Сети ЭВМ, информационное обеспечение и базы данных, информационные технологии в управлении качеством и защита информации

Применение информационных технологий на производстве и в защите информации. Сети электронно-вычислительных машин, типы кабелей, иерархическая модель данных, примеры её использования. Информационное обеспечение и базы данных, виды программного обеспечения.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 23.10.2014
Размер файла 525,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

имени К.Э. ЦИОЛКОВСКОГО»

Институт заочного обучения

Кафедра «Управление качеством и сертификация»

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Информационные технологии»

«Сети ЭВМ, информационное обеспечение и базы данных, информационные технологии в управлении качеством и защита информации»

Алексеев Павел Александрович

Москва 2014

Содержание

1. Сети ЭВМ

а) Витая пара

б) Коаксильный кабель

в) Оптоволоконный кабель

2. Информационное обеспечение и базы данных. Иерархическая модель: особенности, примеры использования и ПО на ее основе

3. Информационные технологии в управлении качеством и защита информации

а) Виды программного обеспечения

б) Классификация программного обеспечения

Введение

Важным этапом проектирования любой сети является выбор каналов связи, обеспечивающих передачу информации между компьютерами на физическом уровне. Выбор каналов связи осуществляется исходя из требований, выдвигаемых заказчиком сети.

Нормальные формы и транзитивная зависимость, избыточность данных в базе данных, типы и виды баз данных, настройка MySQL сервера и файл my.ini, MySQL сервер, установка и настройка, архитектура СУБД и архитектура баз данных, сетевая база данных, сетевая модель данных. Существуют различные модели данных, стоит сказать, что иерархическая база данных является частным случаем сетевой модели данных. Но дело все в том, что и иерархическая модель данных, и сетевые базы данных являются мало эффективными, и постепенно от их использования отказываются. Иерархические и сетевые СУБД остались только в некоторых крупных фирмах, которые наполняли такие базы годами. И сейчас основной проблемой для таких фирм является проблема совместимости иерархических и сетевых баз данных с реляционными базами данных.

В основу этой курсовой работы, легли материалы о кабельных каналах связи, иерархической модели и ее особенности, а также классификация информационных технологий

Целью работы является изучение, а также применение информационных технологий на производстве и защите информации.

1. Сети ЭВМ

В подавляющем большинстве компьютерных сетей используются кабельные каналы связи, на рассмотрении которых мы и остановимся.

Существуют три типа кабелей, каждый из которых имеет свои преимущества и недостатки.

а) Витая пара

Одно из самых распространенных средств передачи сигналов. Витая пара представляет собой два изолированных медных провода (диаметром около 1мм) обвитых один вокруг другого в виде спирали.

Выделяют неэкранированную UTP (Unshielded Twisted Pair) и экранированную STP (Shielded Twisted Pair) витые пары.

Основными достоинствами UTP являются: простота монтажа, универсальность (используется в большинстве сетевых технологий) и низкая стоимость по сравнению с другими типами кабелей. К недостаткам относят плохой показатель помехозащищенности и низкий уровень безопасности передачи данных (несанкционированный доступ к информации получить достаточно просто, причем как непосредственным контактом с кабелем, так и с помощью радиоперехвата излучаемых кабелем электромагнитных полей).

Избавиться от перечисленных выше недостатков можно, используя экранированную витую пару. Экранированной она называется потому, что каждая из витых пар кабеля помещается в металлическую оболочку (алюминиевая или медная фольга), которая служит «экраном», уменьшающим излучение кабеля (и тем самым повышает помехозащищенность). Стоимость, габариты, сложность в установке экранированной витой пары привели к тому, что в современных сетях её практически не используют.

б) Коаксиальный кабель

Твердый медный провод, покрытый изоляцией, поверх которой натянут цилиндрический проводник, выполненный в виде мелкой сетки. Весь кабель снаружи покрыт пластиковой оболочкой.

Существует две разновидности коаксиального кабеля:

· «толстый» коаксиальный кабель -- внешний диаметр 12мм, диаметр внутреннего проводника 2.17мм, волновое сопротивление 50 Ом. Этот тип кабеля обладает хорошими механическими и техническими характеристиками, но плохо монтируем (из-за толстого внутреннего проводника он плохо гнется).

«тонкий» коаксиальный кабель -- внешний диаметр 5мм, диаметр внутреннего проводника 0.89мм, волновое сопротивление 50 Ом. Механические и технические характеристики «тонкого» кабеля хуже, чем «толстого». информационный вычислительный программный база

Коаксиальный кабель обеспечивает высокую пропускную способность и отличную помехозащищенность, но по сравнению с витой парой увеличилась стоимость кабеля и сложность выполнения монтажа.

Коаксиальный кабель применяется в сетях, построенных по топологии «шина», а витая пара -- в сетях с топологией «звезда» и «кольцо».

в) Оптоволоконные кабели

Совокупность тонких стеклянных волокон (каждое из которых покрыто оболочкой), по которым распространяются световые сигналы. Структура оптоволоконного кабеля очень похожа на структуру коаксиального кабеля: в центре кабеля сердечник, покрытый стеклянной оболочкой, внешний слой -- пластик. Различие с коаксиальным кабелем заключается лишь в отсутствии экранирующей сетки.

В зависимости от диаметра сердечника различают:

· одномодовый кабель (Signal Mode Fiber, SMF) -- диаметр сердечника составляет от 8 до 10 мкм.

· многомодовый кабель (Multi Mode Fiber, MMF) -- диаметр сердечника составляет 50 мкм.

Изготовление стеклянных волокон для одномодовых кабелей является процессом технологически сложным, что делает этот кабель дорогим. Сердечник для многомодовых кабелей изготовить легче, но технические характеристики многомодовых кабелей хуже, чем одномодовых.

В целом, к достоинствам оптоволоконных кабелей относят отличные показатели защиты передаваемой информации и помехоустойчивости, а также скорости передаваемой информации; к недостаткам -- дороговизну, высокую сложность монтажа, малую прочность и гибкость.

Применяются оптоволоконные кабели в сетях с топологиями «кольцо» и «звезда».

Для подключения кабелей к компьютерам и другим устройствам используются:

· для витой пары -- разъемы (коннекторы) типа RJ-45 (Registered Jack 45). Этот коннектор схож с коннектором RJ-11, применяемым в телефонных линиях. Различие заключается в количестве контактов: RJ-11 -- 4 контакта, RJ-45 -- 8 контактов.

· для «тонкого» коаксиального кабеля -- разъемы типа BNC (BNC-коннекторы и BNC-терминаторы).

· для «толстого» коаксиального кабеля -- AUI-коннекторы, DIX-коннекторы, устройства -- трансиверы.

· для оптоволоконных кабелей -- коннекторы FC, ST, SC (FC,ST на сегодняшний момент практически не используются).

Выбор каналов связи, как правило, сводится к двум вариантам: витой паре и оптоволокну.

В сетях диаметром до 100м. оптоволокно не имеет никаких весомых преимуществ перед витой парой. Если при этом учитывать стоимость решения, то выбор будет в пользу электропроводных кабелей. Таковы реалии на сегодняшний день. Оптоволокно же имеет большие перспективы за счет своих высоких технических характеристик, а также, потому что медь, являющаяся основой электропроводных кабелей, -- металл дорогой и запасы его ограничены, а кварц, основа оптоволокна, -- ресурс распространенный и дешевый.

2. Информационное обеспечение и базы данных. Иерархическая модель: особенности, примеры использования и ПО на ее основе

Иерархическая модель данных является частным случаем сетевой модели данных, структура иерархической базы данных немного проще сетевой и, соответственно, иерархические базы данных даже менее эффективны, чем сетевые. Иерархическая модель данных, как и сетевые БД опирается на теорию графов.

В основе иерархической модели данных лежит один главный элемент (главный узел), с которого все и начинается, такой элемент называет корневым элементом, в теории графов это называется корнем дерева. Вообще, по сути, что сетевая база данных, что иерархическая база данных имеет древовидную структуру. Все элементы или узлы, которые находятся ниже корневого узла иерархической модели, являются потомками корня. Стоит сказать, что и иерархическая база данных, и сетевая база данных оптимизированы на чтение информации из БД, но не на запись информации в базу данных, эта особенность обусловлена самой моделью данных.

Узлы дерева, которые находятся на одном уровне, обычно называются братьями. Узлы, которые находятся ниже какого-то определенного уровня, являются дочерними узлами по отношению к нему. Иерархическую модель данных можно сравнить с файловой системой компьютера. Компьютер умеет очень быстро работать с отдельными файлами: удалять конкретный файл, редактировать файл, копировать или перемещать файл. Но операция проверки компьютера антивирусом может происходить достаточно длительное время.

Точно такие же особенности присуще иерархической СУБД, то есть базы данных, имеющие иерархическую структуру, умеют очень быстро находить и выбирать информацию и отдавать ее пользователю. Но структура иерархической модели данных не позволяет столь же быстро перебирать информацию. Ну, это видно из рисунка, представленного выше. Допустим, что нам необходимо найти все записи, содержащие слово «сотрудник». Как будет поступать иерархическая СУБД в этом случае? А поступать она будет следующим образом: свой поиск она начнет с корневого элемента иерархической модели данных, проверив его, она начнет проверять его связи, если связей будет несколько, то она пойдет проверять в крайний левый дочерний элемент, расположенный на уровень ниже.

Затем иерархическая СУБД проверит содержимое этого элемента и его связи, если связей опять будет несколько, то она отправится опять-таки в крайний левый дочерний элемент, чтобы проверить его содержимое, проверив его содержимое она увидит, что у этого узла нет дочерних элементов и вернется в родительский узел этого узла, чтобы проверить, есть ли у него еще дочерние элементы. И так постепенно, узел за узлом, спуская и поднимаясь по иерархии узлов СУБД переберет все узлы и выдаст нам все записи, в которых есть слово «сотрудник». Ну, думаю, что с иерархической моделью данных мы более-менее разобрались (если не разобрались, то пишите в комментарии), можно приступить к рассмотрению структуры иерархической базы данных.

Самые первые в мире СУБД использовали иерархическую модель данных, иерархические базы данных появились даже раньше, чем сетевая модель хранения данных. Поэтому структура иерархической базы данных немного проще, чем структура сетевой БД. И так, основными информационными единицами иерархической модели данных являются сегмент и поле. Поле данных является наименьшей неделимой информационной единицей иерархической базы данных, доступной пользователю. У сегмента данных можно определить его тип и экземпляр сегмента.

Экземпляр сегмента образуется из конкретных значений полей данных. Тип сегмента - это именованная совокупность всех типов полей данных, входящих в данный сегмент. Если ориентироваться по рисунку выше, то тип сегмента - это родительский элемент и все его дочерние элементы. Как я уже говорил: иерархическая модель данных базируется на теории графов, но если структура сетевой БД описывается ориентированным графом (графом со стрелочками), то структура иерархической базы данных описывается неориентированным графом. Характерной особенностью структуры иерархической модели данных является то, что у любого потомка или дочернего элемента может быть только один предок или родительский элемент.

Каждый узел иерархического дерева или каждый элемент иерархической базы данных является сегментом данных. Линии, соединяющие сегменты - это связи между информационными объектами иерархической базы данных. Рисунок должен внести дополнительную ясность:

На концептуальном уровне иерархическая база данных является частным случаем сетевой модели данных.

ПРЕОБРАЗОВАНИЕ КОНЦЕПТУАЛЬНОЙ МОДЕЛИ В ИЕРАРХИЧЕСКУЮ МОДЕЛЬ ДАННЫХ

Преобразование концептуальной модели в иерархическую модель данных происходит аналогично преобразованию в сетевую модель данных, но существую некоторые тонкости, о которых мы и поговорим. Эти тонкости связаны с тем, что структура иерархической базы данных должна быть представлена в виде дерева, то есть данные иерархической модели должны быть организованы в виде дерева.

Как вы помните: дуги, соединяющие узлы между собой, - это связи. Связи бывают один к одному и один ко многим. Преобразование связей один ко многим происходит автоматически в том случае, если потомок иерархического дерева имеет только одного предка. Происходит это следующим образом: Каждый объект с его атрибутами, участвующий в такой связи, становится логическим сегментом. Между двумя логическими сегментами устанавливается связь типа «один ко многим». Сегмент со стороны «много» становится потомком, а сегмент со стороны «один» становится предком. Согласитесь, что преобразование в иерархическую модель данных похоже на преобразование в сетевую модель.

Ситуация значительно усложняется, если потомок в связи имеет не одного, а двух и более предков. Так как подобное положение является невозможным для иерархической модели, то отражаемая структура данных нуждается в преобразованиях, которые сводятся к замене одного дерева, например, двумя (если имеется два предка). В результате такого преобразования в базе данных появляется избыточность, так как единственно возможный выход из этой ситуации -- дублирование данных.

Управление иерархическими данными

У иерархической модели данных существует два средства управления данными: языковые средства описания данных (ЯОД) и языковые средства манипулирования данными (ЯМД). Физическая структура иерархической базы данных описывает: логическую структуру иерархической модели данных и саму структуру хранения базы данных.

При этом способ доступа устанавливает способ организации взаимосвязи физических записей. Определены следующие способы доступа:

· иерархически последовательный;

· иерархически индексно-последовательный;

· иерархически прямой;

· иерархически индексно-прямой;

· индексный.

Помимо того, что обязательно должно быть задано имя иерархической базы данных и способа доступа к каждому элементу иерархической модели данных, описание иерархической БД должно содержать определение типов каждого сегмента данных, входящих в базу данных, в соответствие с выстроенной иерархией. Описание типов сегмента следует начинать с корня иерархической модели. Особенностью иерархических баз данных является то, что каждая физическая база данных может содержать только один корень, но в одной иерархической системе может находиться несколько физических баз данных.

Среди операторов манипулирования данными для иерархической базы данных можно выделить операторы поиска данных, операторы поиска данных с возможностью модификации, операторы модификации данных. Набор операций манипулирования данными в иерархической модели данных не так уж обширен, но этого набора вполне достаточно для управления и поддержания иерархических баз данных. Примеры типичных операторов поиска данных:

· найти указанное дерево БД;

· перейти от одного дерева к другому;

· найти экземпляр сегмента, удовлетворяющий условию поиска;

· перейти от одного сегмента к другому внутри дерева;

· перейти от одного сегмента к другому в порядке обхода иерархии.

Примеры типичных операторов поиска данных с возможностью модификации:

· найти и удержать для дальнейшей модификации единственный экземпляр сегмента, удовлетворяющий условию поиска;

· найти и удержать для дальнейшей модификации следующий экземпляр сегмента с теми же условиями поиска;

· найти и удержать для дальнейшей модификации следующий экземпляр для того же родителя.

Примеры типичных операторов модификации иерархически организованных данных, которые выполняются после выполнения одного из операторов второй группы (поиска данных с возможностью модификации):

· вставить новый экземпляр сегмента в указанную позицию;

· обновить текущий экземпляр сегмента;

· удалить текущий экземпляр сегмента.

В иерархической модели автоматически поддерживается целостность ссылок между предками и потомками. Основное правило: никакой потомок не может существовать без своего родителя. Надеюсь, что я достаточно просто и понятно описал структуру иерархической базы данных, так как перехожу к последнему заданию.

3. Информационные технологии в управлении качеством и защита информации

а) Виды программного обеспечения

Программное обеспечение (ПО) - комплекс программ обеспечивающих обработку или передачу данных предназначенных для многократного использования и применения разными пользователями.

Программное обеспечение - совокупность программ системы обработки информации и программных документов, необходимых для их эксплуатации.

Под программным обеспечением (Software) понимается совокупность программ, выполняемых вычислительной системой.

Программа - это упорядоченные последовательности команд.

Конечная цель любой компьютерной программы - управление аппаратными средствами. Даже если на первый взгляд программа никак не взаимодействует с оборудованием, не требует никакого ввода данных с устройств ввода и нее осуществляет вывод данных на устройство вывода все равно ее работа основана на управлении аппаратными устройствами компьютера.

Программное и аппаратное обеспечение в компьютере работают в неразрывной связи и в непрерывном взаимодействии.

Состав программного обеспечения вычислительной системы называют программной конфигурацией.

Между программами, как и между физическими узлами и блоками существует взаимосвязь - многие программы работают, опираясь на другие программы более низкого уровня, т.е. мы можем говорить о межпрограммном интерфейсе. Возможность существования такого интерфейса тоже основана на существовании технических условий и протоколов взаимодействия, а на практике он обеспечивает распределение ПО на несколько взаимодействующих между собой уровней.

Уровни ПО представляют собой пирамидальную конструкцию. Каждый следующий уровень опирается на ПО предшествующих уровней. Такое членение удобно для всех этапов работы с вычислительной системой, начиная с установления программ до практической эксплуатации и технического обслуживания. Каждый вышележащий уровень повышает функциональность всей системы. Так, например, вычислительная система с ПО базового уровня не способна выполнять большинство функций, но позволяет установить системное ПО.

Базовый уровень - самый низкий уровень ПО представляет базовое ПО. Оно отвечает за взаимодействие с базовыми аппаратными средствами. Как правило, базовые программные средства непосредственно входят в состав базового оборудования и хранятся в специальных микросхемах, называемых постоянными запоминающими устройствами (ПЗУ - Read Only Memory - ROM). Программы и данные записываются («прошиваются») в микросхемах ПЗУ на этапе производства и не могут быть изменены в процессе эксплуатации.

В тех случаях, когда изменение базовых программных средств во время эксплуатации является технически целесообразным, вместо микросхем ПЗУ применяют перепрограммируемые ПЗУ (ППЗУ - Erasable and Programmable Read Only Memory, EPROM). В этом случае изменение содержания ПЗУ можно выполнять как непосредственно в составе вычислительной системы (такая технология называется флэш-технологией) так и вне ее, на специальных устройствах, называемых программаторами.

Системный уровень - переходный. Программы, работающие на этом уровне, обеспечивают взаимодействие прочих программ компьютерной системы с программами базового уровня и непосредственно с аппаратным обеспечением, то есть выполняют «посреднические» функции.

Системные программы - программы общего пользования, выполняемая вместе с прикладными программами и служащая для управления ресурсами компьютера: центральным процессором, памятью, вводом-выводом.

Системные программы - это программы предназначенные:

· для поддержания работоспособности системы обработки информации;

· для повышения эффективности ее использования.

Различают программы:

ь системные управляющие;

ь системные обслуживающие.

Системные программы - это программы общего пользования, которые предназначены для всех пользователей компьютера. Системное программное обеспечение разрабатывается так, чтобы компьютер мог эффективно выполнять прикладные программы.

Среди десятков тысяч системных программ особое место занимают операционные системы, которые обеспечивают управление ресурсами компьютера с целью их эффективного использования.

Ш важными классами системных программ являются также программы вспомогательного назначения - утилиты (лат. utilitas - польза). Они либо расширяют и дополняют соответствующие возможности операционной системы, либо решают самостоятельные важные задачи. Некоторые разновидности утилит: программы контроля, тестирования и диагностики, которые используются для проверки правильности функционирования устройств компьютера и для обнаружения неисправностей в процессе эксплуатации; указывают причину и место неисправности;

Ш программы-драйверы, которые расширяют возможности операционной системы по управлению устройствами ввода-вывода, оперативной памятью и т.д.; с помощью драйверов возможно подключение к компьютеру новых устройств или нестандартное использование имеющихся;

Ш программы-упаковщики (архиваторы), которые позволяют записывать информацию на дисках более плотно, а также объединять копии нескольких файлов в один архивный файл;

Ш антивирусные программы, предназначенные для предотвращения заражения компьютерными вирусами и ликвидации последствий заражения вирусами;

Ш программы оптимизации и контроля качества дискового пространства;

Ш программы восстановления информации, форматирования, защиты данных;

Ш коммуникационные программы, организующие обмен информацией между компьютерами;

Ш программы для управления памятью, обеспечивающие более гибкое использование оперативной памяти;

Ш программы для записи CD-ROM, CD-R и многие другие.

Часть утилит входит в состав операционной системы, а другая часть функционирует независимо от нее, т.е. автономно.

От программного обеспечения этого уровня во многом зависят эксплуатационные показатели всех вычислительной системы в целом. Так, например, при подключении к вычислительной системе нового оборудования на системном уровне должна быть установлена программа, обеспечивающая для других программ взаимосвязь с этим оборудованием. Конкретные программы, отвечающие за взаимодействие с конкретными устройствами, называются драйверами устройств - они входят в состав программного обеспечения системного уровня.

Другой класс программ системного уровня отвечает за взаимодействие с пользователем. Именно благодаря им он получает возможность вводить данные в вычислительную систему, управлять ее работой и получать результат в удобной для себя форме. Эти программные средства называют средствами обеспечения пользовательского интерфейса. От них напрямую зависит удобство работы с компьютером и производительность труда на рабочем месте.

Совокупность программного обеспечения системного уровня образует ядро операционной системы компьютера. Если компьютер оснащен программным обеспечением системного уровня, то он уже подготовлен к установке программ более высоких уровней, к взаимодействию программных средств с оборудованием и, самое главное, к взаимодействию с пользователем. То есть наличие ядра операционной системы - непременное условие для возможности практической работы человека с вычислительной системой.

Служебный уровень. Программное обеспечение этого уровня взаимодействует как с программами базового уровня, так и с программами системного уровня. Основное назначение служебных программ (их также называют утилитами) состоит в автоматизации работ по проверке, наладке и настройке компьютерной системы. Во многих случаях они используются для расширения или улучшения функций системных программ. Некоторые служебные программы (как правило, это программы обслуживания) изначально включают в состав операционной системы, но большинство служебных программ являются для операционной системы внешними и служат для расширения ее функций.

В разработке и эксплуатации служебных программ существует два альтернативных направления: интеграция с операционной системой и автономное функционирование. В первом случае служебные программы могут изменять потребительские свойства системных программ, делая их более удобными для практической работы. Во втором случае они слабо связаны с системным программным обеспечением, но предоставляют пользователю больше возможностей для персональной настройки их взаимодействия с аппаратным и программным обеспечением.

Прикладной уровень. Программное обеспечение прикладного уровня представляет собой комплекс прикладных программ, с помощью которых на данном рабочем месте выполняются конкретные задания. Спектр этих заданий необычайно широк - от производственных до творческих и развлекательно-обучающих. Огромный функциональный диапазон возможных приложений средств вычислительной техники обусловлен наличием прикладных программ для разных видов деятельности.

Поскольку между прикладным ПО и системным существует непосредственная взаимосвязь (первое опирается на второе), то можно утверждать, что универсальность вычислительной системы, доступность прикладного программного обеспечения и широта функциональных возможностей компьютера напрямую зависят от типа используемой операционной системы, от того, какие системные средства содержит ее ядро, как она обеспечивает взаимодействие триединого комплекса человек - программа - оборудование.

Программы, с помощью которых пользователь непосредственно решает свои информационные задачи, не прибегая к программированию, называется прикладными программами.

Очевидно, что системы программирования нужны далеко не всем, тогда как системное и прикладное ПО незаменимо и необходимо любому пользователю.

Прикладные программы делятся на программы общего и специального назначения.

Программы общего назначения: текстовые и графические редакторы; системы управления базами данных; табличные процессоры; коммуникационные (сетевые) программы; компьютерные игры.

Программы специального назначения: бухгалтерские пакеты; системы автоматизированного проектирования; экспертные системы; программы для проведения сложных математических расчетов; программы для профессиональной деятельности и др.

К программному обеспечению (ПО) относится также вся область деятельности по проектированию и разработке ПО:

ь технология проектирования программ (например, нисходящее проектирование, структурное и объектно-ориентированное проектирование и др.);

ь методы тестирования программ; методы доказательства правильности программ;

ь анализ качества работы программ;

ь документирование программ;

ь разработка и использование программных средств, облегчающих процесс проектирования программного обеспечения, и многое другое.

Программное обеспечение - неотъемлемая часть компьютерной системы. Оно является логическим продолжением технических средств. Сфера применения конкретного компьютера определяется созданным для него ПО. Сам по себе компьютер не обладает знаниями ни в одной области применения. Все эти знания сосредоточены в выполняемых на компьютерах программах.

б) Классификация программного обеспечения

Программное обеспечение современного компьютера очень разнообразно в соответствии с многообразием задач, решаемых пользователями с его помощью, и множеством операций, выполняемых устройствами компьютера. Все программные модули взаимосвязаны через управляющие (системные) программы. Часть модулей работает во взаимодействии с пользователем, часть - автоматически. Каждая из программ выполняет свою функцию, а все вместе они обеспечивают автоматизированное выполнение информационных процессов при решении задач пользователей. Таким образом, программное обеспечение компьютера - это автоматизированная информационная система, достаточно большая и сложная.

Современные программы состоят, как правило, из большого числа модулей, а потому вместо термина "программа" чаще используются термины "программное средство" и "пакеты программ".

Можно выделить следующие виды программных средств: прежде всего, это программы, необходимые для управления работой самого компьютера как сложной системы. Пользователь, как правило, может даже не знать, что это за программы, сколько их, что они делают. Но большинство команд пользователя выполняется именно с их помощью. В совокупности они называются системным ПО. К нему традиционно относят :

ь программы начальной загрузки компьютера. Они хранятся в ПЗУ (постоянном запоминающем устройстве) и обеспечивают проверку работоспособности основных устройств компьютера после его включения и передачу управления операционной системе. Часто называются базовым ПО;

ь операционные системы (ОС), необходимые для управления согласованной работой всех устройств и программ компьютера, выполнения команд пользователя;

ь файловая система;

ь операционные оболочки, предназначенные для обеспечения удобного для пользователя способа работы с файлами и запуска прикладных программ;

ь драйверы устройств, обеспечивающие программную поддержку работы конкретных устройств (в последнее время входят в состав операционной системы).

Другой класс программного обеспечения - прикладное ПО. Оно предназначено для решения пользователем задач из самых различных предметных областей - математики, лингвистики, делопроизводства, управления и т.д. Существуют самые разные классификации прикладного ПО. В прикладном ПО можно выделить следующие группы программных средств (ПС):

v ПС для обработки текстов - текстовые редакторы, текстовые процессоры, редакционно-издательские системы, программы-переводчики, программы проверки орфографии и синтаксиса, лингвокорректоры и т.п.;

v ПС для обработки числовой информации - электронные таблицы, пакеты математических программ, пакеты для статистической обработки данных и др.;

v ПС для обработки графической информации - графические редакторы, аниматоры, программы деловой и презентационной графики, средства работы с трехмерными и видеоизображениями и др.;

v ПС для обработки звуковой информации - музыкальные и звуковые редакторы, синтезаторы звука, программы распознавания и синтеза речи и пр.;

v ПС, обеспечивающие работу в телекоммуникационных сетях - почтовые программы, поисковые системы, броузеры и пр.;

v ПС, обеспечивающие автоматизированное хранение информации - системы управления базами данных (СУБД), построенные с их помощью базы и банки данных (БД и БнД), специализированные информационно-поисковые системы (ИПС) и др.;

v ПС, используемые в процессах управления и диагностики - различные типы автоматизированных систем управления (АСУ) и систем автоматизированного управления (САУ), системы поддержки принятия решений (СППР), экспертные системы (ЭС) и пр.;

v ПС, применяемые для проведения исследовательских и проектно-конструкторских работ - специализированные моделирующие программы, системы автоматизированного проектирования (САПР) и пр.;

v ПС, используемые в обучении - электронные учебники, тренажеры, тесты и пр.;

v игровые программы;

v программы, созданные пользователем с помощью сред программирования.

Еще один класс программного обеспечения - специальное ПО. Основное его отличие от системного ПО в том, что пользователь сам решает, будет ли он использовать эти ПС или нет, а отличие от прикладного ПО состоит в том, что специальные ПС используются не для решения задач из других предметных областей, а для задач, связанных с использованием непосредственно компьютера.

Например, когда пользователь активно работает за компьютером, то ему часто приходится сохранять на винчестере нужные файлы и удалять те, которые больше не потребуются. При удалении файла место, которое он занимал, освобождается. На это место в дальнейшем может быть записан другой файл, но его размер может быть меньше. В результате многократного удаления/записи файлов на диске появляется много небольших "пустых" мест. Их размер не позволяет записать на них новые файлы целиком, и если свободного места на диске немного, то файлы большого размера разбиваются на отдельные фрагменты и записываются по частям. В этом случае говорят, что информация записана фрагментарно (не непрерывно). Обращение к таким файлам требует гораздо большего времени и, чтобы избежать этого, пользователь может провести дефрагментацию диска, т.е. выполнить программу, которая перепишет, если это возможно, файлы один за другим, собрав тем самым все свободные участки в одну область.

В специальном ПО можно выделить инструментальное ПО и сервисное ПО.

Инструментальное ПО - это всевозможные среды программирования, с помощью которых создается все многообразие программных средств.

К сервисному ПО относятся:

· антивирусные программы;

· программы-архиваторы;

· утилиты, расширяющие возможности ОС по управлению аппаратными и программными средствами (восстановление ошибочно удаленных файлов, дефрагментация диска, попытка восстановления "испорченных" секторов диска, очистка системных регистров и т.п.)

Программное обеспечение компьютера постоянно совершенствуется. Появляются новые программы, позволяющие расширить круг решаемых задач. Существующие программы модифицируются: устраняются замеченные ошибки, добавляются новые функции, пользовательский интерфейс (способ взаимодействия пользователя с программой) делается более удобным. Для сложных программ составляются инструкции, пишутся обучающие версии, демонстрирующие приемы и правила работы и т.д.

Все эти процессы называют сопровождением программ.

Одной из важных подсистем программного обеспечения является файловая система. В виде файлов хранятся и сами программы, и данные к ним, и результаты их работы.

Файл - это поименованная целостная совокупность записей на внешнем носителе. Иными словами, файл - это совокупность записей, логически взаимосвязанных между собой, хранящихся на внешнем носителе под определенным именем.

То, что файл - целостная совокупность записей, означает, что, например, нельзя скопировать или удалить только половинку файла. В определении подчеркивается, что файлы хранятся лишь на внешних носителях. Это, в частности означает, что по отношению к оперативной памяти нельзя сказать, что информация в ней хранится в виде файлов.

То есть файловая система - это способ хранения информации на внешних носителях.

Имя файла состоит из двух частей - собственно имени и расширения, определяющего чаще всего тип записей, составляющих содержимое файла.

Кроме имени файла атрибутами файла являются тип его содержимого, дата и время создания, фамилия создателя, размер, условия предоставления разрешений на его использование, метод доступа, полный путь к файлу.

Файлы объединяются в каталоги, каждый из которых тоже имеет свое имя. Не может быть в одном каталоге двух файлов с одинаковым именем.

Последовательное перечисление имен всех подкаталогов, в которых размещен файл, называется полный путь к файлу.

Список литературы

1. Сети ЭВМ

http://myadministrator.ru/vsyo-o-kabelnyh-kanalah-svyazi.html

2.Иерархическая модель

http://zametkinapolyah.ru/zametki-o-mysql/ierarxicheskaya-baza-dannyx-ierarxicheskaya-model-dannyx.html

3. Классификация информационных технологий

1. Акулов О.А. Информатика: учебник / О.А. Акулов, Н.В. Медведев. - М.: Омега-П, 2007.

2. Макарова Н.В. Информатика: практикум по технологии работы на компьютере / Н.В. Макарова, С.Н. Рамин. - М.: Академия, 2007.

3. Вьюхин В.В. Информатика и вычислительная техника: учеб. пособие для инженерных специальностей / В.В. Вьюхин; под ред. В.Н. Ларионова. - М.: Дрофа, 2002.

4. Гейн А.Г. Основы информатики и вычислительной техники / А.Г. Гейн. - М.: Просвещение, 2002.

5. Информатика: практикум по технологии работы на компьютере / под ред. Н.В. Макаровой. - 2-е изд. - М.: Финансы и статистика, 2006.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие базы данных, ее архитектура. Классификация баз данных. Основные модели данных. Примеры структурированных и неструктурированных данных. Достоинства и недостатки архитектуры файл-сервер. Иерархическая модель данных. Виды индексов, нормализация.

    презентация [1,4 M], добавлен 06.08.2014

  • Формы представляемой информации. Основные типы используемой модели данных. Уровни информационных процессов. Поиск информации и поиск данных. Сетевое хранилище данных. Проблемы разработки и сопровождения хранилищ данных. Технологии обработки данных.

    лекция [15,5 K], добавлен 19.08.2013

  • Порядок проектирования и разработки базы данных и программного обеспечения. Информация о структуре базы данных, созданных таблицах, формах, отчетах, запросах, хранимой информации. Логическая и концептуальная модели данных; выбор программного обеспечения.

    курсовая работа [906,6 K], добавлен 20.01.2010

  • Разработка и реализация базы данных для библиотеки, обеспечение хранения, накопления и предоставления информации о деятельности библиотеки. Компьютерное обеспечение информационных процессов, проектирование структуры входящей информации и выходных данных.

    курсовая работа [2,5 M], добавлен 17.09.2011

  • Анализ проектирования баз данных на примере построения программы ведения информационной системы картотеки ГИБДД. Основные функции базы данных. Обоснование выбора технологий проектирования и реализации базы данных. Описание информационного обеспечения.

    курсовая работа [753,0 K], добавлен 27.08.2012

  • Исследование значения информации и информационных услуг в современном мире. Изучение истории хранения и обработки информации. Проектирование инфологической модели базы данных. Реляционная модель баз данных. Домены и отношения. Реляционное исчисление.

    курсовая работа [47,9 K], добавлен 13.07.2015

  • Деятельность отдела информационных технологий. Сопровождение аппаратных средств, баз данных и локальной вычислительной сети. Обслуживание телекоммуникаций и защита информации. Разработка программного средства, работающего с базой данных Oracle.

    курсовая работа [405,1 K], добавлен 16.09.2012

  • Рассмотрение проблемы обеспечения санкционированности использования информации в базах данных (защита данных от нежелательной модификации, уничтожения, заражения программами-вирусами) и юридического регулирования безопасности на примере СУБД Ms SQL.

    курсовая работа [50,4 K], добавлен 30.03.2010

  • Методика использования информационных образовательных технологий. Логическая структура базы данных (БД) и информационно-поисковые функции. Программная реализация БД, представлений таблиц и информационно-поисковых функций. Состав программного обеспечения.

    курсовая работа [2,1 M], добавлен 16.05.2013

  • Системы автоматизированной обработки информации. Хранение большого объема информации. Понятие базы данных (БД). Обеспечение секретности данных. Уровни представления данных в БД. Логическая структура данных. Ограничения, накладываемые на данные.

    реферат [65,2 K], добавлен 26.11.2011

  • Виды и функции системы управления базами данных Microsoft Access. Иерархическая, сетевая, реляционная модель описания баз данных. Основные понятия таблицы базы данных. Особенности создания объектов базы данных, основные формы. Доступ к Internet в Access.

    контрольная работа [19,8 K], добавлен 08.01.2011

  • Создание базы данных и ее системы управления. Динамическая информационная структура, двунаправленный список. Создание файла, содержащего сведения об абонентах телефонной сети. Вывод информации в файл для печати. Обработка информации в базе данных.

    курсовая работа [1,7 M], добавлен 18.03.2013

  • Основные виды баз данных. Система управления базами данных. Анализ деятельности и информации, обрабатываемой в поликлинике. Состав таблиц в базе данных и их взаимосвязи. Методика наполнения базы данных информацией. Алгоритм создания базы данных.

    курсовая работа [3,1 M], добавлен 17.12.2014

  • Свойства информации. Информационные продукты и услуги: базы данных, программное обеспечение, образовательные услуги, консультирование. Развитие и внедрение технической базы компьютеров, обеспечивающих оперативное получение результатов переработки данных.

    презентация [148,6 K], добавлен 24.03.2014

  • Теоретическая часть по основным положениям MS ACCESS: базы данных и системы управления, свойства полей, типы данных. Разработка прикладного программного обеспечения ООО "Киновидеопрокат". Рекомендации и мероприятия по улучшению базы данных предприятия.

    курсовая работа [1,9 M], добавлен 13.05.2013

  • Проектирование реляционной базы данных с помощью прикладного программного средства MS ACCESS. Описания особенностей использования запросов для извлечения, изменения и удаления информации из базы данных. Характеристика структуры интерфейса пользователя.

    курсовая работа [1,6 M], добавлен 19.11.2012

  • Проведение системного анализа предметной области и разработка проекта по созданию базы данных для хранения информации о перевозках пассажиров и грузов. Обоснование выбора системы управления базой данных и разработка прикладного программного обеспечения.

    курсовая работа [1,1 M], добавлен 18.07.2014

  • Виды запросов в информационной системе. Модель выдачи информации по каждому из сотрудников. Сбор данных о поставках корма, животных, потомстве и совместимости видов. Основные параметры структуры таблиц и схем данных. Создание запросов, отчетов и форм.

    курсовая работа [1,1 M], добавлен 15.05.2014

  • Состав и способы создания информационного обеспечения. Организация внутримашинного информационного обеспечения. Организация данных во внутримашинной сфере. Подразделение информационного обеспечения на внемашинное и внутримашинное. Компоненты базы данных.

    контрольная работа [190,0 K], добавлен 24.04.2009

  • Базы данных и системы управления ими. Свойства полей баз данных, их типы и безопасность. Программное обеспечение системы управления базами данных, современные технологии в данной области. Принципы организации данных, лежащие в основе управления.

    курсовая работа [24,6 K], добавлен 11.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.