретениями, направленными главным образом на увеличение мощности, компактности, долговечности лазеров.

Современный этап в развитии квантовой электроники и лазерной техники характеризуется внедрением лазерной технологии в промышленное производство, исследованиями лазерного термоядерного синтеза и разработкой устройств когерентной и интегральной оптики. Интегрально-оптические устройства генерации, распространения, усиления, преобразования и детектирования лазерного излучения в тонкопленочных волноводных структурах -- реальность сегодняшнего дня.

Квантовые приборы, устройства и системы в основном можно классифицировать следующим образом:

квантовые стандарты длины, частоты и времени;

квантовые усилители оптического (лазерные усилители) и СВЧ-диапазона длин волн (молекулярные, парамагнитные и т.д.);

лазеры;

преобразователи частоты лазерного излучения;

лазерные модуляционные устройства;

лазерные системы (лидары, гирометры, лазерные доплеровские измерители угловой скорости, системы оптической связи, вычислители и т.д.); лазерные технологические методы и оборудование для обработки материалов, запись и отображение информации, лазерные интегрально-оптические устройства и т.д.

Объект и предмет исследования. Объект исследования - лазерный дальномер. Предметом исследования является анализ схемы и технические характеристики лазерного дальномера.

Цели и задачи исследования.

Цели: Познакомиться с лазерным дальномером, смоделировать его схему в программе Electronics Workbench и рассчитать тепловой режим этого устройства для того чтобы определить требуемый расход воздуха в канале.

Задачи:

1. Изучить теоретические основы лазерного дальномера

2. Смоделировать и изучить схему лазерного дальномера

3. Рассчитать тепловой режим лазерного дальномера

1. Основная часть

1.1 Теоретические основы электронного устройства

Лазерный дальномер -- прибор для измерения расстояний с применением лазерного луча.

Приемное устройство дальномера включает фотоприемник и приемную оптическую систему. Передающее устройство дальномера включает первый полупроводниковый лазер и объектив, между которыми введено наклонное зеркало, отражающее излучение первого лазера в сторону объектива, а также второй полупроводниковый лазер. Выходной пучок излучения второго лазера проходит сквозь наклонное зеркало в направлении объектива параллельно пучку излучения первого лазера. Оптическая ось объектива параллельна оптической оси приемного устройства. Лазеры выполнены с разной длиной волны излучения. Их излучающие площадки расположены на оптической оси объектива в его фокальной плоскости. Изображения излучающих переходов лазеров, создаваемые объективом в плоскости цели, покрывают заданное поперечное сечение цели с минимальной шириной неосвещенных промежутков. Этот неосвещенный промежуток между ближайшими к оптической оси дальномера изображениями не превышает минимальных угловых размеров заданной малоразмерной цели. Наклонное зеркало представляет собой спектроделительное покрытие, прозрачное для излучения второго лазера и отражающее излучение первого лазера. Разность длин волн лазеров превышает интервал между спектральными зонами пропускания и отражения спектроделительного покрытия. Приемный объектив прозрачен для длин волн излучения обоих лазеров. Фотоприемник выполнен с возможностью приема излучения на обеих длинах волн. Технический результат - обеспечение высокой дальности действия лазерного дальномера при его минимальных габаритах.

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии.

Известен лазерный дальномер с полупроводниковым лазером, содержащий передающее и приемное устройства [1]. Приемное устройство такого дальномера содержит приемник и объектив приемника, а передающее устройство - лазерный полупроводниковый излучатель (лазерный диод) и объектив излучателя, причем излучающая площадка излучателя расположена в фокальной плоскости объектива излучателя. Недостатком этого лазерного дальномера является сравнительно низкая энергия выходного лазерного излучения, ограничиваемая энергетическими характеристиками лазерного излучателя (стойкостью излучающего перехода лазерного диода и др.). Это не позволяет проводить измерения до целей, расположенных на больших расстояниях от дальномера.

Наиболее близким по технической сущности к предлагаемому устройству является лазерный дальномер. Лазерный дальномер содержит приемное устройство, включающее фотоприемник с приемным объективом и передающее устройство, включающее передающий объектив и два полупроводниковых лазера, выходные пучки излучения которых совмещены с помощью наклонного зеркала. Наклонное зеркало имеет зеркальное покрытие на половине своей площади, отражающее излучение первого лазера в сторону половины передающего объектива. Вторая половина зеркала не имеет зеркального покрытия и пропускает излучение второго лазера в сторону другой половины передающего объектива.

При таком построении передающего устройства диаметр передающего объектива равен сумме диаметров световых пучков от каждого из лазеров, что ведет к увеличению его габаритов и резкому возрастанию аберрационных искажений из-за того, что передающий объектив работает для каждого пучка не центральной, а боковой зоной, причем в значительно большем апертурном угле. Все это усложняет конструкцию лазерного дальномера, затрудняет сопряжение оптических осей лазерных излучателей и существенно увеличивает габариты устройства.

Задачей изобретения является обеспечение высокой дальности действия лазерного дальномера при его минимальных габаритах.

Указанная задача решается за счет того, что в известном лазерном дальномере, содержащем приемное устройство, включающее фотоприемник и приемную оптическую систему, и передающее устройство, включающее первый полупроводниковый лазер и объектив, между которыми введено наклонное зеркало, отражающее излучение первого лазера в сторону объектива, а также второй полупроводниковый лазер, расположенный так, чтобы его выходной пучок излучения проходил сквозь наклонное зеркало в направлении объектива параллельно пучку излучения первого лазера, причем излучающие площадки лазеров находятся в фокальной плоскости объектива, оптическая ось которого параллельна оптической оси приемного устройства, являющейся оптической осью дальномера, первый и второй лазеры выполнены с разной длиной волны излучения, их излучающие площадки расположены на оптической оси объектива в его фокальной плоскости так, что изображения их излучающих переходов, создаваемые объективом в плоскости цели, покрывают заданное поперечное сечение цели с минимальной шириной неосвещенных промежутков, причем неосвещенным промежуток между изображениями излучающих переходов первого и второго лазеров, ближайших к оптической оси дальномера, не превышает минимальных угловых размеров заданной малоразмерной цели, а наклонное зеркало представляет собой спектроделительное покрытие, прозрачное для излучения второго лазера и отражающее излучение первого лазера, при этом разность длин волн первого и второго лазеров превышает интервал между спектральными зонами пропускания и отражения спектроделительного покрытия, приемный объектив прозрачен для длин волн излучения обоих лазеров, а фотоприемник выполнен с возможностью приема излучения на обеих длинах волн.

Спектроделительное покрытие может быть нанесено на грань плоскопараллельной пластинки, обращенную к первому лазеру, а вторая грань этой пластинки просветлена на длину волны второго лазера.

Спектроделительное покрытие может быть также нанесено на гипотенузную грань светоделительного кубика, катетные грани которого, обращенные к лазерам, просветлены на длины волн этих лазеров, а грань, обращенная к объективу, просветлена на обе длины волны.

Между каждым из лазеров и наклонным зеркалом может быть введен коллимирующий элемент, а между наклонным зеркалом и объективом введен рассеивающий элемент, причем фокусные расстояния объектива F, коллимирующего элемента F1 и рассеивающего элемента F2 удовлетворяют соотношению F·F1/F2=а·, где а - размер излучающей площадки лазера, а- требуемая угловая расходимость выходного излучения лазерного дальномера.

Целесообразно, чтобы длина волны хотя бы одного из лазеров находилась в окне прозрачности атмосферы, в частности не совпадала с длиной волны поглощения паров воды в атмосфере.

По крайней мере, один из лазеров может иметь несколько излучающих переходов, а переходы первого и второго лазеров расположены так, что их изображения, создаваемые объективом в плоскости цели, чередуются.

Рекомендуется, чтобы ширина неосвещенного промежутка между изображениями излучающих переходов первого и второго лазеров, ближайших к оптической оси дальномера, была равна нулю.

Перед фотоприемником может быть введен узкополосный фильтр, пропускающий излучение на рабочих длинах волн лазеров и подавляющий излучение на других длинах волн.

На фиг.1 представлена блок-схема передающего устройства лазерного дальномера. На фиг.2 показано положение длин волн лазеров относительно характеристик пропускания и отражения спектроделительного покрытия. Фиг.3 иллюстрирует варианты взаимного положения цели, прицельной марки и изображений излучающих площадок лазеров в картинной плоскости дальномера.

Передающее устройство (фиг.1) содержит два лазерных излучателя 1 и 2 и передающий объектив 3. Между ними расположено наклонное зеркало 4, представляющее собой спектроделительное покрытие, нанесенное на обращенную к первому лазеру грань плоскопараллельной пластинки. Лазерный излучатель 1 с рабочей длиной волны излучения1состоит из полупроводникового лазера 5 и цилиндрической линзы 6. Аналогично построен лазерный излучатель 2 с рабочей длиной волны излучения 2. Перед каждым лазерным излучателем установлены коллимирующие элементы 7 и 8, преобразующие расходящиеся пучки лазерного излучения в параллельные. После наклонного зеркала лазерные пучки с длинами волн 1 и 2 совмещаются и с помощью рассеивающего элемента 9 преобразуются в единый расходящийся пучок с общим фокусом 10 (действительным для рассеивающего элемента в виде положительной линзы, как на фиг.1, или мнимым для рассеивающего элемента в виде отрицательной линзы). Фокус расходящегося пучка находится в фокальной плоскости объектива 3. Таким образом, на выходе объектива 3 формируется параллельный пучок излучения.

Устройство работает следующим образом.

При подаче управляющего сигнала лазерные излучатели 1 и 2 одновременно излучают лазерные импульсы. Излучающие площадки лазеров представляют собой, как показано на примере фиг.1, единичный полупроводниковый переход 11 или пакет из нескольких, например двух, переходов 12, излучающих в апертурном угле порядка 10-30° [3, стр.118]. Расходящееся излучение первого лазера 5 преобразуется в параллельный пучок цилиндрической линзой 6 и коллимирующим элементом 7. Аналогично коллимируется излучение второго лазера. После наклонного зеркала совмещенный пучок излучения снова преобразуется в расходящийся с помощью рассеивающего элемента 9 и окончательно преобразуется в параллельный пучок с помощью объектива 3. Промежуточное преобразование излучения лазеров в параллельные пучки целесообразно по ряду причин.

Во-первых, при этом обеспечивается более плотная конструктивная компоновка узла, включающего наклонное зеркало 4 и излучатели 1 и 2.

Во-вторых, в параллельных лучах интерференционное спектроделительное покрытие обладает лучшим соотношением коэффициентов пропускания () и отражения (), чем в сходящихся или расходящихся лучах [4, стр.120]. Типичные спектральные зависимости указанных коэффициентов и относительное положение длин волн первого и второго лазеров показаны на фиг.2.

В-третьих, описанная схема позволяет производить юстировку передающего устройства дальномера не в составе изделия, а отдельно, что снижает трудоемкость сборки, более высокое качество регулировки и сохранение юстировки в процессе эксплуатации.

В-четвертых, наличие оптических элементов 7, 8 и 9 позволяет создать промежуточное изображение излучающих площадок лазеров в фокусе 10 объектива 3, где путем выбора фокусных расстояний первого и второго коллимирующих элементов выровнять относительные габариты изображений излучающих переходов 11, 12 первого и второго лазеров. Изображения этих площадок в фокальной плоскости объектива имеют вид, показанный на фиг.1. Фокусные расстояния объектива F, коллимирующего элемента F1и рассеивающего элемента F2удовлетворяют соотношению F·F1/F2=а·, где а - размер излучающей площадки лазера, а - требуемая угловая расходимость выходного излучения лазерного дальномера. При этом обеспечивается максимальная концентрация излучения на цели, и, следовательно, дальность действия и помехозащищенность лазерного дальномера.

В-пятых, при такой схеме поперечной регулировкой взаимного положения излучателей обеспечено оптимальное взаимное положение изображений переходов, а продольной подвижкой элементов 7 и 8 - их совмещение в фокальных плоскостях объектива 3, соответствующих длинам волн лазеров, тем самым обеспечивая параллельность выходных пучков излучения.

Таблица 1. Характеристики некоторых импульсных полупроводниковых лазеров

Модель

Производитель

Длина волны, нм

Расходимость излучения, град

Габариты излучающей площадки, мкм

Импульс. мощность, Вт

LPI-50M-805

НИИ Полюс» [5]

805

25Ч10

400Ч400

50

IDLP50M-905

НИИ Полюс» [5]

905

40Ч12

400Ч400

50

155G4S14X

Laser Comp. [6]

1540

20Ч30

300Ч300

40

В предлагаемом техническом решении могут быть использованы любые сочетания указанных в таблице и других лазеров. При построении оптической системы необходимо учитывать отличия в габаритах излучающей площадки и расходимости излучения, что обеспечивается выбором апертурного угла и фокусного расстояния коллимирующих компонентов 7 и 8.

Если условиями эксплуатации дальномера предусматривается его использование на длинных (более 3 км) трассах в условиях повышенной температуры и влажности, то один из лазеров предпочтительно выбрать с рабочей длиной волны 1540 нм, поскольку его излучение меньше ослабляется парами воды в атмосфере. С другой стороны, более высокая выходная мощность лазеров с длиной волны 805 и 905 нм дает им преимущество в сухой атмосфере. При этом близкое положение длин волн лазеров облегчает выбор оптимального фотоприемника и построение узкополосного фильтра с высоким пропусканием на рабочих длинах волн и эффективным подавлением фонового излучения.

При измерении дальности до цели на нее наводят оптическую ось дальномера (ось визирования) с помощью прицельной марки 13, соосной с чувствительной площадкой фотоприемника и излучающей площадкой лазера 12. а) показан вариант излучающей площадки, состоящей из двух излучающих лазерных переходов, так называемых «полосков». Как видно из фиг.3 а), при горизонтальном положении полосков доля их излучения, попадающая на узкую вертикальную цель, очень мала, что снижает дальность действия дальномера до таких целей. При вертикальной ориентации полосков их перекрытие с целью увеличивается, но существует опасность, что такая цель может «провалиться» в промежуток между полосками при наведении прицельной марки в центр цели, как это показано на фиг.3 б). В этом случае измерение невозможно. При формировании зондирующего пятна излучения согласно предлагаемому изобретению промежутки между полосками первого лазера заполняются полосками второго лазера, чем исключается вероятность того, что цель окажется в промежутке между полосками (фиг.3 в)). Однако и при этом часть цели может быть не освещена зондирующим пятном, что снижает энергию отраженного ей излучения, а следовательно, и дальность действия.

При максимальном сближении центральных полосков цель полностью освещается пятном излучения, что особенно важно при измерении больших дальностей, когда угловые размеры цели минимальны (фиг.3 г)).

На фиг.3 в) и г) протяженность изображений полосков первого и второго лазеров в картинной плоскости дальномера одинакова. Это возможно как при одинаковой физической ширине полосков, так и при разной ширине - в этом случае одинаковая ширина их изображений в плоскости цели обеспечивается описанным выше выбором фокусных расстояний коллимирующих компонентов 7 и 8. Габариты зондирующего пятна на цели определяются выбором фокусного расстояния объектива 3.

Благодаря использованию двух лазерных излучателей вдвое возрастает энергия зондирующего излучения, что обеспечивает существенное повышение дальности действия лазерного дальномера.

Оптимальное наложение изображений излучающих площадок двух лазеров в плоскости цели обеспечивает ее равномерную засветку и, тем самым, увеличение энергии отраженного сигнала и соответствующее повышение дальности действия.

Выбор длины волны одного из лазеров в спектральном окне прозрачности атмосферы позволяет проводить измерения больших дальностей при повышенной влажности.

Указанные преимущества обеспечивают высокую дальности действия лазерного дальномера при его минимальных габаритах.

лазер дальнометр программа workbench

2. Практическая часть

Рисунок 1. Принципиальная схема электронного устройства

Рисунок 2. Компьютерное моделирование электронного устройства

Рисунок 3

Рисунок 4

Рисунок 5

Рисунок 6

Размещено на Allbest.ru

...

Подобные документы

  • Electronics Workbench – электронная лаборатория на ПК, предназначена для моделирования и анализа электрических схем. Исследование элементов электрических цепей. Идеальный источник ЭДС. Исследование последовательного и параллельного соединений резисторов.

    контрольная работа [2,0 M], добавлен 23.07.2012

  • Характеристика процесса моделирования электронных схем. Описание интерфейса и основ установки программы Electronics Workbench, библиотеки компонентов. Примеры моделирования схем работы синтезатора, умножителя частоты, генератора синусоидальных колебаний.

    книга [5,6 M], добавлен 31.07.2015

  • Принцип действия лазерного принтера. Особенности конструкции LaserJet III. Блок-схема лазерного принтера. Обслуживание лазерных принтеров и уход за ним. Диагностика неисправностей и ремонт лазерного принтера. Аппаратные неисправности принтера LaserJet III

    курсовая работа [282,9 K], добавлен 26.12.2007

  • Компьютерное моделирование и анализ схемотехнических решений устройства для изучения принципов работы p-n-перехода полупроводниковых устройств. Исследование статических вольтамперных характеристик биполярного транзистора в программе Electronic Workbench.

    дипломная работа [361,0 K], добавлен 11.01.2015

  • Вивчення структури вікон і системи меню Electronics Workbench. Розгляд технології підготовки схем та складання їх компонентів на робочому полі програми. Визначення областей застосування та класифікаційних параметрів елементів радіоелектронної апаратури.

    методичка [2,5 M], добавлен 18.06.2010

  • Назначение, виды и характеристики принтеров. Принцип работы лазерного принтера. Конструктивные элементы его картриджа. Техническое обслуживание устройства. Поиск и устранение основных неисправностей. Алгоритм их поиска. Выбор метода диагностирования.

    курсовая работа [924,6 K], добавлен 28.04.2014

  • Загальна характеристика програми Провідник. Виконання операцій над об'єктами: копіювання, переміщення, вилучення, відновлення. Розгляд можливостей програми Electronics Workbench. Створення таблиці в MS Excel за зразком та виконання необхідних розрахунків.

    контрольная работа [2,6 M], добавлен 20.11.2015

  • Позначення та розрахунок діодів, транзисторів, аналогових, цифрових та змішаних інтегральних схем, індикаторів, перетворюючих та керуючих елементів, приладів, базових, логічних і цифрових компонент бібліотеки елементів програми Electronics Workbench.

    методичка [1,3 M], добавлен 18.06.2010

  • Основные характеристики принтера HP Laser Jet 4000: интерфейс, размер, комплектация. Блок-схема системы формирования изображения. Поиск неисправностей лазерного принтера. Расчет полной стоимости профилактического обслуживания и ремонта в фирме "ОАО ISIS".

    курсовая работа [2,3 M], добавлен 29.04.2014

  • Бази даних та їх типи. Вимоги до пам'яті, яка потрібна для збереження бази даних. 12 правил Кодда. Основні властивості лазерного променя. Монохроматичність лазерного випромінювання, його потужність та способи застосування в промисловості і медицині.

    курсовая работа [349,8 K], добавлен 07.11.2014

  • Фізичні характеристики компакт-диска. Помилки та можливості їх появи. Коди Ріда-Соломона. Проблеми захисту інформації. Основні загрози та методи їх рішень. Боротьба з комп’ютерним піратством. Аутентифікація за допомогою ідентифікації лазерного диску.

    дипломная работа [74,6 K], добавлен 25.03.2013

  • Проблемі захисту інформації. Основні загрози та методи їх рішень. Апаратно-програмні засоби захисту. Використання ідентифікації приводу оптичного накопичувача за характеристиками лазерного диску. Аутентифікація за допомогою ідентифікації лазерного диску.

    курсовая работа [65,2 K], добавлен 01.04.2013

  • Содержание и особенности этапов синтеза дискретного автомата. Граф переходов-выходов автомата Мура, кодирование входных и выходных сигналов. Построение функциональной схемы автомата Мура на RS–триггерах и элементах И-НЕ в программе Electronic WorkBench.

    курсовая работа [964,2 K], добавлен 20.07.2015

  • Понятие, последовательность построения и схемная реализация цифрового автомата. Описание форм представления функций алгебры логики. Принципы минимизации функций выходов и переходов автомата, их перевода в базис. Сведенья о программе Electronics Workbench.

    курсовая работа [2,0 M], добавлен 27.10.2010

  • Моделирование системы автоматического регулирования температуры этилена на выходе из теплообменника. Определение начальной температуры стенки установки и расхода водяного пара для нагрева. Построение схемы в Simulink математического пакета MatLab.

    курсовая работа [2,0 M], добавлен 04.05.2011

  • Характеристика устройства и технологии работы картриджей лазерных принтеров, оснащаемых небольшими микросхемами – чипами. Профессиональная регенерация (восстановление и заправка) картриджей. Программное обеспечение и прошивка картриджа лазерного принтера.

    курсовая работа [5,2 M], добавлен 20.11.2010

  • Составление структурной схемы замкнутой астатической системы автоматического управления. Определение минимальной установившейся ошибки, построение области устойчивости и моделирование в программе MatLab. Компенсация действия неконтролируемых возмущений.

    курсовая работа [523,2 K], добавлен 15.02.2011

  • Алфавитно-цифровые печатающие устройства. Отличие светодиодного принтера от лазерного. Принтеры трёхмерной печати, уровень энергопотребления, разрешающая способность, интерфейс подключения. Набор дополнительных функций. Тип красителей и количество цветов.

    реферат [986,3 K], добавлен 16.05.2014

  • Определение функциональных характеристик систем массового обслуживания (СМО) на основе имитационного моделирования; синтез СМО с заданными характеристиками. Разработка программы на языке SIMNET II; расчет процесса работы СМО; подбор требуемого параметра.

    лабораторная работа [623,8 K], добавлен 11.03.2011

  • Разработка программы моделирования объекта в среде пакета MathCAD с использованием встроенных функций. Стехиометрический анализ и модель кинетики. Моделирование режима запуска и вывода аппарата на нужный режим. Математическая модель динамики объекта.

    курсовая работа [2,0 M], добавлен 19.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.