Административные меры защиты

Анализ концептуальной модели безопасности информации. Рассмотрение классификации угроз безопасности данных. Исследование особенностей методов защиты информации. Изучение сущности и специфики функционирования системы контроля и управления доступом.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 12.10.2014
Размер файла 259,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

· Более высокая скорость. Криптографические алгоритмы состоят из огромного числа сложных операций, выполняемых над битами открытого текста. Современные универсальные компьютеры плохо приспособлены для эффективного выполнения этих операций. Специализированное оборудование умеет делать их гораздо быстрее.

· Аппаратуру легче физически защитить от проникновения извне. Программа, выполняемая на персональном компьютере, практически беззащитна. Вооружившись отладчиком, злоумышленник может внести в нее скрытые изменения, чтобы понизить стойкость используемого криптографического алгоритма, и никто ничего не заметит. Что же касается аппаратуры, то она обычно помещается в особые контейнеры, которые делают невозможным изменение схемы ее функционирования. Чип покрывается специальным химическим составом, и в результате любая попытка преодолеть защитный слой этого чипа приводит к самоуничтожению его внутренней логической структуры. И хотя иногда электромагнитное излучение может служить хорошим источником информации о том, что происходит внутри микросхемы, от этого излучения легко избавиться, заэкранировав микросхему. Аналогичным образом можно заэкранировать и компьютер, однако, сделать это гораздо сложнее, чем миниатюрную микросхему.

· Аппаратура шифрования более проста в установке. Очень часто шифрование требуется там, где дополнительное компьютерное оборудование является совершенно излишним. Телефоны, факсимильные аппараты и модемы значительно дешевле оборудовать устройствами аппаратного шифрования, чем встраивать в них микрокомпьютеры с соответствующим программным обеспечением.

Даже в компьютерах установка специализированного шифровального оборудования создает меньше проблем, чем модернизация системного программного обеспечения с целью добавления в него функций шифрования данных. В идеале шифрование должно осуществляться незаметно для пользователя. Чтобы добиться этого при помощи программных средств, средства шифрования должны быть упрятаны глубоко в недра операционной системы. С готовой и отлаженной операционной системой проделать это безболезненно не так-то просто. Но даже любой непрофессионал сможет подсоединить шифровальный блок к персональному компьютеру, с одной стороны, и к внешнему модему, с другой.

Программное шифрование

Любой криптографический алгоритм может быть реализован в виде соответствующей программы. Преимущества такой реализации очевидны: программные средства шифрования легко копируются, они просты в использовании, их нетрудно модифицировать в соответствии с конкретными потребностями.

Во всех распространенных операционных системах имеются встроенные средства шифрования файлов. Обычно они предназначены для шифрования отдельных файлов, и работа с ключами целиком возлагается на пользователя. Поэтому применение этих средств требует особого внимания. Во-первых, ни в коем случае нельзя хранить ключи на диске вместе с зашифрованными с их помощью файлами, а во-вторых, незашифрованные копии файлов необходимо удалить сразу после шифрования.

Конечно, злоумышленник может добраться до компьютера и незаметно внести нежелательные изменения в программу шифрования. Однако основная проблема состоит отнюдь не в этом. Если злоумышленник в состоянии проникнуть в помещение, где установлен компьютер, он вряд ли будет возиться с программой, а просто установит скрытую камеру в стене, подслушивающее устройство -- в телефон или датчик для ретрансляции электромагнитного излучения -- в компьютер. В конце концов, если злоумышленник может беспрепятственно все это сделать, сражение с ним проиграно, даже еще не начавшись.

Почему криптосистемы ненадежны

В настоящее время криптография успешно используется почти во всех информационных системах -- от Internet до баз данных. Без нее обеспечить требуемую степень конфиденциальности в современном, до предела компьютеризированном мире уже не представляется возможным. Кроме того, с помощью криптографии предотвращаются попытки мошенничества в системах электронной коммерции, и обеспечивается законность финансовых сделок. Со временем значение криптографии, по всей вероятности, возрастет. Для этого предположения имеются веские основания.

Однако с огорчением приходится признать, что подавляющее большинство криптографических систем не обеспечивает того высокого уровня защиты, о котором с восторгом обычно говорится в их рекламе. Многие из них до сих пор не были взломаны по той простой причине, что пока не нашли широкого распространения. Как только эти системы начнут повсеместно применяться на практике, они, словно магнит, станут привлекать пристальное внимание злоумышленников, которых сегодня развелось великое множество. При этом удача и везение будут явно на стороне последних. Ведь для достижения своих целей им достаточно найти в защитных механизмах всего лишь одну брешь, а обороняющимся придется укреплять все без исключения уязвимые места.

5. Учет реальных потребностей пользователей

Немало проблем, связанных с использованием криптографических средств, создают сами пользователи. Безопасность заботит их меньше всего. В первую очередь им требуются простота, удобство и совместимость с уже существующими (как правило, недостаточно защищенными) программными продуктами. Они выбирают легко запоминающиеся криптографические ключи, записывают их, где попало, запросто делятся ими с друзьями и знакомыми. Поэтому грамотно спроектированная криптографическая система обязательно должна принимать во внимание специфические особенности поведения людей.

Основная идея процедуры состоит в том, что каждому узлу сети вдоль маршрута следования потока задается вопрос, может ли этот узел обслужить некоторый новый поток с заданными характеристиками QoS, если известны предельные характеристики скорости потока, такие как средняя и пиковая скорости? Каждый узел при ответе на этот вопрос должен оценить свои возможности, то есть проверить, достаточно ли у него свободных ресурсов, чтобы принять на обслуживание новый поток и обслуживать его качественно. При положительном ответе узел должен некоторым образом зарезервировать часть своих ресурсов для данного потока, чтобы при поступлении пакетов потока на входные интерфейсы использовать эти ресурсы для их обслуживания с гарантированным уровнем качества.

Смысл резервирования состоит в том, чтобы ограничить уровень перегрузок определенного потока или нескольких потоков некоторой приемлемой величиной. Эта величина должна быть такой, чтобы механизмы QoS (управления очередями, кондиционирования трафика и обратной связи), применяемые в узлах сети, справлялись с кратковременными небольшими перегрузками и обеспечивали требуемые значения характеристик QoS.

Резервирование пропускной способности в сетях с коммутацией пакетов похоже на аналогичную процедуру в сетях с коммутацией каналов тем, что определенному потоку данных назначается определенная часть пропускной способности линии связи. Однако это назначение здесь гораздо более гибкое -- если отведенная пропускная способность в какой-то период времени недоиспользуется потоком, то она может быть передана другим потокам.

Это обстоятельство позволяет более эффективно расходовать пропускную способность линий связи, но приводит к эффекту постепенной деградации качества транспортного сервиса из-за перегрузок и очередей вместо простого отказа в обслуживании, который имеет место в сети с коммутацией каналов, когда пропускной способности оказывается недостаточно для обслуживания некоторого потока. Цель гибкого резервирования -- обеспечить поток зарезервированной пропускной способностью в те периоды, когда она ему нужна вся, то есть в периоды перегрузок. Другим отличием резервирования в пакетных сетях является то обстоятельство, что оно может выполняться не только «из конца в конец», но и для каких-то отдельных узлов по маршруту потока, однако этот случай не может гарантировать необходимый уровень характеристик QoS, так как перегрузка даже в одном узле может привести к задержкам и потерям пакетов.

Резервирование пропускной способности в пакетной сети «из конца в конец» начинается с операции, называемой контролем допуска в сеть потока, который просит зарезервировать для своего обслуживания некоторую пропускную способность сети между ее двумя конечными узлами. Эта операция состоит в проверке наличия доступной (то есть незарезервированной для других потоков) пропускной способности в каждом из узлов сети на протяжении всего маршрута следования потока (здесь мы не останавливаемся на проблеме поиска маршрута потока, она подробно рассматривается далее в разделе «Инжиниринг трафика»). Очевидно, что максимальная средняя скорость потока должна быть меньше, чем запрашиваемая пропускная способность, иначе поток будет обслужен с очень плохим качеством даже несмотря на то, что ему была зарезервирована некоторая пропускная способность.

Нужно подчеркнуть, что резервирование -- это процедура, которая выполняется перед тем, как реальный трафик будет направлен в сеть.

Давайте теперь посмотрим, каким же образом выполняется собственно выделение пропускной способности потоку в моменты времени, когда его пакеты поступают на вход коммуникационного устройства S2, которое запомнило факт резервирования пропускной способности для потока F1 на выходном интерфейсе Р2 (рис 4).

Рис. 3. Контроль допуска потока

Рис. 4. Выделение зарезервированной пропускной способности

Такое выделение можно обеспечить разными способами, в нашем примере это будет сделано с использованием взвешенных очередей.

Пусть потоку F1 при резервировании было выделено 25 % пропускной способности интерфейса Р2 (обычно резервирование можно выполнять как в абсолютных величинах, например в мегабитах в секунду, так и в процентах; это, собственно, детали реализации механизмов QoS в конкретных устройствах). Также для простоты будем считать, что резервирование было выполнено только для потока F1, в то же время для всех других потоков, которые проходят через выходной интерфейс Р2, резервирования не производилось.

Для того чтобы добиться желаемого результата, достаточно организовать для выходного интерфейса две взвешенные очереди -- очередь для потока F1 с весом 25 % и очередь «по умолчанию» для всех остальных потоков. Кроме того, необходимо активизировать классификатор, который будет проверять пакеты на всех входных интерфейсах устройства 52 (на рис. 2 показан только один входной интерфейс Р1), отбирать пакеты потока F1 по заданным при резервировании признакам и направлять их в очередь для потока F1. В те периоды времени, когда скорость потока F1 окажется меньше зарезервированной пропускной способности в 25 %, неиспользованная ее часть будет потребляться потоками из очереди «по умолчанию» -- в силу алгоритма работы взвешенных очередей. Зато в периоды, когда скорость потока F1 достигнет заявленного максимума средней скорости в 25 %, вся зарезервированная пропускная способность выходного интерфейса будет выделяться потоку F1, а все остальные потоки будут довольствоваться оставшимися 75 %. Значения в 75 % может оказаться недостаточно для качественного обслуживания этих потоков, и тогда их пакеты будут задерживаться или даже теряться при переполнении очереди «по умолчанию». Может оказаться и так, что значения в 75 % окажется слишком много для остальных потоков, и они будут обслуживаться с высоким качеством; какая из двух ситуаций будет наблюдаться чаще, мы не знаем, так как у нас нет никакой предварительной информации о «других» потоках. Этот пример хорошо иллюстрирует особенность методов обеспечения параметров QoS -- они требуют контроля над потоками, то есть знания их маршрутов и средних скоростей. В противном случае гарантий параметров QoS достичь трудно, можно говорить только об обслуживании «по возможности».

В описанном примере не использован механизм профилирования трафика. При наличии отдельной взвешенной очереди для потока, зарезервировавшего пропускную способность, этот механизм не является обязательным, так как сам механизм взвешенных очередей ограничит пропускную способность потока в нужных пределах в периоды перегрузок, когда все взвешенные очереди заполняются полностью.

Использование взвешенных очередей -- не единственный вариант резервирования пропускной способности в пакетных сетях. Для той же цели можно задействовать приоритетные очереди. Применение приоритетной очереди может быть не только возможным, но и необходимым, если потоку помимо определенного уровня пропускной способности требуется обеспечить минимально возможный уровень задержек пакетов.

При использовании приоритетной очереди профилирование необходимо всегда, так как приоритетный механизм не обеспечивает ограничения скорости потока, как это делает механизм взвешенного обслуживания.

Нужно подчеркнуть, что резервирование приводит к ожидаемым результатам только в тех случаях, когда реальная скорость потоков, для которых было выполнено резервирование, оказывается не выше, чем пропускная способность, запрошенная при резервировании и реализованная при конфигурировании сетевых устройств. В противном случае результаты могут оказаться даже хуже, чем при наличии единственной очереди «по умолчанию» и обслуживании «по возможности». Так, если скорость потока окажется выше, чем предел, учитываемый механизмом профилирования, то часть пакетов будет отброшена даже в том случае, если устройство не перегружено и могло бы отлично справиться с предложенным трафиком без применения механизмов QoS.

Что же меняется в сети после резервирования? При поступлении на входной интерфейс коммутатора пакетов потока, для которых было выполнено резервирование, механизм классификации распознает пакеты, относящиеся к этому потоку, и направляет их в нужную очередь. При этом пакеты могут проходить через механизм профилирования, призванный предотвратить ситуацию обслуживания потока, скорость которого превышает оговоренную при резервировании.

В результате резервирования сеть оказывается загруженной рационально. В ней нет ресурсов, которые работают со значительной перегрузкой. Механизмы организации очередей по-прежнему обеспечивают временную буферизацию пакетов в периоды пульсаций. Так как мы планировали загрузку ресурсов из расчета средних скоростей передачи данных, то на периодах пульсаций в течение некоторого ограниченного времени скорости потоков могут превышать средние скорости, так что механизмы борьбы с перегрузками по-прежнему нужны. Для обеспечения требуемых средних скоростей потоков на периодах перегрузок соответствующие потоки могут обслуживаться с помощью взвешенных очередей.

Сохраняется также главное преимущество метода коммутации пакетов: если некоторый поток не расходует отведенной ему пропускной способности, то она может выделяться для обслуживания другого потока. Нормальной практикой является резервирование пропускной способности только для части потоков, в то время как другие потоки обслуживаются без резервирования, получая обслуживание по возможности (с максимальными усилиями). Временно свободная пропускная способность может для таких потоков выделяться динамически, без нарушения взятых обязательств по обслуживанию потоков, для которых ресурсы зарезервированы.

Пример-аналогия

Проиллюстрируем принципиальное отличие резервирования ресурсов в сетях с коммутацией пакетов и каналов на примере автомобильного трафика. Пусть в некотором городе решили обеспечить некоторые привилегии для движения машин скорой помощи. В ходе обсуждения этого проекта возникли две конкурирующие идеи его реализации. Первый вариант предусматривал на всех дорогах города выделение для автомобилей скорой помощи отдельной полосы, недоступной для другого транспорта ни при каких условиях, даже если в какой-то период времени машин скорой помощи на дороге нет.

Во втором случае для машин скорой помощи также выделялась отдельная полоса, но в отсутствии привилегированных машин по ней разрешалось двигаться и другому транспорту. В случае же появление машины скорой помощи автомобили, занимающие выделенную полосу, обязаны были ее освободить. Нетрудно заметить, что первый вариант соответствует принципу резервирования в сетях с коммутацией каналов -- пропускная способность выделенной полосы монопольно используется автомобилями скорой помощи и не может быть перераспределена даже тогда, когда она им не нужна.

Второй вариант является аналогией резервирования в сетях с коммутацией пакетов. Пропускная способность дороги здесь расходуется более эффективно, но для потока автомобилей скорой помощи такой вариант менее благоприятен, так как при необходимости освобождения полосы возникают помехи, создаваемые непривилегированными машинами.

Сеть с коммутацией каналов подобного перераспределения ресурсов выполнить не может, так как у нее в распоряжении нет независимо адресуемых единиц информации -- пакетов!

Заключение

Административные методы заключаются в определении процедур доступа к защищаемой информации и строгом их выполнении. Контроль над соблюдением установленного порядка возлагается на специально обученный персонал. Административные методы применялись многие века и диктовались здравым смыслом. Чтобы случайный человек не прочитал важный документ, такой документ нужно держать в охраняемом помещении. Чтобы передать секретное сообщение, его нужно посылать с курьером, который готов ценой собственной жизни защищать доверенную ему тайну. Чтобы из библиотеки не пропадали в неизвестном направлении книги, необходимо вести учет доступа к библиотечным ресурсам. Современные административные методы защиты информации весьма разнообразны. Например, при работе с документами, содержащими государственную тайну, сначала необходимо оформить допуск к секретным документам. При получении документа и возврате его в хранилище в журнал регистрации заносятся соответствующие записи. Работа с документами разрешается только в специально оборудованном и сертифицированном помещений. На любом этапе известно лицо, несущее ответственность за целостность и секретность охраняемого документа. Схожие процедуры доступа к информации существуют и в различных организациях, где они определяются корпоративной политикой безопасности. Например, элементом политики безопасности может являться контроль вноса и выноса с территории организации носителей информации (бумажных, магнитных, оптических и др.). Административные методы защиты зачастую совмещаются с законодательными и могут устанавливать ответственность за попытки нарушения установленных процедур доступа

Список использованной литературы

1. Теоретические основы компьютерной безопасности. : Учеб. пособие для вузов./ Девянин Н.Н., Михальский О.О. и др. - М.: Радио и связь, 2000. - 192 с.

2. Нечаев В.И. Элементы криптографии. Основы теории защиты информации.: Учеб.пособие для ун-тов и пед.вузов. - М.: Высшая школа, 1999. - 109 с.

3. Уваров О. Государственная и коммерческая тайна и инсайдерская информация.//Рынок ценных бумаг. - № 7(166). - М., 2000. - С.66-69.

4. Домарев В.В. Защита информации и безопасность компьютерных систем. - К.:Издательство «ДиаСофт», 1999.

5. Барсуков В.С., Водолазний В.В. Современные технологии безопасности. - М.: «Нолидж», 2000. - 496 с.

6. Как построить защищенную информационную систему./ Под науч. ред. Зегжды Д.П. и Платонова В.В. - СПб.: Мир и семья, 1997.

7. Программно-аппаратные средства обеспечения информацион-ной безопасности. Защита программ и данных.: Учебное посо-бие для вузов./ Белкин П.Ю., Михальский О.О., Першаков А.С. и др. - М.: Радио и связь, 1999. - 168 с.

8. Программно-аппаратные средства обеспечения информацион-ной безопасности. Защита в операционных системах.: Учеб.пособие для вузов./ Проскурин В.Г., Крутов С.В., Мацке-вич И.В. - М.: Радио и связь, 2000. - 168 с.

9. Мельников В. Защита информации в компьютерных системах. - М.: Финансы и статистика, Электрониинформ, 1997.

10. Атака на Internet./ Медведовский И.Д., Семьянов П.В. и др. - М.: ДМК, 1999.

11. Безопасность глобальных сетевых технологий. - СПб.: Изд-во СПбГУ, 1999.

12. Защита информации в компьютерных системах и сетях./ Ро-манец Ю.В., Тимофеев И.А., Шаньгин В.Ф. - М.: Радио и связь, 1999. - 328 с.

13. Николаев Ю.И. Проектирование защищенных информационных технологий. - СПб.: Изд-во СПбГТУ, 1997.

14. Быков В.А. Электронный бизнес и безопасность. - М.: Радио и связь, 2000. - 200 с.

15. Петров А.А. Компьютерная безопасность. Криптографические методы защиты. - М.: ДМК, 2000. - 448 с.

16. Липаев В.В. Надежность программных средств. - М.: СИН-ТЕГ, 1998. - 232 с.

Размещено на Allbest.ru

...

Подобные документы

  • Рассмотрение основных понятий защиты информации в сетях. Изучение видов существующих угроз, некоторых особенностей безопасности компьютерных сетей при реализации программных злоупотреблений. Анализ средств и методов программной защиты информации.

    дипломная работа [1,5 M], добавлен 19.06.2015

  • Система контроля и управления доступом на предприятии. Анализ обрабатываемой информации и классификация ИСПДн. Разработка модели угроз безопасности персональных данных при их обработке в информационной системе персональных данных СКУД ОАО "ММЗ".

    дипломная работа [84,7 K], добавлен 11.04.2012

  • Препятствие, управление доступом, маскировка и регламентация как меры защиты информации в автоматизированных информационных системах. Особенности криптографического метода защиты информации. Изучение системы управления электронным документооборотом.

    контрольная работа [38,4 K], добавлен 20.05.2019

  • Понятие информационной безопасности, понятие и классификация, виды угроз. Характеристика средств и методов защиты информации от случайных угроз, от угроз несанкционированного вмешательства. Криптографические методы защиты информации и межсетевые экраны.

    курсовая работа [2,4 M], добавлен 30.10.2009

  • Пути несанкционированного доступа, классификация способов и средств защиты информации. Анализ методов защиты информации в ЛВС. Идентификация и аутентификация, протоколирование и аудит, управление доступом. Понятия безопасности компьютерных систем.

    дипломная работа [575,2 K], добавлен 19.04.2011

  • Виды внутренних и внешних умышленных угроз безопасности информации. Общее понятие защиты и безопасности информации. Основные цели и задачи информационной защиты. Понятие экономической целесообразности обеспечения сохранности информации предприятия.

    контрольная работа [26,6 K], добавлен 26.05.2010

  • Анализ информации как объекта защиты и изучение требований к защищенности информации. Исследование инженерно-технических мер защиты и разработка системы управления объектом защиты информации. Реализация защиты объекта средствами программы Packet Tracer.

    дипломная работа [1,2 M], добавлен 28.04.2012

  • Анализ объекта информатизации. Политику информационной безопасности. Подсистемы технической защиты информации: управления доступом, видеонаблюдения, охранной и пожарной сигнализаций, защиты от утечки по техническим каналам, защиты корпоративной сети.

    презентация [226,0 K], добавлен 30.01.2012

  • Методика анализа угроз безопасности информации на объектах информатизации органов внутренних дел. Выявление основных способов реализации утечки информации. Разработка модели угроз. Алгоритм выбора оптимальных средств инженерно-технической защиты данных.

    курсовая работа [476,3 K], добавлен 19.05.2014

  • Анализ проблемных аспектов построения и функционирования системы физической защиты информации предприятия. Модель угроз информационной безопасности. Разработка и обоснование модели и процедур выбора средств СФЗИ на основе метода анализа иерархий.

    дипломная работа [2,6 M], добавлен 01.07.2011

  • Проблемы защиты информации в информационных и телекоммуникационных сетях. Изучение угроз информации и способов их воздействия на объекты защиты информации. Концепции информационной безопасности предприятия. Криптографические методы защиты информации.

    дипломная работа [255,5 K], добавлен 08.03.2013

  • Современные физические и законодательные методы защиты информации. Внедрение системы безопасности. Управление доступом. Основные направления использования криптографических методов. Использование шифрования, кодирования и иного преобразования информации.

    реферат [17,4 K], добавлен 16.05.2015

  • Применение программного обеспечения и технических средств контроля и управления доступом для предупреждения угроз несанкционированного доступа к защищаемой информации. Построение интегрированной системы безопасности "FortNet" и ее составных элементов.

    лабораторная работа [1,3 M], добавлен 14.11.2014

  • Пути несанкционированного доступа, классификация способов и средств защиты информации. Каналы утечки информации. Основные направления защиты информации в СУП. Меры непосредственной защиты ПЭВМ. Анализ защищенности узлов локальной сети "Стройпроект".

    дипломная работа [1,4 M], добавлен 05.06.2011

  • Виды умышленных угроз безопасности информации. Методы и средства защиты информации. Методы и средства обеспечения безопасности информации. Криптографические методы защиты информации. Комплексные средства защиты.

    реферат [21,2 K], добавлен 17.01.2004

  • Анализ модели информационно-телекоммуникационной системы предприятия. Виды угроз информационной безопасности. Цели и задачи защиты информации на предприятии. Разработка процедур контроля системы управления защитой информации в корпоративной сети.

    дипломная работа [3,6 M], добавлен 30.06.2011

  • Актуальность и важность технической защиты информации, нормативные документы. Анализ деятельности ООО "Технология защиты", информационные потоки. Обоснование угроз по техническим каналам. Разработка системы управления информационной безопасности.

    дипломная работа [771,4 K], добавлен 13.06.2012

  • Изучение и характеристика правовых, организационных и технических мер информационной безопасности. Технические средства защиты от утечек информации: криптография, идентификация пользователей и управление доступом. Описание алгоритма защиты базы данных.

    курсовая работа [788,8 K], добавлен 27.04.2013

  • Понятие компьютерной преступности. Основные понятия защиты информации и информационной безопасности. Классификация возможных угроз информации. Предпосылки появления угроз. Способы и методы защиты информационных ресурсов. Типы антивирусных программ.

    курсовая работа [269,7 K], добавлен 28.05.2013

  • Понятие защиты умышленных угроз целостности информации в компьютерных сетях. Характеристика угроз безопасности информации: компрометация, нарушение обслуживания. Характеристика ООО НПО "Мехинструмент", основные способы и методы защиты информации.

    дипломная работа [135,3 K], добавлен 16.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.