Цветовые модели современной графики

Теоретические аспекты понятия цвета. Классификация цветовых схем, их характеристики и сферы применения. Подготовка и осуществление действий с изображением. Автоматизация процессов создания и воспроизведения графической информации с помощью компьютера.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 23.10.2014
Размер файла 528,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Оглавление

Введение

1.Представление графических данных

1.1 Понятие цвета и его характеристики

1.2 Зрительный аппарат человека

1.3 Цветовые модели и их виды

1.4 Закон Грассмана (законы смешивания цветов)

2.Классификация и характеристика цветовых моделей

2.1 Цветовая модель RGB20

2.2 Цветовая модель HSB24

2.3 Модель CMY (Cyan Magenta Yellow)

2.4 Цветовая модель CMYK

2.5 Цветовая модель Lab

2.6 Перцепционные цветовые модели9

2.7 Черно-белый и полутоновый режим

2.8 Плашечные цвета

2.9 Кодирование цвета. Палитра2

Заключение

Список использованных источников

Введение

Компьютерная графика в настоящее время сформировалась как наука об аппаратном и программном обеспечении для разнообразных изображений от простых чертежей до реалистичных образов естественных объектов.

Компьютерная графика используется почти во всех научных и инженерных дисциплинах для наглядности и восприятия, передачи информации.

Применяется в медицине, рекламном бизнесе, индустрии развлечений и т. д. Без компьютерной графики не обходится ни одна современная программа.

Работа над графикой занимает до 90% рабочего времени программистских коллективов, выпускающих программы массового применения.

Конечным продуктом компьютерной графики является изображение. Это изображение может использоваться в различных сферах, например, оно может быть техническим чертежом, иллюстрацией с изображением детали в руководстве по эксплуатации, простой диаграммой, архитектурным видом предполагаемой конструкции или проектным заданием, рекламной иллюстрацией или кадром из мультфильма.

Компьютерная графика - это наука, предметом изучения которой является создание, хранение и обработка моделей и их изображений с помощью ЭВМ, т.е. это раздел информатики, который занимается проблемами получения различных изображений (рисунков, чертежей, мультипликации) на компьютере.

В компьютерной графике рассматриваются следующие задачи:

– представление изображения в компьютерной графике;

– подготовка изображения к визуализации;

– создание изображения;

– осуществление действий с изображением.

Под компьютерной графикой обычно понимают автоматизацию процессов подготовки, преобразования, хранения и воспроизведения графической информации с помощью компьютера.

Под графической информацией понимаются модели объектов и их изображения.

В случае, если пользователь может управлять характеристиками объектов, то говорят об интерактивной компьютерной графике.

В настоящее время почти любую программу можно считать системой интерактивной компьютерной графики.

Интерактивная компьютерная графика - это так же использование компьютеров для подготовки и воспроизведения изображений, но при этом пользователь имеет возможность оперативно вносить изменения в изображение непосредственно в процессе его воспроизведения.

Интерактивная графика представляет собой важный раздел компьютерной графики, когда пользователь имеет возможность динамически управлять содержимым изображения, его формой, размером и цветом на поверхности дисплея с помощью интерактивных устройств управления.

Существует множество различных способов описания цвета - от поэтических строф и художественных полотен до точного языка физического эксперимента и формальных математических построений.

Можно получить репутацию успешного дизайнера, не обладая выдающимся цветовидением, но нельзя стать профессионалом в области предпечатной подготовки, не имея знаний о цветовых моделях.

Цветовая модель - это формальная или физическая система, служащая для объяснения и предсказания спектральных свойств света.

Построение адекватной цветовой модели оказалось очень сложной задачей, которая до сих пор не получила исчерпывающего решения.

Проблему штурмовали с разных сторон физики, инженеры, искусствоведы, публикации по этой теме занимают не один десяток метров на полках технических библиотек, в обращении находится множество различных цветовых моделей.

Но, несмотря на значительные усилия разработчиков, универсальная теория, дающая полное объяснение феномену цвета в различных его проявлениях, еще не построена.

В работе рассмотрим самые популярные модели, нашедшие применение на различных этапах предпечатной подготовки цветных публикаций.

1. Представление графических данных

1.1 Понятие цвета и его характеристики

Мы смотрим на предметы и, характеризуя их, говорим примерно следующее: он большой, мягкий, светло-голубого цвета. При описании чего-либо в большинстве случаев упоминается цвет, так как он несет огромное количество информации. На самом деле тело не имеет определенного цвета. Само понятие цвета тесно связано с тем, как человек (человеческий взгляд) воспринимает свет; можно сказать, что цвет зарождается в глазу.

Цвет - чрезвычайно сложная проблема, как для физики, так и для физиологии, т.к. он имеет как психофизиологическую, так и физическую природу.

Восприятие цвета зависит от физических свойств света, т. е. электромагнитной энергии, от его взаимодействия с физическими веществами, а также от их интерпретации зрительной системой человека.

Другими словами, цвет предмета зависит не только от самого предмета, но также и от источника света, освещающего предмет, и от системы человеческого видения.

Более того, одни предметы отражают свет (доска, бумага), а другие его пропускают (стекло, вода). Если поверхность, которая отражает только синий свет, освещается красным светом, она будет казаться черной. Аналогично, если источник зеленого света рассматривать через стекло, пропускающее только красный свет, он тоже покажется черным.

Самым простым является ахроматический цвет, т.е. такой, какой мы видим на экране черно-белого телевизора. При этом белыми выглядят объекты, ахроматически отражающие более 80% света белого источника, а черными - менее 3%.

Единственным атрибутом такого цвета является интенсивность или количество. С интенсивностью можно сопоставить скалярную величину, определяя черное, как 0, а белое как 1.

Если воспринимаемый свет содержит длины волн в произвольных неравных количествах, то он называется хроматическим.

При субъективном описании такого цвета обычно используют три величины: цветовой тон, насыщенность и светлота. Цветовой тон позволяет различать цвета, такие как красный, зеленый, желтый и т.д. (это основная цветовая характеристика).

Насыщенность характеризует чистоту, т.е. степень ослабления (разбавления, осветления) данного цвета белым светом, и позволяет отличать розовый цвет от красного, изумрудный от ярко-зеленого и т. д. Другими словами, по насыщенности судят о том, насколько мягким или резким кажется цвет.

Светлота отражает представление об интенсивности, как о факторе, не зависящем от цветового тона и насыщенности (интенсивность (мощность) цвета).

Обычно встречаются не чистые монохроматические цвета, а их смеси.

В основе трехкомпонентной теории света лежит предположение о том, что в центральной части сетчатки глаза находятся три типа чувствительных к цвету колбочек. Первый воспринимает зеленый цвет, второй - красный, а третий - синий цвет.

Относительная чувствительность глаза максимальна для зеленого цвета и минимальна для синего. Если на все три типа колбочек воздействует одинаковый уровень энергетической яркости, то свет кажется белым. Ощущение белого цвета можно получить, смешивая любые три цвета, если ни один из них не является линейной комбинацией двух других. Такие цвета называют основными.

Человеческий глаз способен различать около 350 000 различных цветов. Это число получено в результате многочисленных опытов. Четко различимы примерно 128 цветовых тонов.

Если меняется только насыщенность, то зрительная система способна выделить уже не так много цветов: мы можем различить от 16 (для желтого) до 23 (для красного и фиолетового) таких цветов.

Таким образом, для характеристики цвета используются следующие атрибуты:

- Цветовой тон. Можно определить преобладающей длиной волны в спектре излучения. Цветовой тон позволяет отличать один цвет от другого - например, зеленый от красного, желтого и других.

- Яркость. Определяется энергией, интенсивностью светового излучения. Выражает количество воспринимаемого света.

- Насыщенность или чистота тона. Выражается долей присутствия белого цвета. В идеально чистом цвете примесь белого отсутствует. Если, например, к чистому красному цвету добавить в определенной пропорции белый цвет, то получится светлый бледно-красный цвет.

Указанные три атрибута позволяют описать все цвета и оттенки. То, что атрибутов именно три, является одним из проявлений трехмерных свойств цвета.

Большинство людей различают цвета, а те, кто занимается компьютерной графикой, должны четко чувствовать разницу не только в цветах, но и в тончайших оттенках.

Это очень важно, так как именно цвет несет в себе большое количество информации, которая ничуть не уступает в важности ни форме, ни массе, ни другим параметрам, определяющим каждое тело.

Факторы, влияющие на внешний вид конкретного цвета:

? источник света;

? информация об окружающих предметах;

? ваши глаза;

Правильно подобранные цвета могут, как привлечь внимание к желаемому изображению, так и оттолкнуть от него. Это объясняется тем, что в зависимости от того, какой цвет видит человек, у него возникают различные эмоции, которые подсознательно формируют первое впечатление от видимого объекта.

Цвет в компьютерной графике нужен для того, что:

- он несет в себе определенную информацию об объектах. Например, летом деревья зеленые, осенью - желтые. На черно-белой фотографии определить пору года практически невозможно, если на это не указывают какие-либо другие дополнительные факты.

- цвет необходим также для того, чтобы различать объекты.

- с его помощью можно вывести одни части изображения на первый план, другие же увести в фон, то есть акцентировать внимание на важном - композиционном - центре.

- без увеличения размера при помощи цвета можно передать некоторые детали изображения.

- в двумерной графике, а именно таковую мы видим на мониторе, так как он не обладает третьим измерением, именно при помощи цвета, точнее оттенков, имитируется (передается) объем.

- цвет используется для привлечения внимания зрителя, создания красочного и интересного изображения.

Любое компьютерное изображение характеризуется, кроме геометрических размеров и разрешения (количество точек на один дюйм), максимальным числом цветов, которые могут быть в нем использованы. Максимальное количество цветов, которое может быть использовано в изображении данного типа, называется глубиной цвета.

Кроме полноцветных, существуют типы изображений с различной глубиной цвета - черно-белые штриховые, в оттенках серого, с индексированным цветом. Некоторые типы изображений имеют одинаковую глубину цвета, но различаются по цветовой модели.

1.2 Зрительный аппарат человека

Системы отображения графической информации воздействуют на зрительный аппарат человека, поэтому с необходимостью должны учитывать как физические, так и психофизиологические особенности зрения.

На рис. показан поперечный размер глазного яблока человека.

Свет попадает в глаз через роговицу и фокусируется хрусталиком на внутренний слой глаза, называемый сетчаткой.

Сетчатка глаза содержит два принципиально различных типа фоторецепторов - палочки, обладающие широкой спектральной кривой чувствительности, вследствие чего они не различают длин волн и, следовательно, цвета, и колбочки, характеризующиеся узкими спектральными кривыми и поэтому обладающие цветовой чувствительностью.

Колбочек существует три типа отличающихся фоточувствительным пигментом. Колбочки обычно называют "синими", "зелеными" и "красными" в соответствии с наименованием цвета, для которого они оптимально чувствительны.

Выдаваемое колбочкой значение является результатом интегрирования спектральной функции с весовой функцией чувствительности.

Светочувствительные клетки, известные как колбочки и палочки, формируют слой клеток в задней части сетчатки.

Колбочки и палочки содержат зрительные пигменты. Зрительные пигменты очень похожи на любые другие пигменты, в том, что они поглощают свет и степень поглощения зависит от длины волны.

Важное свойство зрительных пигментов состоит в том, что когда зрительный пигмент поглощает фотон света, то изменяется форма молекулы и в то же самое время происходит переизлучение света.

Пигмент при этом изменился, измененная молекула поглощает свет менее хорошо чем прежде, т.е. как часто говорят, "отбеливается". Изменение формы молекулы и переизлучение энергии некоторым, пока еще не вполне ясным образом, инициируют светочувствительную клетку к выдаче сигнала.

Информация от светочувствительных рецепторов (колбочек и палочек) передается другим типам клеток, которые соединены между собой. Специальные клетки передают информацию в зрительный нерв.

Рис. 1. Поперечный разрез глаза

Таким образом, волокно зрительного нерва обслуживает несколько светочувствительных рецепторов, т.е. некоторая предварительная обработка изображения выполняется непосредственно в глазу.

Область сетчатки, в которой волокна зрительного нерва собираются вместе и выходят из глаза, лишена светочувствительных рецепторов и называется слепым пятном.

Таким образом, свет должен вначале пройти два слоя клеток, прежде чем он воздействует на колбочки и палочки.

Причины для такого обратного устройства сетчатки не полностью поняты, но одно из объяснений состоит в том, что расположение светочувствительных клеток в задней части сетчатки позволяет любому паразитному непоглощенному свету попасть на клетки находящиеся непосредственно позади сетчатки, которые содержат черный пигмент - меланин.

Клетки, содержащие меланин, также помогают химически восстанавливать светочувствительный визуальный пигмент в колбочках и палочках после того, как они были отбелены на свету.

Интересно отметить, что природа создала целый ряд конструкций глаза. При этом глаза у всех позвоночных похожи на глаза человека, а глаза у беспозвоночных либо сложные (фасеточные) как у насекомых, либо недоразвитые в виде световувствительного пятна. Только у осьминогов глаза устроены как у позвоночных, но светочувствительные клетки находятся непосредственно на внутренней поверхности глазного яблока, а не как у нас позади других слоев, занимающихся предварительной обработкой изображения. Поэтому, возможно, особого смысла в обратном расположении клеток в сетчатке нет. А это просто один из экспериментов природы.

1.3 Цветовые модели и их виды

Наука о цвете - это довольно сложная и широкомасштабная наука, поэтому в ней время от времени создаются различные цветовые модели, применяемые в той либо иной области. Одной из таких моделей и является цветовой круг.

Рис. 2. Большой круг Освальда и круг Гете

Многим известно о том, что существует 3 первичные цвета, которые невозможно получить и которые образуют все остальные. Основные цвета - это желтый, красный и синий. При смешивании желтого с красным получается оранжевый, синего с желтым - зеленый, а красного с синим - фиолетовый. Таким образом, можно составить круг, который будет содержать все цвета. Он представлен на рис. 2 и называется большим кругом Освальда.

Наряду с кругом Освальда есть еще и круг Гете, в котором основные цвета расположены в углах равностороннего треугольника, а дополнительные - в углах перевернутого треугольника.

Друг напротив друга расположены контрастные цвета.

Для описания излучаемого и отраженного цвета используются разные математические модели - цветовые модели (цветовое пространство), т.е. - это способ описания цвета с помощью количественных характеристик. Цветовые модели могут быть аппаратно-зависимыми (их пока большинство, RGB и CMYK в их числе) и аппаратно-независимыми (модель Lab). В большинстве «современных» визуализационных пакетов (например, в Photoshop) можно преобразовывать изображение из одной цветовой модели в другую.

В цветовой модели (пространстве) каждому цвету можно поставить в соответствие строго определенную точку. В этом случае цветовая модель - это просто упрощенное геометрическое представление, основанное на системе координатных осей и принятого масштаба.

Цвета одной модели являются дополнительными к цветам другой модели. Дополнительный цвет - цвет, дополняющий данный до белого. Дополнительный для красного - голубой (зеленый+синий), дополнительный для зеленого - пурпурный (красный+синий), дополнительный для синего - желтый (красный+зеленый) и т.д.

По принципу действия цветовые модели можно условно разить на три класса:

? аддитивные, основанные на сложении цветов;

? субтрактивные, основу которых составляет операция вычитания цветов (субтрактивный синтез);

? перцепционные, базирующиеся на восприятии.

Аддитивный цвет получается на основе законов Грассмана путем соединения лучей света разных цветов. В основе этого явления лежит тот факт, что большинство цветов видимого спектра могут быть получены путем смешивания в различных пропорциях трех основных цветовых компонент. Этими компонентами, которые в теории цвета иногда называются первичными цветами, являются красный (Red), зеленый (Green) и синий (Вlue) цвета. При попарном смешивании первичных цветов образуются вторичные цвета: голубой (Сyan), пурпурный (Magenta) и желтый (Yellow). Следует отметить, что первичные и вторичные цвета относятся к базовым цветам.

Базовыми цветами называют цвета, с помощью которых можно получить практически весь спектр видимых цветов.

Для получения новых цветов с помощью аддитивного синтеза можно использовать и различные комбинации из двух основных цветов, варьирование состава которых приводит к изменению результирующего цвета.

Таким образом, цветовые модели (цветовое пространство) представляют средства для концептуального и количественного описания цвета. Цветовой режим - это способ реализации определенной цветовой модели в рамках конкретной графической программы.

1.4 Закон Грассмана (законы смешивания цветов)

В большинстве цветовых моделей для описания цвета используется трехмерная система координат. Она образует цветовое пространство, в котором цвет можно представить в виде точки с тремя координатами. Для оперирования цветом в трехмерном пространстве Т. Грассман вывел три закона (1853г):

1. Цвет трехмерен - для его описания необходимы три компоненты. Любые четыре цвета находятся в линейной зависимости, хотя существует неограниченное число линейно независимых совокупностей из трех цветов.

Иными словами, для любого заданного цвета можно записать такое цветовое уравнение, выражающее линейную зависимость цветов.

Первый закон можно трактовать и в более широком смысле, а именно, в смысле трехмерности цвета. Необязательно для описания цвета применять смесь других цветов, можно использовать и другие величины - но их обязательно должно быть три.

2. Если в смеси трех цветовых компонент одна меняется непрерывно, в то время, как две другие остаются постоянными, цвет смеси также изменяется непрерывно.

3. Цвет смеси зависит только от цветов смешиваемых компонент и не зависит от их спектральных составов.

Смысл третьего закона становится более понятным, если учесть, что один и тот же цвет (в том числе и цвет смешиваемых компонент) может быть получен различными способами. Например, смешиваемая компонента может быть получена, в свою очередь, смешиванием других компонент.

2. Классификация и характеристика цветовых моделей

Под цветовой моделью (пространством) понимают математическое описание разнообразной цветовой гаммы (спектра), проще говоря, каждому определенному цвету присваивается цифровой разряд. Практически все модели реализованы на использовании трех цветов (красный, зеленый, синий) из этого следует, каждый основной цвет имеет свое числовое описание, все остальные цвета результат цифровой генерации основных.

Все цветовые модели различны по типу, где у каждого есть своя сфера применения: RGB; HSB; Lab; CMY; CMYK; YIQ; YCC. Далее все перечисленные выше модели делятся на группы по их устройству работы, так RGB - результат сложения цветов (аддитивный класс), CMY и CMYK противоположен первому и воплощается через вычитание цветов (субтрактивный класс), основываются на восприятии Lab, HSB, YIQ, YCC (перцепционный класс).

Базирование RGB состоит из красного, зеленого и синего, где при смешивании каждой пары основных цветов получаются дополнительные: желтый, голубой и пурпурный, при комбинации основных и дополнительных, можно добиться практически любого цветового оттенка.

Прямое предназначение этой модели - отображение видимого цветового диапазона на вашем мониторе. По умолчанию экран работает именно в этом режиме, который новичкам менять вообщем-то и не следует.

Каждой цветовой модели присущ свой цветовой охват, т.е. количественный объем цветов, который может различить человеческий глаз и отобразить устройство, допустим принтер.

Серьезная проблема RGB не большой цветовой охват и аппаратная зависимость (не совсем аналогичный показ цветов на разных в основном ЭЛТ-мониторах).

Существуют три подвида описываемой нами модели: sRGB имеет самый маленький цветовой охват и потому походит для тех, кто работает с web-графикой. Подойдет и для печати, правда на струйниках, для профессионального качества печати она не пригодна. Adobe RGB 1998 - получен из телестандартов, самый оптимальный вид при работе с графическими пакетами.

Последний Wide-Gamut RGB обладает самым огромным охватом и может быть применен к 48-разрядным работам. Монитор компьютера имеет другой принцип показа цветов, и по сему модель RGB (с ее 3 видами), честно сказать, для печати почти не пригодна.

А вот цветовые модели CMY и CMYK как раз призваны подготовить изображение и вывести его на печать. Использование CMY (голубой, пурпурный, желтый) оправдано лишь теоретически для черно-белых принтеров, где картридж возможно заменить на цветной.

Добавление черной краски позволило сделать модель CMYK (голубой, пурпурный, желтый, черный) полностью функциональной (но не совершенной) в цветной печати. Так же улучшилось качество вывода диапазона серых оттенков. Как и RGB, CMYK остается аппаратно зависимой, с недостаточным высоким цветовым диапазоном моделью.

При всех своих недостатках вполне достойно отображает необходимый для печати спектр, но вместе с тем может нести в себе неадекватную цветопередачу на выводе, поэтому некоторые изображения лучше изначально редактировать в ней. И еще, качество, получаемое при печати, напрямую зависит от качества бумаги!

В профессиональной полиграфии CMYK почти не используют, там применяют ее различные модификации, о которых мы упоминать не будем, достаточно сказать, что эти системы (Pantone, Trumatch и д.р.) интегрированы в серьезные графические программы. Это так, попутно, теперь давайте дальше.

С последней цветовой моделью HSB и ей подобными все просто, они основаны на элементарном восприятии яркости, тона и насыщенности, и потому аппаратно независимы, используя основной цветовой ввод RGB, прекрасно подходит для создания тонких спектральных эффектов.

Каждая рассмотренная модель имеет свой цветовой охват, а значит при некоторых видах печати, цветовая информация не может быть совершенно точно отображена на мониторе. Так же не калиброванный дисплей или уже старый не достаточно полно определяют цвета.

Вследствие этого не всегда будет правильным решением выбирать необходимый цвет на мониторе. Для правильного подбора цветов существуют специальные системы соответствия. Такие системы включают в себя эталонные наборы цветов (атласы), необходимые программы и устройства для калибровки вывода, а также т.н. палитры.

В каждый профессиональный графический редактор интегрированы заказные (электронные) таблицы цветов. Все они ориентированы на разные способы представления ваших работ, кстати, в Adobe они называются - каталог, в Corel - именно палитры. Думаю, нет большой необходимости заострять ваше внимание на знакомстве с каждой из них, тем более, что предназначены они в основном для дизайнеров и верстальщиков, сотрудничающих с полиграфическим производством.

Да еще некоторые развитые в этой области пользователи используют их при создании своих авторских работ и web - дизайна. В полиграфии используют многослойную, плашечную и комбинированную (Spot colors) способы печати. Именно многослойный способ основан на применении триадных красителей, это к тому, что все цветовые модели в графических пакетах работают с триадными цветами.

Если цветовая модель - это программное описание, то цветовой режим - это, так сказать, воплощение в жизнь, реализация. Первый режим однобитовой черно-белой графики (Black and White (1-bit)) или bitmap, самый простой из всех существующих. Для его отображения нужно всего по одному биту памяти на каждый белый и черный пиксел. Применим он только к черно-белым изображениям, а также в некоторых случаях вывода полноцветной картинки в черно-белую печать. У Black and White есть еще семь разновидностей, все они отличаются друг от друга различным программным представлением все той же однобитовой графики. Следующий режим Градации серого (Grayscale (8-bit)) представляет собой модернизированную версию предыдущего режима за счет увеличения цветового разрешения для каждого пиксела до 8-бит и поддержки до 256 оттенков серого цвета. Новые версии программ поддерживают и 16-битовую разрядность, для любителей творить в этом, по-своему интересном режиме. Изображение в Дуплексном (Duotone (8-bit)) цветовом режиме - это черно-белое изображение, улучшенное с помощью дополнительных цветов (от одного до четырех). Дуплексный цветовой режим состоит из 256 оттенков одной (тоновое), двух (двухтоновое), трех (трехтоновое) или четырех (четырехтоновое) красок.

Этот режим лучше использовать для того, чтобы придать цветность черно-белым изображениям, а так же создавать всякие эффекты с помощью различных параметров кривых тонирования. 24-разрядный режим естественного цвета RGB Color (24-bit) предназначен для обработки полноцветных (цветных) изображений с использованием 16,7 млн. цветов, и даже может использовать разрешение в 48-бит. RGB - модель работает с цветовыми и альфа-каналами, а также может поддерживать слои (объекты). Палитра (Paletted) или Индексированные цвета (Indexed Color) - это упрощенный аналог RGB Color, и потому большого реализма в ваших “трудах”, практикуя в этой модели, не ждите. Он просто не способен передать все цветовые и тоновые нюансы, но и у него существует своя ниша в графике. У этой модели есть подвиды.

Про режим CMYK Color говорить особо нечего, он полностью ориентирован только на печать. Цветовой режим Lab - это 24-разрядный цветовой режим, в котором все цвета состоят из трех каналов: яркость (L*- Luminosity), зеленый/пурпурный (a*- green/magenta), синий/желтый (b*- blue/yellow). В режим Lab можно преобразовать только полутоновые, RGB и CMYK- изображения.

Внутренняя модель пригодиться для печати на Postscript Level 2 принтерах, обработки PhotoCD, а также для работы с яркостью, резкостью без искажений других цветовых тонов, ну и ряда других нужных уже состоявшимся дизайнерам, вещей. И последний цветовой режим Многоканальный (Multichannel) нужен для отображения нескольких цветовых каналов, где каждый канал несет в себе 256 оттенков серого. Годится для преобразования рисунков на черно-белом принтере, работать можно только с изображением, имеющим больше одного канала. Режимы NTSC RGB и PAL RGB нужны, чтобы преобразовывать картинки в видеоформат.

2.1 Цветовая модель RGB

Это одна из наиболее распространенных и часто используемых моделей. Она применяется в приборах, излучающих свет, таких, например, как мониторы, прожекторы, фильтры и другие подобные устройства.

В модели RGB производные цвета получаются в результате сложения или смешения базовых, основных цветов, называемых цветовыми координатами. Координатами служат красный (Red), зеленый (Green) и синий (Blue) цвет. Свое название RGB-модель получила по первым буквам английских наименований цветовых координат.

Каждая из вышеперечисленных составляющих может варьироваться в пределах от 0 до 255, образовывая разные цвета и обеспечивая, таким образом, доступ ко всем 16 миллионам (полное количество цветов, представляемых этой моделью равно 256*256*256 = 16 777 216.).

Эта модель аддитивная. Слово аддитивная (сложение) подчеркивает, что цвет получается при сложении точек трех базовых цветов, каждая своей яркости. Яркость каждого базового цвета может принимать значения от 0 до 255 (256 значений), таким образом, модель позволяет кодировать 2563 или около 16,7 млн цветов. Эти тройки базовых точек (светящиеся точки) расположены очень близко друг к другу, так что каждая тройка сливается для нас в большую точку определенного цвета. Чем ярче цветная точка (красная, зеленая, синяя), тем большее количество этого цвета добавится к результирующей (тройной) точке.

При работе с графическим редактором Adobe PhotoShop можно выбирать цвет, полагаясь не только на тот, что мы видим, но при необходимости указывать и цифровое значение, тем самым иногда, особенно при цветокоррекции, контролируя процесс работы.

Данная цветовая модель считается аддитивной, то есть при увеличении яркости отдельных составляющих будет увеличиваться и яркость результирующего цвета: если смешать все три цвета с максимальной интенсивностью, то результатом будет белый цвет; напротив, при отсутствии всех цветов получается черный.

Таблица 1

Значения некоторых цветов в модели RGB

Цвет

R

G

B

Красный (red)

255

0

0

Зеленый (green)

0

255

0

Синий (blue)

0

0

255

Фуксин (magenta)

255

0

255

Голубой (cyan)

0

255

255

Желтый (yellow)

255

255

0

Белый (white)

255

255

255

Черный (black)

0

0

0

Модель является аппаратно-зависимой, так как значения базовых цветов (а также точка белого) определяются качеством примененного в мониторе люминофора. В результате на разных мониторах одно и то же изображение выглядит неодинаково.

Свойства модели RGB хорошо описывает так называемый цветовой куб (см. рис. 3). Это фрагмент трехмерного пространства, координатами которого являются красный, зеленый и синий цвет. Каждая точка внутри куба соответствует некоторому цвету и описывается тремя проекциями - цветовыми координатами: содержанием красного, зеленого и синего цвета. Сложение всех основных цветов максимальной яркости дает белый цвет; начальная точка куба означает нулевые вклады основных цветов и соответствует черному цвету.

Если цветовые координаты смешивать в равных пропорциях, то получится серый цвет различной насыщенности. Точки, отвечающие серому цвету, лежат на диагонали куба. Смешение красного и зеленого дает желтый, красный и синий образуют пурпурный, а зеленый и синий -голубой.

Размещено на http://allbest.ru

Рис. 3. Принцип сложения цветов. Это иная форма представления системы RGB, которая проще цветового куба для восприятия и запоминания

Цветовые координаты: красный, зеленый и синий иногда называют первичными или аддитивными цветами. Цвета голубой, пурпурный, желтый, которые получаются в результате попарного смешения первичных цветов, называются вторичными. Поскольку сложение- это основная операция синтеза цветов, то модель RGB иногда называют аддитивной (от латинского additivus, что значит прибавляемый).

Принцип сложения цветов часто изображается в виде плоской круговой диаграммы (см. рис. 4), которая хотя и не дает новой информации о модели, по сравнению с пространственным изображением, но проще воспринимается и легче запоминается.

Размещено на http://allbest.ru

Рис. 4. Цветовой куб. Это трехмерное представление цветовой модели RGB, удачно описывающее основные правила композиции цвета этой системы

По принципу сложения цветов работают многие технические устройства: мониторы, телевизоры, сканеры, диапроекторы, цифровые фотоаппараты и др. Если посмотреть через увеличительное стекло на экран монитора, то можно увидеть регулярную сетку, в узлах которой располагаются красные, зеленые и синие точки-зерна люминофора. При возбуждении пучком электронов они излучают базовые цвета разной интенсивности. Сложение излучений близко расположенных зерен воспринимается человеческим глазом как цвет в данной точке экрана.

В вычислительной технике интенсивность первичных цветов принято измерять целыми числами в диапазоне от 0 до 255. Ноль означает отсутствие данной цветовой составляющей, число 255 - ее максимальную интенсивность. Поскольку первичные цвета могут смешиваться без ограничений, то легко подсчитать общее количество цветов, которое порождает аддитивная модель. Оно равно 256 * 256 * 256=16 777 216, или более 16,7 миллионов цветов. Это число кажется огромным, но в действительности модель порождает всего лишь небольшую часть цветового спектра.

Любой естественный цвет можно разложить на красную, зеленую и синюю составляющие и измерить их интенсивность. А вот обратный переход возможен далеко не всегда. Экспериментально и теоретически доказано, что диапазон цветов модели RGB уже, чем множество цветов видимого спектра. Чтобы получить часть спектра, лежащую между синим и зеленым цветами, требуются излучатели с отрицательной интенсивностью красного цвета, которых, конечно же, в природе не существует. Диапазон воспроизводимых цветов модели или устройства называется цветовым охватом. Одним из серьезных недостатков аддитивной модели, как ни парадоксально это звучит, является ее узкий цветовой охват.

Еще одним недостатком модели следует считать аппаратную зависимость. Теоретически все выглядит очень привлекательно. Пусть цвет задан значениями интенсивностей базовых цветов, например R = 204, G = 230, В =1 71 (светло-салатовый).

Кажется, что этот набор цветовых координат однозначно определяет светло-салатовый цвет на любом устройстве, которое работает по принципу сложения базовых цветов. В действительности все обстоит намного сложнее. Цвет, воспроизводимый устройством, зависит от множества внешних факторов, часто не поддающихся учету.

Экраны дисплеев покрываются люминофорами, которые отличаются по химическому и спектральному составу. Мониторы одной марки имеют разный износ и условия освещения. Даже один монитор выдает различные цвета в прогретом состоянии и сразу после включения. За счет калибровки устройств и использования систем управления цветом можно попытаться приблизить цветовые охваты различных устройств. Подробнее об этом говорится в следующей главе.

Нельзя не упомянуть еще один недостаток этой цветовой модели. С точки зрения практикующего дизайнера или компьютерного художника, она является неинтуитивной. Оперируя в ее среде, бывает трудно ответить на самые простые вопросы, относящиеся к цветовому синтезу. Например, как следует изменить цветовые координаты, чтобы сделать текущий цвет немного ярче или уменьшить его насыщенность? Чтобы дать правильный ответ на этот простой вопрос, требуется обладать большим опытом работы в этой цветовой системе.

2.2 Цветовая модель HSB

Здесь заглавные буквы не соответствуют никаким цветам, а символизируют тон (цвет), насыщенность и яркость (Hue Saturation Brightness). Предложена в 1978 году.

Все цвета располагаются по кругу, и каждому соответствует свой градус, то есть всего насчитывается 360 вариантов - H определяет частоту света и принимает значение от 0 до 360 градусов (красный - 0, желтый - 60, зеленый - 120 градусов и так далее), т.е. любой цвет в ней определяется своим цветом (тоном), насыщенностью (то есть добавлением к нему белой краски) и яркостью.

Насыщенность определяет, насколько ярко выраженным будет выбранный цвет. 0 - серый, 100 - самый яркий и чистый из возможных вариантов.

Параметр яркости соответствует общепризнанному, то есть 0 - это черный цвет.

Такая цветовая модель намного беднее рассмотренной ранее RGB, так как позволяет работать всего лишь с 3 миллионами цветов.

Эта модель аппаратно-зависимая и не соответствует восприятию человеческого глаза, так как глаз воспринимает спектральные цвета как цвета с разной яркостью (синий кажется более темным, чем красный), а в модели HSB им всем приписывается яркость 100%.

Насыщенность (Saturation) - это параметр цвета, определяющий его чистоту. Отсутствие (серых) примесей (чистота кривой) соответствует данному параметру. Уменьшение насыщенности цвета означает его разбеливание.

Цвет с уменьшением насыщенности становится пастельным, блеклым, размытым. На модели все одинаково насыщенные цвета располагаются на концентрических окружностях, т. е. можно говорить об одинаковой насыщенности, например, зеленого и пурпурного цветов, и чем ближе к центру круга, тем все более разбеленные цвета получаются. В самом центре любой цвет максимально разбеливается, проще говоря, становится белым цветом.

Работу с насыщенностью можно характеризовать как добавление в спектральный цвет определенного процента белой краски. Чем больше в цвете содержание белого, тем ниже значение насыщенности, тем более блеклым он становится.

Яркость (Brightness) - это параметр цвета, определяющий освещенность или затемненность цвета. Амплитуда (высота) световой волны соответствует этому параметру. Уменьшение яркости цвета означает его зачернение. Работу с яркостью можно характеризовать как добавление в спектральный цвет определенного процента черной краски. Чем больше в цвете содержание черного, тем ниже яркость, тем более темным становится цвет.

Модель HSB - это пользовательская цветовая модель, которая позволяет выбирать цвет традиционным способом.

2.3 Модель CMY (Cyan Magenta Yellow)

В этой модели основные цвета образуются путем вычитания из белого цветов основных аддитивных цветов модели RGB.

Рис. 5. Получение модели CMY из RGB

цвет графический изображение компьютер

Цвета, использующие белый свет, вычитая из него определенные участки спектра называются субтрактивными. Основные цвета этой модели: голубой (белый минус красный), фуксин (в некоторых книгах его называют пурпурным) (белый минус зеленый) и желтый (белый минус синий). Эти цвета являются полиграфической триадой и могут быть легко воспроизведены полиграфическими машинами.

При смешение двух субтрактивных цветов результат затемняется (в модели RGB было наоборот).

При нулевом значении всех компонент образуется белый цвет (белая бумага). Эта модель представляет отраженный цвет, и ее называют моделью субтрактивных основных цветов. Данная модель является основной для полиграфии и также является аппаратно-зависимой.

Рис. 6. Модель CMY

Система координат CMY - тот же куб, что и для RGB, но с началом отсчета в точке с RGB координатами (1,1,1), соответствующей белому цвету. Цветовой куб модели CMY показан на рис. 7

Рис. 7. Цветовой куб модели CMY

2.4 Цветовая модель CMYK

Это еще одна из наиболее часто используемых цветовых моделей, нашедших широкое применение. Она, в отличие от аддитивной RGB, является субтрактивной моделью.

Модель CMYK (Cyan Magenta Yellow Key, причем Key означает черный цвет) - является дальнейшим улучшением модели CMY и уже четырехканальна. Поскольку реальные типографские краски имеют примеси, их цвет не совпадает в точности с теоретически рассчитанным голубым, желтым и пурпурным.

Особенно трудно получить из этих красок черный цвет. Поэтому в модели CMYK к триаде добавляют черный цвет. Почему-то в названии цветовой модели черный цвет зашифрован как K (от слова Key - ключ). Модель CMYK является «эмпирической», в отличие от теоретических моделей CMY и RGB. Модель является аппаратно-зависимой.

Основные цвета в субтрактивной модели отличаются от цветов аддитивной. Cyan - голубой, Magenta - пурпурный, Yellow - желтый.

Так как при смешении всех вышеперечисленных цветов идеального черного не получится, то вводится еще один дополнительный цвет - черный, который позволяет добиваться большей глубины и используется при печати прочих черных (как, например, обычный текст) объектов.

Цвета в рассматриваемой цветовой модели были выбраны такими не случайно, а из-за того, что голубой поглощает лишь красный, пурпурный - зеленый, желтый - синий.

В отличие от аддитивной модели, где отсутствие цветовых составляющих образует черный цвет, в субтрактивной все наоборот: если нет отдельных компонентов, то цвет белый, если они все присутствуют, то образуется грязно-коричневый, который делается более темным при добавлении черной краски, которая используется для затемнения и других получаемых цветов. При смешивании отдельных цветовых составляющих можно получить следующие результаты:

Голубой + Пурпурный = Синий с оттенком фиолетового, который можно усилить, изменив пропорции смешиваемых цветов.

Пурпурный + Желтый = Красный. В зависимости от соотношения входящих в него составляющих он может быть преобразован в оранжевый или розовый.

Желтый + Голубой = Зеленый, который может быть преобразован при использовании тех же первичных цветов как в салатовый, так и в изумрудный.

Следует помнить, что если вы готовите изображение к печати, то следует все-таки работать с CMYK, потому что в противном случае то, что вы увидите на мониторе, и то, что получите на бумаге, будет отличаться настолько сильно, что вся работа может пойти насмарку.

Модель CMYK - это субтрактивная цветовая модель, которая описывает реальные красители, используемые в полиграфическом производстве.

2.5 Цветовая модель Lab

Цветовая модель Lab была разработана Международной комиссией по освещению (CIE) с целью преодоления существенных недостатков вышеизложенных моделей, в частности она призвана стать аппаратно независимой моделью и определять цвета без оглядки на особенности устройства (сканера, монитора, принтера, печатного станка и т. д.).

Такую модель предпочитают в основном профессионалы, так как он совмещает достоинства как CMYK, так и RGB, а именно обеспечивает доступ ко всем цветам, работая с достаточно большой скоростью.

На вопрос, почему же такой моделью пользуются в основном профессионалы, можно ответить лишь то, что она отличается несколько необычным и непривычным построением, и понять принцип ее действия порой несколько сложнее описанных ранее.

Построение цветов здесь, так же как и в RGB, базируется на слиянии трех каналов. На этом, правда, все сходство заканчивается.

Название она получила от своих базовых компонентов L, a и b. Компонент L несет информацию о яркостях изображения, а компоненты а и b - о его цветах (т. е. a и b - хроматические компоненты).

Компонент а изменяется от зеленого до красного, а b - от синего до желтого. Яркость в этой модели отделена от цвета, что удобно для регулирования контраста, резкости и т.д. Однако, будучи абстрактной и сильно математизированной эта модель остается пока что неудобной для практической работы.

Поскольку все цвтовые модели являются математическими, они легко конвертируются одна в другую по простым формулам. Такие конверторы встроены во все "приличные" графические программы.

2.6 Перцепционные цветовые модели

Для дизайнеров, художников и фотографов основным инструментом индикации и воспроизведения цвета служит глаз. Этот естественный «инструмент» обладает цветовым охватом, намного превышающим возможности любого технического устройства, будь то сканер, принтер или фотоэкспонирующее устройство вывода на пленку.

Как было показано ранее, используемые для описания технических устройств цветовые системы RGВ и СМYК являются аппаратнозависимыми. Это значит, что воспроизводимый или создаваемый с помощью них цвет определяется не только составляющими модели, но и зависит от характеристик устройства вывода.

Для устранения аппаратной зависимости был разработан ряд так называемых перцепционных (иначе - интуитивных) цветовых моделей. В их основу заложено раздельное определение яркости и цветности. Такой подход обеспечивает ряд преимуществ:

? позволяет обращаться с цветом на интуитивно понятном уровне;

? значительно упрощает проблему согласования цветов, поскольку после установки значения яркости можно заняться настройкой цвета.

Прототипом всех цветовых моделей, использующих концепцию разделения яркости и цветности, является НSV-модель.

К другим подобным системам относятся НSI, НSB, НSL и YUV. Общим для них является то, что цвет задается не в виде смеси трех основных цветов - красного, синего и зеленого, а определяется путем указания двух компонентов: цветности (цветового тона и насыщенности) и яркости.

2.7 Черно-белый и полутоновый режим

Черно-белый режим. Это обычный черно-белый режим, который полностью лишен цвета, в нем есть только белый, черный и градации серого. Ничего особенно нового сказать о данной цветовой модели невозможно, так как она состоит из одного канала, который полностью соответствует изображению и выглядит как обычная черно-белая фотография.

Художники и разработчики программного обеспечения иногда называют этот режим монохромной графикой, растровой графикой, или графикой с одно- битовым разрешением.

Для отображения черно-белого изображения используются только два типа ячеек: черные и белые.

Поэтому для запоминания каждого пиксела требуется только 1 бит памяти компьютера. Областям исходного изображения, имеющим промежуточные оттенки, назначаются черные или белые пикселы, поскольку других оттенков для это модели не предусмотрено.

Этот режим можно использовать для работы с черно-белыми изображениями, полученными сканированием черно-белых чертежей и гравюр, а также иногда при выводе цветных изображений на черно-белую печать.

Полутоновый режим. Такой способ реализации изображения базируется на специфике восприятия изображения человеческим глазом, для которого область изображения, заполненная крупными точками, ассоциируется с более темными тонами и, наоборот, область, заполненная точками меньшего размера, воспринимается как более светлая.

Режим Наlftone поддерживается большинством принтеров.

Полутоновые изображения представляют собой однобитовые изображения с непрерывным тоном, которые реализуются с помощью конгломерата точек разного размера и формы.

2.8 Плашечные цвета

В некоторых типах полиграфической продукции используются всего два-три цвета, которые печатаются смесовыми красками, которые называются плашечными цветами (spot colors).

В частности, к такой продукции относятся бланки, визитки, приглашения, прайс-листы и прочая акцидентная продукция. Каждый плашечный цвет репродуцируется с помощью отдельной печатной формы (плашки).

Для осуществления печати такой продукции дизайнер должен представить в типографию отдельные полосы оригинал-макетов с плашками на каждый смесовый цвет и крестами приводки и приложить образцы цвета («выкраски») для каждой полосы.

Для того чтобы унифицировать использование таких цветов создают цветовые библиотеки.

В частности, известная фирма Pantone, которая является владельцем и разработчиком одноименной библиотеки, начиналась с того, что химик Ло-уренс Герберт создал совокупность различных цветов, составляемых из восьми красок, и напечатал альбом этих цветов, каждый из которых имел свой номер.

С тех пор эта идея получила самое широкое развитие, цветовые библиотеки используются в самых разных областях и в первую очередь в компьютерной графике и полиграфии.

Появилось множество других компаний, выпускающих другие стандартизированные библиотеки цветов (например, TRUMATCH SWATCHING SYSTEM, FOCOLTONE COLOUR SYSTEM, TOYO 88 ColorFinder1050 System и ANPA-COLOR system и т. д.).

Цветовой набор Process Color System Guide охватывает более 3000 цветов, получаемых при полиграфической печати, с рецептами процентного соотношения 16 базовых цветов для цветовой модели CMYK.

2.9 Кодирование цвета. Палитра

Для того чтобы компьютер имел возможность работать с цветными изображениями, необходимо представлять цвета в виде чисел - кодировать цвет. Способ кодирования зависит от цветовой модели и формата числовых данных в компьютере.

Для модели RGB каждая из компонент может представляться числами, ограниченными некоторым диапазоном - например, дробными числами от 0 до 1 либо целыми числами от 0 до некоторого максимального значения.

В настоящее время достаточно распространенным является формат True Color, в котором каждая компонента представлена в виде байта, что дает 256 градаций для каждой компоненты: R = 0...255, G = 0...255, B = 0...255. Количество цветов составляет 256х256х256 = 16.7 млн (224).

Такой способ кодирования цветов можно назвать компонентным. В компьютере коды изображений True Color представляются в виде троек байтов, либо упаковываются в длинное целое (четырехбайтное) - 32 бита.

При работе с изображениями в системах компьютерной графики часто приходится искать компромисс между качеством изображения (требуется как можно больше цветов) и ресурсами, необходимыми для хранения и воспроизведения изображения, исчисляемыми, например, объемом памяти (надо уменьшать количество бит на пиксел).

Кроме того, некоторое изображение само по себе может использовать ограниченное количество цветов.

Например, для черчения может быть достаточно двух цветов, для человеческого лица важны оттенки розового, желтого, пурпурного, красного, зеленого; а для неба- оттенки голубого и серого.

В этих случаях использование полноцветного кодирования цвета является избыточным.

При ограничении количества цветов используют палитру, представляющую набор цветов, важных для данного изображения.

Палитру можно воспринимать как таблицу цветов. Палитра устанавливает взаимосвязь между кодом цвета и его компонентами в выбранной цветовой модели.

Компьютерные видеосистемы обычно предоставляют возможность программисту установить собственную палитру.

Каждый цвет изображения, использующего палитру, кодируется индексом, который будет определять номер строки в таблице палитры. Поэтому такой способ кодирования цвета называют индексным.

...

Подобные документы

  • Сферы применения машинной графики. Виды компьютерной графики. Цветовое разрешение и цветовые модели. Программное обеспечение для создания, просмотра и обработки графической информации. Графические возможности текстовых процессоров, графические редакторы.

    контрольная работа [21,9 K], добавлен 07.06.2010

  • Исследование и анализ общих понятий цвета, а также принципы представления, хранения, ввода, вывода и обработки графической информации. Особенности создания материала для календаря, его перевод в цифровой вид и обработка при взаимодействии с типографией.

    курсовая работа [319,7 K], добавлен 30.05.2015

  • Понятие цвета с точки зрения ЭВМ, принципы хранения в памяти ЭВМ графической информации. Индексированный цвет, работа с палитрой. Цветовая модель CMYK. Особые взаимоотношения двух цветовых моделей. Основные области применения компьютерной графики.

    курсовая работа [1,0 M], добавлен 06.12.2010

  • Представление графических данных. Растровая, векторная и фрактальная виды компьютерной графики. Цвет и цветовые модели: метод кодирования цветовой информации для ее воспроизведения на экране монитора. Основные программы для обработки растровой графики.

    реферат [429,7 K], добавлен 01.08.2010

  • Основные понятия компьютерной графики. Представление графической информации в компьютере. Внутреннее устройство персонального компьютера. История графической программы Macromedia Flash, принципы и методы работы с рисунками, технология создания фильма.

    дипломная работа [5,9 M], добавлен 06.04.2012

  • Исследование природы цвета как качественной субъективной характеристики излучения оптического диапазона. Световое и зрительное восприятие цвета человеком. Назначение, описание моделей и структура цветовых профилей и пространств в компьютерной графике.

    курсовая работа [1,1 M], добавлен 03.10.2011

  • Преобразование "естественной" информации в дискретную форму. Анализ процессов дискретизации и квантования изображения. Векторные и растровые процедуры, применяемые в компьютерной графике. Законы математического описания цвета и виды цветовых моделей.

    презентация [208,4 K], добавлен 29.01.2016

  • Компьютерная графика как разные виды графических изображений, создаваемых или обрабатываемых с помощью компьютера. Оборудование, используемое для ввода графической информации. Программа растровой графики Adobe Photoshop, векторной графики CorelDraw.

    презентация [549,3 K], добавлен 14.05.2014

  • Виды и способы представления компьютерной информации в графическом виде. Отличительные особенности растровой и векторной графики. Масштабирование и сжатие изображений. Форматы графических файлов. Основные понятия трехмерной графики. Цветовые модели.

    контрольная работа [343,5 K], добавлен 11.11.2010

  • Компьютерная графика. Пиксели, разрешение, размер изображения. Типы изображений. Черно-белые штриховые и полутоновые изображения. Индексированные цвета. Полноцветные изображения. Форматы файлов. Цвет и его модели. Цветовые модели: RGB, CMYK, HSB.

    реферат [18,1 K], добавлен 20.02.2009

  • Технология обработки графической информации с помощью ПК, применение в научных и военных исследованиях: формы, кодирование информации, ее пространственная дискретизация. Создание и хранение графических объектов, средства обработки векторной графики.

    реферат [20,7 K], добавлен 28.11.2010

  • Информационный процесс как совокупность последовательных действий, производимых над информацией для получения какого-либо результата. Понятие и сущность кодирования, механизмы и виді сбора информации. Применения компьютера для автоматизация процессов.

    реферат [2,6 M], добавлен 12.03.2010

  • Методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов. Области применения компьютерной графики. Особенности научной, деловой, конструкторской и художественной графики. Графическая система компьютера.

    презентация [2,2 M], добавлен 03.02.2017

  • Методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов. Основные понятия компьютерной графики. Особенности применения растровой, векторной и фрактальной графики. Обзор форматов графических данных.

    реферат [49,1 K], добавлен 24.01.2017

  • Ознакомление с понятием компьютерной графики. Области применения конструкторской и рекламной графики, компьютерной анимации. Рассмотрение преимущества графической визуализации бизнес-процессов. Особенности кольцевой, биржевой и лепестковой диаграмм.

    реферат [94,6 K], добавлен 02.02.2016

  • Изучение современных компьютерных программ манипуляции с цветом. Исследование систем соответствия цветов и цветовых режимов. Описания особенностей аддитивных, субтрактивных и перцепционных цветовых моделей. Работа с цветом в трехмерном пространстве.

    презентация [2,6 M], добавлен 12.02.2014

  • Сферы применения машинной графики. Использование растровой, векторной и фрактальной графики. Цветовое разрешение и модели. Создание, просмотр и обработка информации. Форматы графических файлов. Программы просмотра. Компьютерное моделирование и игра.

    презентация [661,5 K], добавлен 24.03.2017

  • Структура графической системы. Монитор: общее понятие, разрешающая способность дисплея. Главная функция видеоадаптера. Особенности формирования цвета видеопиксела. Система кодирования цвета при помощи трех составляющих. Сущность понятия "палитра".

    презентация [57,9 K], добавлен 06.01.2014

  • Описание устройств ввода графической, звуковой информации, их назначение, классификация, конструкция, характеристики. Графические планшеты, сканнеры. Анализ способов представления и кодирования информации. Программные средства для архивации данных.

    контрольная работа [31,2 K], добавлен 22.11.2013

  • Понятие компьютерной графики. Представление графической информации в компьютере. Графические форматы и редакторы. Характеристика программы, интерфейса. Возможности использования программы CorelDraw. Возможности создания сложных графических изображений.

    дипломная работа [1,1 M], добавлен 04.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.