Кибернетика – наука об управлении
Рассмотрение кибернетических аспектов информатики. Изучение понятия кибернетики, ее разделов и теории систем и системного анализа как основы ее методологии. Выяснение направлений развития кибернетики и функций человека и машины в системах управления.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 13.10.2014 |
Размер файла | 102,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Оглавление
Кибернетические аспекты информатики. Предмет кибернетики
Управляемые системы
Функции человека и машин в системах управления
Упадок и возрождение кибернетики
Кибернетические аспекты информатики. Предмет кибернетики
кибернетика информатика системный человек
Слово «кибернетика» происходит от греческого слова, означающего в переводе «кормчий». Его современное значение связано с научной областью, начало которой, положена книга американского ученого Норберта Винера «Кибернетика, или управление и связь в животном и машине», вышедшая в 1948 г. Вскоре предметом новой науки стали не только биологические и технические системы, но и системы любой природы, способные воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. В изданной в 1947г. «Энциклопедия кибернетики» говорится, что это «… наука об общих законах получения, хранения, передачи и преобразования информации в сложных управляющих системах. При этом под управляющими системами здесь понимаются не только технические, а и любые биологические, административные и социальные системы». Таким образом, кибернетика и информатика являются, скорее всего, единой наукой. Сегодня кибернетику все чаще считают частью информатики, ее «высшим» разделом, в какой-то степени аналогичным по положению «высшей математике» по отношению ко всей математике вообще (примерно в таком же положении по отношению к информатике находится и наука «искусственный интеллект»). Информатика в целом шире кибернетики, т.к. в информатике имеются аспекты, связанные с архитектурой и программированием ЭВМ, которые непосредственно к кибернетике отнести нельзя.
Кибернетические разделы информатики богаты подходами и моделями в исследовании разнообразных систем и используют в качестве аппарата многие разделы фундаментальной и прикладной математики.
Классическим и до известной степени самостоятельным разделом кибернетики считают исследование операций. Под этим термином понимают применение математических методов для обоснования решений в различных областях целенаправленной человеческой деятельности.
Поясним, что понимается под «решением». Пусть предпринимается некоторое мероприятие (в производственной, экономической или социальной сфере), направленно на достижение определенной цели - такое мероприятие называется «операцией». У лица (или группы лиц, ответственного за проведение этого мероприятия, имеется возможность выбора, как его организовать. Например: можно выбрать виды продукции, которые будут выпускаться; оборудование, которое при этом будет применяться; так или иначе распределить имеющиеся средства и т.д. «Операция» есть управляемое мероприятие.
Решение есть выбор из ряда возможностей, имеющихся у ответственного лица. Решения могут быть удачными и неудачными, разумными и неразумными. Оптимальными называют решения, по тем или другим причинам более предпочтительнее, чем другие. Цель исследования операций - математическое (количественное) обоснование оптимальных решений.
Исследование операций включает в себя следующие разделы:
Математическое программирование (обоснование планов, программ хозяйственной деятельности); оно включает в себя относительно самостоятельные разделы: линейное программирование, нелинейное программирование, динамическое программирование ( во всех этих названиях термин «программирование» возник исторически и не имеет отношения к программированию ЭВМ);
Теорию массового обслуживания, опирающуюся на теорию случайных процессов;
Теорию игр, позволяющую обосновывать решения, принимаемые в условиях неполноты информации.
Отметим, что эти разделы не связаны непосредственно с ЭВМ и техническими системами. Иным, быстро развивающимся в 1970-1980-х гг. разделом кибернетики были системы автоматического (автоматизированного) регулирования. Этот раздел имеет замкнутый, автономный характер, исторически сложившийся самостоятельно. Он тесно связан с разработкой технических систем автоматизированного регулирования и управления технологическими и производственными процессами.
Еще одним классическим разделом кибернетики является распознавание образов, возникшее из задачи моделирования в технических системах восприятия человеком знаков, предметов и речи, а также формирования у человека понятий (обучение в простейшем, техническом смысле). Этот раздел в значительной мере возник из технических потребностей робототехники. Например, требуется, чтобы робот-сборщик распознавал нужные детали. При автоматической сортировке (или отбраковке) деталей необходима способность распознавания.
Вершиной кибернетики ( и всей информатики в целом) является раздел, посвященный проблемам искусственного интеллекта. Большинство современных систем управления обладают свойством принятия решений - свойством интеллектуальности, т.е. в них смоделирована интеллектуальная деятельность человека при принятии решений.
Управляемые системы
Несмотря на многообразие задач решаемых в кибернетике, разнообразие моделей, подходов и методов, кибернетика остается единой наукой благодаря использованию общей методологии, основанной на теории систем и системной анализе.
Система - это предельно широкое, начальное, строго не определяемое понятие. Предполагается, что система обладает структурой, т.е. состоит из относительно обособленных частей (элементов), находящихся, тем не менее, в существенной взаимосвязи и взаимодействии. Существенность взаимодействия состоит в том, что благодаря ему элементы системы приобретают все вместе некую новую функцию, новое свойство, которыми не обладает ни один из элементов в отдельности. В этом состоит отличие системы от сети, также состоящей из отдельных элементов, но не связанных между собой существенными отношениями. Сравните, например, предприятие, цеха которого образуют систему, поскольку лишь все месте приобретают свойство выпускать конечную продукцию (и ни одни из них в отдельности с этой задачей не справится), и сеть магазинов, которые могут работать независимо друг от друга.
Кибернетика как наука об управлении изучает не все системы вообще, а только управляемые системы. Зато область интересов и приложений кибернетики распространяется на самые разнообразные биологические, социальные системы.
Одной из характерных особенностей управляемой системы является возможность переходить в различные состояния под влиянием управляющих воздействий. Всегда существует некое множество состояний системы, из которых производится выбор оптимального состояния.
Отвлекаясь от конкретных особенностей отдельных кибернетических систем и выделяя общие для некоторого множества систем закономерности, описывающие изменение их состояния, при различных управляющих воздействия, мы приходим к понятию абстрактной кибернетической системы. Ее составляющими являются не конкретные предметы, а абстрактные элементы, характеризующиеся определенными свойствами, общими для широкого класса объектов.
Поскольку под кибернетическими системами понимается управляемые системы, в них должен присутствовать механизм, осуществляющий функции управления. Чаще всего этот механизм реализуется в виде органов, специально предназначенных для управления.
Стрелками на рисунке обозначены воздействия, которыми обмениваются части системы. Стрелка, идущая от управляющей части системы к управляемой, обозначают сигналы управления. Управляющая часть системы, вырабатывающая сигналы управления, называется управляющим устройством. Управляющее устройство вырабатывает сигналы управления на основе информации о состоянии управляемой системы(изображены на рисунке стрелкой от управляемой части системы к управляющей ее части)с целью достичь требуемого состояния возмущающих воздействий. Совокупность правил, по которым информация, поступающая в управляющее устройство, перерабатывается в сигналы управления, называется алгоритмом управления.
На основе введенных понятий можно определить понятие «управление». Управление - это воздействие на объект, выбранное из множества возможных воздействий на основе, имеющейся для этого информации, улучшающее функционирование или развитие данного объекта.
В системах управления решаются четыре основных типа задач управления: 1) регулирование(стабилизация); 2) выполнение программы; 3) слежение; 4)оптимизация.
Задачами регулирования является поддержание параметров системы - управляемых величин - вблизи некоторых жизненных заданных данных значений (х), несмотря на действие возмущений М, влияющих на значения (х). Здесь имеется в виду активная защита от возмущений принципиально отличающаяся от пассивного способа защиты. Активная защита предполагает выработку в управляющих системах управляющих воздействий, противодействующих возмущениям. Так, задача поддержания необходимой температуры системы может быть решена с помощью управляемого подогрева или охлаждения. Пассивная защита заключается в придании объекту таких свойств, чтобы зависимость интересующих нас параметров от внешних возмущений была мала. Примером пассивной защиты является теплоизоляция для поддержания заданной температуры системы, антикоррозионные покрытия деталей машин.
Задача выполнения программы возникает в случаях, когда заданные значения управляемых величин (х) изменяются во времени известным образом, например в производстве при выполнении работ согласно заранее намеченному графику. В биологических системах примерами выполнения программы является развитие организмов из яйцеклеток, сезонные перелеты птиц, метаморфозы насекомых.
Задача слежения - поддержание как можно более точного соответствия некоторого управляемого параметра х0(t) текущему состоянию системы, меняющемуся непредвидимым образом. Необходимость в сложении возникает, например, при управлении производством товаров в условиях изменения спроса.
Задача оптимизации - установления наилучшего в определенном смысле режима работы или состояния управляемого объекта - встречаются весьма часто, например управление технологическими процессами с целью минимизации потерь сырья и т.д.
Системы в которых для формирования управляющих воздействий не используется информация о значениях, которые управляемые величины принимают в процессе управления называются разомкнутыми системами управления. Структура такой системы показана на рисунке.
Алгоритм управления реализуется управляющим УУ, которое обеспечивает слежение за возмущением М и компенсацию этого возмущения, без использования управляемой величины Х.
Напротив, в замкнутых системах управления для формирования управляющих воздействий используется информация о значении управляемых величин. Структура такой системы показана на рисунке. Связь между выходными параметрами Х и входными У одного и того же элемента управляемой системы называется обратной связью.
Обратная связь является одним из важнейших понятий кибернетики, помогающим понять многие явления, которые происходят в управляемых системах различной природы. Обратную связь можно обнаружить при изучении процессов, протекающих в живых организмах, экономических структурах, системах автоматического регулирования.
Обратная связь, увеличивающая влияние входного воздействия на управляемые параметры системы, называется положительной, уменьшающая влияние входного воздействия - отрицательной.
Положительная обратная связь используется во многих технических устройствах для усиления, увеличения значений входных воздействий. Отрицательная обратная связь используется для восстановления равновесия, нарушенного внешним воздействием на систему.
Функции человека и машины в системах управления
Хорошо изученной областью применения кибернетических методов является технологическая и производственная сфера, управление промышленным предприятием.
Задачи, возникающие, в управлении предприятием среднего и большого масштаба, уже весьма сложны, но допускают решение с использованием электронно-вычислительных машин. Системы управления хозяйством предприятий или территорий (районов, городов), использующие ЭВМ для переработки и хранения информации, получили название автоматизированных систем управления (АСУ).
По своему характеру такие системы являются человеко-промышленными, т.е. наряду с использованием мощных компьютеров предполагается и наличие человека с его интеллектом.
В человеко-машинных системах предполагается следующее разделение функций машины и человека: машина хранит и перерабатывает большие массивы информации, осуществляет информационное обеспечение принятия решений человеком; человек принимает управленческие решения.
Чаще в человеко-машинных системах компьютеры выполняют рутинную, нетворческую, трудоемкую переработку информации, освобождая человеку время для творческой деятельности.
Однако целью развития компьютерной (информационной) технологии управления является полная автоматизация деятельности, включающая частичное или неполное освобождение человека от необходимости принятия решений. Это связано не только со стремлением разгрузить человека, но и с тем, что развитие техники и технология привело к ситуациям, когда человек в силу присущих ему физиологических и психологических ограничений просто не успевает принимать решения в реальном масштабе времени протекания процесса, что грозит катастрофическими последствиями например: необходимость включения аварийной защиты ядерного реактора, реакция на события, происходящие при запусках космических аппаратов и т.д.
Система, заменяющая человека, должна обладать интеллектом, в какой-то мере подобным человеческому - искусственным интеллектом. Исследовательское направление в области систем искусственного интеллекта также относится к кибернетике.
Упадок и возрождение кибернетики
В течение последних 30 лет кибернетика прошла через взлёты и падения, становилась всё более значимой в области изучения искусственного интеллекта и биологических машинных интерфейсов (то есть киборгов), но, лишившись поддержки, потеряла ориентиры дальнейшего развития.
В 1970-х новая кибернетика проявилась в различных областях, но особенно -- в биологии. Некоторые биологи под влиянием кибернетических идей (Матурана и Варела, 1980; Варела, 1979; (Атлан (англ.), 1979), «осознали, что кибернетические метафоры программы, на которых базировалась молекулярная биология, представляли собой концепцию автономии, невозможную для живого существа.
Следовательно, этим мыслителям пришлось изобрести новую кибернетику, более подходящую для организаций, которые человечество обнаруживает в природе -- организаций, не изобретённых им самим»[2]. Возможность того, что эта новая кибернетика применима к социальным формам организаций, остаётся предметом теоретических споров с 1980-х годов.
В экономике в рамках проекта Киберсин попытались ввести кибернетическую административно-командную экономику в Чили в начале 1970-х. Эксперимент был остановлен в результате путча 1973 года, оборудование было уничтожено.
В 1980-х новая кибернетика, в отличие от её предшественницы, интересуется «взаимодействием автономных политических фигур и подгрупп, а также практического и рефлексивного сознания предметов, создающих и воспроизводящих структуру политического сообщества. Основное мнение -- рассмотрение рекурсивности, или самозависимости политических выступлений, как в отношении выражения политического сознания, так и путями, в которых системы создаются на основе самих себя»[3].
Голландские учёные-социологи Гейер и Ван дер Зоувен (нидерл.) в 1978 году выделили ряд особенностей появляющейся новой кибернетики. «Одной из особенностей новой кибернетики является то, что она рассматривает информацию как построенную и восстановленную человеком, взаимодействующим с окружающей средой. Это обеспечивает эпистемологическое основание науки, если смотреть на это с точки зрения наблюдателя.
Другая особенность новой кибернетики -- её вклад в преодоление проблемы редукции (противоречий между макро- и микроанализом). Таким образом, это связывает индивидуума с обществом»[4]. Гейер и Ван дер Зоувен также отметили, что «переход от классической кибернетики к новой кибернетике приводит к переходу от классических проблем к новым проблемам. Эти изменения в размышлении включают, среди других, изменения от акцента на управляемой системе к управляющей и фактору, который направляет управляющие решения. И новый акцент на коммуникации между несколькими системами, которые пытаются управлять друг другом»[5] .
Последние усилия в изучении кибернетики, систем управления и поведения в условиях изменений, а также в таких смежных областях, как теория игр (анализ группового взаимодействия), системы обратной связи в эволюции и исследование метаматериалов (материалов со свойствами атомов, их составляющих, за пределами ньютоновых свойств), привели к возрождению интереса к этой всё более актуальной области[6].
Список литературы
А.В. Могилев, Н.И. Пак: «Информатика» 2004г. Стр. 87 (библиотека ОГУ)
Jean-Pierre Dupuy, «The autonomy of social reality: on the contribution of systems theory to the theory of society» in: Elias L. Khalil & Kenneth E. Boulding eds., Evolution, Order and Complexity, 1986.
Peter Harries-Jones (1988), «The Self-Organizing Polity: An Epistemological Analysis of Political Life by Laurent Dobuzinskis» in: Canadian Journal of Political Science (Revue canadienne de science politique), Vol. 21, No. 2 (Jun., 1988), pp. 431--433.
Kenneth D. Bailey (1994), Sociology and the New Systems Theory: Toward a Theoretical Synthesis, p.163.
Kenneth D. Bailey (1994), Sociology and the New Systems Theory: Toward a Theoretical Synthesis
Kevin Kelly (1994) «Out of control: The new biology of machines, social systems and the economic world» Addison-Wesley ISBN 0-201-48340-8
Размещено на Allbest.ru
...Подобные документы
Появление, становление и структура информатики. Сущность теоретической информатики, математической логики, теории информации, системного анализа, кибернетики, биоинформатики, программирования. Особенности перехода от классической кибернетики к новой.
реферат [40,9 K], добавлен 16.11.2009Кибернетика как наука. Значение кибернетики. Электронно-вычислительные машины и персональные компьютеры. Моделирование систем. Сферы использования кибернетики. Системный анализ и теория систем. Теория автоматического управления.
реферат [21,7 K], добавлен 23.03.2004Кибернетика как наука о системах, открытых для энергии, но замкнутых для информации и управления. Концепция "черного ящика" и способ его исследования. Математическая сторона кибернетики. Структура обобщенной системы связи. Понятие "системы управления".
реферат [60,2 K], добавлен 20.08.2015Кибернетика - научная дисциплина, которая основана на работах Винера, Мак-Каллока, У. Эшби, У. Уолтера. Кибернетика - наука об управлении объектом своего изучения. Роль компьютеров как сложных технических преобразователей информации. Значение кибернетики.
контрольная работа [42,1 K], добавлен 29.11.2010Исторические этапы возникновения кибернетики. Формирование информатики как науки и как технологии. История развития информатики в СССР и современной России. Характеристика автоматизированных систем управления. Роль информатики в деятельности человека.
реферат [37,0 K], добавлен 01.05.2009Сфера исследований эволюционной кибернетики. Математическое моделирование и методы кибернетики в применении к другим системам. Основная задача кибернетики. Отличительная черта кибернетического подхода к познанию и совершенствованию процессов управления.
презентация [1,3 M], добавлен 08.12.2010История зарождения кибернетики как науки, ее значение и основные причины развития. Кибернетический подход к изучению объектов различной природы. Познание и самообучение как важный признак кибернетики, ее направления развития и предметная область.
курсовая работа [77,3 K], добавлен 27.05.2013Кибернетика как научное направление, предмет методы ее исследования, история и основные этапы развития. Главные методы кибернетики и практическое значение, особенности применения методов к другим системам. Анализ достижений современной кибернетики.
презентация [1,2 M], добавлен 02.12.2010Основы информатики и кибернетики. Информационные процессы, системы и технологии. Структура и элементы информационных систем. Системы счисления. Функциональная организация компьютера. Алгоритмы и алгоритмизация. Архивация файлов. Типовые методы доступа.
курс лекций [73,0 K], добавлен 05.06.2011Сущность и основные задачи биомедицинской кибернетики. Особенности текущего момента развития ИТ в области наук о жизни. Применение кластерного анализа в процессе наблюдения за состоянием пациентов. Изучение требований к подготовке врачей-кибернетиков.
презентация [5,1 M], добавлен 08.08.2013Кибернетика Норберта Винера в управлении связей в машинах и биологических системах с обратной связью. Задатки вундеркинда в детстве, влияние отца, ученые степени и философская карьера, математические и научно-технические изыскания и разработки ученого.
реферат [20,6 K], добавлен 27.02.2009Понятие кибернетики как науки об общих закономерностях процессов управления и передачи информации в различных системах, будь то машины, живые организмы или общество. Аспекты мышления в ней: информационный, управленческий. Принципы моделирования мышления.
презентация [69,9 K], добавлен 23.05.2014Никита Николаевич Моисеев как советский и российский учёный в области общей механики и прикладной математики. Его биография, основные направления исследовательской деятельности. Его труды в области прикладной математики, заслуги в развитии кибернетики.
доклад [8,1 K], добавлен 03.12.2015Кибернетические системы как объект исследования в кибернетике. Рецепторы для восприятия сигналов из внешней среды и передачи их внутрь системы, входные и выходные каналы для обмена сигналами с внешней средой. История кибернетики, преподавание в школе.
реферат [25,9 K], добавлен 29.04.2010История формирования различных видов информационной деятельности. Сущность информации, ее источники и носители. Объекты исследования кибернетики и информатики. Развитие ЭВМ и Интернета. Негативные последствия распространения информационных технологий.
контрольная работа [40,1 K], добавлен 15.01.2011Общая характеристика дисциплины "Основы искусственного интеллекта". Ее предмет, цели и задачи. Особенности и расшифровка ряда понятийных терминов, характеризующих сущность кибернетики. Методы и алгоритмы анализа данных для получения знаний и обучения.
презентация [10,9 K], добавлен 03.01.2014Задачи информатики как фундаментальной науки. Системный анализ как одно из направлений теоретической информатики. Основная цель работ в области искусственного интеллекта. Программирование как научное направление. Кибернетика и вычислительная техника.
реферат [91,8 K], добавлен 30.11.2010Исторический аспект появления кибернетики как науки. Информация как ее основа. Использование черного ящика. Особенности робототехники, ее сфера использования в наши дни. Наследие Норберта Винера. Связь между роботами, кибернетикой и образованием.
курсовая работа [57,5 K], добавлен 31.05.2013Центральное понятие кибернетики – информация. Комплексная автоматизация процессов восприятия, преобразования, передачи, обработки и отображения информации и создание автоматизированных систем управления на различных уровнях. Система передачи информации.
книга [663,7 K], добавлен 07.05.2009Распознавание образов как раздел кибернетики, развивающий теоретические основы и методы классификации и идентификации предметов. Знакомство с принципом действия сканирующих устройств. Анализ особенностей преобразования документа в электронный вид.
презентация [160,1 K], добавлен 06.01.2014