Реляционные базы данных
Необходимость соответствия таблиц реляционной базы данных требованиям нормализации отношений. Особенности и основные операции, осуществляемые при помощи реляционных баз данных. Сложности, проблемы проектирования и перспективы развития реляционных БД.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 26.12.2014 |
Размер файла | 49,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Реляционные базы данных
Недостатки иерархической и сетевой моделей привели к появлению новой, реляционной модели данных, созданной Коддом в 1970 году и вызвавшей всеобщий интерес. Реляционная модель была попыткой упростить структуру базы данных. В ней отсутствовали явные указатели на предков и потомков, а все данные были представлены в виде простых таблиц, разбитых на строки и столбцы.
К сожалению, практическое определение понятия "реляционная база данных" оказалось гораздо более расплывчатым, чем точное математическое определение, данное этому термину Коддом в 1970 году. В первых реляционных СУБД не были реализованы некоторые из ключевых частей модели Кодда, и этот пробел был восполнен только впоследствии. По мере роста популярности реляционной концепции реляционными стали называться многие базы данных, которые на деле таковыми не являлись.
В ответ на неправильное использование термина "реляционный" Кодд в 1985 году написал статью, где сформулировал 12 правил, которым должна удовлетворять любая база данных, претендующая на звание реляционной. С тех пор двенадцать правил Кодда считаются определением реляционной СУБД. Однако можно сформулировать и более простое определение:
Реляционной называется база данных, в которой все данные, доступные пользователю, организованны в виде таблиц, а все операции над данными сводятся к операциям над этими таблицами.
Приведенное определение не оставляет места встроенным указателям, имеющимся в иерархических и сетевых СУБД. Несмотря на это, реляционная СУБД также способна реализовать отношения предок/потомок, однако эти отношения представлены исключительно значениями данных, содержащихся в таблицах.
SQL является языком реляционных баз данных, поэтому он стал популярным тогда, когда популярной стала реляционная модель представления данных. Табличная структура реляционной базы данных интуитивно понятна пользователям, поэтому язык SQL является простым и легким для изучения. Реляционная модель имеет солидный теоретический фундамент, на котором были основаны эволюция и реализация реляционных баз данных. На волне популярности, вызванной успехом реляционной модели, SQL стал единственным языком для реляционных баз данных.
Реляционная база данных -- это совокупность взаимосвязанных таблиц, каждая из которых содержит информацию об объектах определенного типа. Строка таблицы содержит данные об одном объекте (например, товаре, клиенте), а столбцы таблицы описывают различные характеристики этих объектов -- атрибутов (например, наименование, код товара, сведения о клиенте). Записи, т. е. строки таблицы, имеют одинаковую структуру -- они состоят из полей, хранящих атрибуты объекта. Каждое поле, т. е. столбец, описывает только одну характеристику объекта и имеет строго определенный тип данных. Все записи имеют одни и те же поля, только в них отображаются различные информационные свойства объекта.
В реляционной базе данных каждая таблица должна иметь первичный ключ -- поле или комбинацию полей, которые единственным образом идентифицируют каждую строку таблицы. Если ключ состоит из нескольких полей, он называется составным. Ключ должен быть уникальным и однозначно определять запись. По значению ключа можно отыскать единственную запись. Ключи служат также для упорядочивания информации в БД.
Таблицы реляционной БД должны отвечать требованиям нормализации отношений. Нормализация отношений -- это формальный аппарат ограничений на формирование таблиц, который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение базы данных.
Реляционные базы данных позволяют хранить информацию в нескольких «плоских» (двухмерных) таблицах, связанных между собой посредством совместно используемых полей данных, называемых ключами. Реляционные базы данных предоставляют более простой доступ к оперативно составляемым отчетам (обычно через SQL) и обеспечивают повышенную надежность и целостность данных благодаря отсутствию избыточной информации.
В реляционных базах данных данные собраны в таблицы, которые в свою очередь состоят из столбцов и строк, на пересечении которых расположены ячейки. Запросы к таким базам данных возвращает таблицу, которая повторно может участвовать в следующем запросе. Данные в одних таблицах, как правило, связаны с данными других таблиц, откуда и произошло название "реляционные".
Кратко особенности реляционной базы данных можно описать следующим образом:
· Данные хранятся в таблицах, состоящих из столбцов и строк;
· На пересечении каждого столбца и строчки стоит в точности одно значение;
· У каждого столбца есть своё имя, которое служит его названием, и все значения в одном столбце имеют один тип. Например, в столбце id_forum все значения имеют целочисленный тип, а в строке name - текстовый;
· Столбцы располагаются в определённом порядке, который определяется при создании таблицы, в отличие от строк, которые располагаются в произвольном порядке. В таблице может не быть не одной строчки, но обязательно должен быть хотя бы один столбец;
Запросы к базе данных возвращают результат в виде таблиц, которые тоже могут выступать как объект запросов.
Над реляционными таблицами возможны следующие операции:
· Объединение таблиц с одинаковой структурой. Результат-- общая таблица: сначала первая, затем вторая (конкатенация).
· Пересечение таблиц с одинаковой структурой. Результат -- выбираются те записи, которые находятся в обеих таблицах.
· Вычитание таблиц с одинаковой структурой. Результат -- выбираются те записи, которых нет в вычитаемом.
· Выборка (горизонтальное подмножество). Результат -- выбираются записи, отвечающие определенным условиям.
· Проекция (вертикальное подмножество). Результат -- отношение, содержащее часть полей из исходных таблиц.
· Декартово произведение двух таблиц Записи результирующей таблицы получаются путем объединения каждой записи первой таблицы с каждой записью другой таблицы.
Реляционные таблицы могут быть связаны друг с другом, следовательно, данные могут извлекаться одновременно из нескольких таблиц. Таблицы связываются между собой для того, чтобы в конечном счете уменьшить объем БД. Связь каждой пары таблиц обеспечивается при наличии в них одинаковых столбцов.
Этапы проектирования реляционной базы данных
Основная причина сложности проектирования базы данных заключается в том, что объекты реального мира и взаимосвязи между ними вовсе не обязаны иметь и, как правило, не имеют структуры, согласованной с реляционной моделью данных. Разработчик при проектировании должен придумать представление для реальных объектов и их связей в терминах таблиц, полей, атрибутов, записей и т. п., то есть в терминах абстракций реляционной модели данных. Поэтому в данном контексте термин «проектирование» можно понимать и как процесс, результатом которого является проект, и как процесс, результатом которого является проекция.
Разработка эффективной базы данных состоит из нескольких этапов. Процесс разработки БД начинается с анализа требований. Проектировщик на этом этапе разработки должен найти ответы на следующие вопросы: какие элементы данных должны храниться, кто и как будет к ним обращаться.
На втором этапе создается логическая структура БД. Для этого определяют, как данные будут сгруппированы логически. Структура БД на этом этапе выражается в терминах прикладных объектов и отношений между ними.
На заключительном (третьем) этапе логическая структура БД преобразуется в физическую с учетом аспектов производительности. Элементы данных на этом этапе получают атрибуты и определяются как столбцы в таблицах выбранной для реализации БД СУБД.
Рассмотрим применение концепции реляционных баз данных на практике. Представим себе деятельность туристической фирмы. Очевидно, что для ее работы необходимо хранить и отслеживать определенный набор информации о клиентах данной турфирмы (туристах), о предлагаемых им турах, об оформлении и оплате путевок. Это можно делать в обычной бумажной тетради, но со временем поиск нужных записей и финансовая отчетность будут представлять собой довольно рутинную, длительную работу.
Проблемы реляционных БД
Хотя реляционные хранилища и обеспечивают наилучшую смесь простоты, устойчивости, гибкости, производительности, масштабируемости и совместимости, их показатели по каждому из этих пунктов не обязательно выше, чем у аналогичных систем, ориентированных на какую-то одну особенность. Это не являлось большой проблемой, поскольку всеобщее доминирование реляционных СУБД перевешивало какие-либо недочеты. Тем не менее, если обычные РБД не отвечали потребностям, всегда существовали альтернативы.
Сегодня ситуация немного другая. Разнообразие приложений растет, а с ним растет и важность перечисленных особенностей. И с ростом количества баз данных, одна особенность начинает затмевать все другие. Это масштабируемость. Поскольку все больше приложений работают в условиях высокой нагрузки, например, таких как веб-сервисы, их требования к масштабируемости могут очень быстро меняться и сильно расти. Первую проблему может быть очень сложно разрешить, если у вас есть реляционная БД, расположенная на собственном сервере. Предположим, нагрузка на сервер за ночь увеличилась втрое. Как быстро вы сможете проапгрейдить железо? Решение второй проблемы также вызывает трудности в случае использования реляционных БД.
Реляционные БД хорошо масштабируются только в том случае, если располагаются на единственном сервере. Когда ресурсы этого сервера закончатся, вам необходимо будет добавить больше машин и распределить нагрузку между ними. И вот тут сложность реляционных БД начинает играть против масштабируемости. Если вы попробуете увеличить количество серверов не до нескольких штук, а до сотни или тысячи, сложность возрастет на порядок, и характеристики, которые делают реляционные БД такими привлекательными, стремительно снижают к нулю шансы использовать их в качестве платформы для больших распределенных систем.
Чтобы оставаться конкурентоспособными, вендорам облачных сервисов приходится как-то бороться с этим ограничением, потому что какая ж это облачная платформа без масштабируемого хранилища данных. Поэтому у вендоров остается только один вариант, если они хотят предоставлять пользователям масштабируемое место для хранения данных. Нужно применять другие типы баз данных, которые обладают более высокой способностью к масштабированию, пусть и ценой других возможностей, доступных в реляционных БД.
Эти преимущества, а также существующий спрос на них, привел к волне новых систем управления базами данных.
Перспективы развития БД и СУБД
реляционный база данные таблица
Современные базы данных являются основой многочисленных информационных систем. Информация, накопленная в них, является чрезвычайно ценным материалом, и в настоящий момент широко распространяются методы обработки баз данных с точки зрения извлечения из них дополнительных знаний, методов, которые связаны с обобщением и различными дополнительными способами обработки данных. Базы данных в данной концепции выступают как хранилища информации, это направление называется «Хранилища данных» (Data Warehouse).
Для работы с «Хранилищами данных» наиболее значимым становится так называемый интеллектуальный анализ данных (ИАД), или data mining, -- это процесс выявления значимых корреляций, образцов и тенденций в больших объемах данных. Учитывая высокие темпы роста объемов накопленной в современных хранилищах данных информации, невозможно недооценить роль ИАД. По мнению специалистов Gartner Group, уже в 1998 г. ИАД вошел в десятку важнейших информационных технологий. В последние годы началось активное внедрение технологии ИАД. Ее активно используют как крупные корпорации, так и более мелкие фирмы, которые серьезно относятся к вопросам анализа и прогнозирования своей деятельности. Естественно, на рынке программных продуктов стали появляться соответствующие инструментальные средства.
Особенно широко методы ИАД применяются в бизнес-приложениях аналитиками и руководителями компаний. Для этих категорий пользователей разрабатываются инструментальные средства высокого уровня, позволяющие решать достаточно сложные практические задачи без специальной математической подготовки. Актуальность использования ИАД в бизнесе связана с жесткой конкуренцией, возникшей вследствие перехода от «рынка продавца» к «рынку покупателя». В этих условиях особенно важно качество и обоснованность принимаемых решений, что требует строгого количественного анализа имеющихся данных. При работе с большими объемами накапливаемой информации необходимо постоянно оперативно отслеживать динамику рынка, а это практически невозможно без автоматизации аналитической деятельности.
В бизнес-приложениях наибольший интерес представляет интеграция методов интеллектуального анализа данных с технологией оперативной аналитической обработки данных (On-Line Analytical Processing, OLAP). OLAP использует многомерное представление агрегированных данных для быстрого доступа к важной информации и дальнейшего ее анализа.
Системы OLAP обеспечивают аналитикам и руководителям быстрый последовательный интерактивный доступ к внутренней структуре данных и возможность преобразования исходных данных с тем, чтобы они позволяли отразить структуру системы нужным для пользователя способом. Кроме того, OLAP-сис-темы позволяют просматривать данные и выявлять имеющиеся в них закономерности либо визуально, либо простейшими методами (такими как линейная регрессия), а включение в их арсенал нейросетевых методов обеспечивает существенное расширение аналитических возможностей.
В основе концепции оперативной аналитической обработки (OLAP) лежит многомерное представление данных. Термин OLAP ввел Кодд (Е. F. Codd) в 1993 году. В своей статье он рассмотрел недостатки реляционной модели, в первую очередь невозможность «объединять, просматривать и анализировать данные с точки зрения множественности измерений, то есть самым понятным для корпоративных аналитиков способом», и определил общие требования к системам OLAP, расширяющим функциональность реляционных СУБД и включающим многомерный анализ как одну из своих характеристик.
Следует заметить, что Кодд обозначает термином OLAP многомерный способ представления данных исключительно на концептуальном уровне. Используемые им термины -- «Многомерное концептуальное представление» («Multidimensional conceptual view»), «Множественные измерения данных» («Multiple data dimensions»), «Сервер OLAP» («OLAP server») -- не определяют физического механизма хранения данных (термины «многомерная база данных» и «многомерная СУБД» не встречаются ни разу).
Часто в публикациях аббревиатурой OLAP обозначается не только многомерный взгляд на данные, но и хранение самих данных в многомерной БД, что в принципе неверно.
По Кодду, многомерное концептуальное представление (multi-dimensional conceptual view) является наиболее естественным взглядом управляющего персонала на объект управления. Оно представляет собой множественную перспективу, состоящую из нескольких независимых измерений, вдоль которых могут быть проанализированы определенные совокупности данных. Одновременный анализ по нескольким измерениям данных определяется как многомерный анализ. Каждое измерение включает направления консолидации данных, состоящие из серии последовательных уровней обобщения, где каждый вышестоящий уровень соответствует большей степени агрегации данных по соответствующему измерению. Так, измерение Исполнитель может определяться направлением консолидации, состоящим из уровней обобщения «предприятие--подразделение--отдел-служащий». Измерение Время может даже включать два направления консолидации -- «год--квартал--месяц--день» и «неделя--день», поскольку счет времени по месяцам и по неделям несовместим. В этом случае становится возможным произвольный выбор желаемого уровня детализации информации по каждому из измерений. Операция спуска (drilling down) соответствует движению от высших ступеней консолидации к низшим; напротив, операция подъема (rolling up) означает движение от низших уровней к высшим.
Следующим новым направлением в развитии систем управления базами данных является направление, связанное с отказом от нормализации отношений. Во многом нормализация отношений нарушает естественные иерархические связи между объектами, которые достаточно распространены в нашем мире. Возможность сохранять их на концептуальном (но не па физическом) уровне позволяет пользователям более естественно отражать семантику предметной области. В настоящий момент уже существует теоретическое обоснование работы с ненормализованными отношениями и практические реализации подобных систем.
Дальнейшим расширением в структурных преобразованиях являются объектно-ориентированные базы данных. В объектно-ориентированной парадигме предметная область моделируется как множество классов взаимодействующих объектов. Каждый объект характеризуется набором свойств, которые являются как бы его пассивными характеристиками и набором методов работы с этим объектом. Работать с объектом можно только с использованием его методов. Атрибуты объекта могут принимать определенное множество допустимых значений, набор конкретных значений атрибутов объекта определяет его состояние. Используя методы работы с объектом, можно изменять значение его атрибутов и тем самым как бы изменять состояние самого объекта. Множество объектов с одним и тем же набором атрибутов и методов образует класс объектов. Объект должен принадлежать только одному классу (если не учитывать возможности наследования). Допускается наличие примитивных предопределенных классов, объекты-экземпляры которых не имеют атрибутов: целые, строки и т. д. Класс, объекты которого могут служить значениями атрибута объектов другого класса, называется доменом этого атрибута.
Одной из наиболее перспективных черт объектно-ориентированной парадигмы является принцип наследования. Допускается порождение нового класса на основе уже существующего класса, и этот процесс называется наследованием. В этом случае новый класс, называемый подклассом существующего класса (суперкласса), наследует все атрибуты и методы суперкласса. В подклассе, кроме того, могут быть определены дополнительные атрибуты и методы. Различаются случаи простого и множественного наследования. В первом случае подкласс может определяться только на основе одного суперкласса, во втором случае суперклассов может быть несколько. Если в языке или системе поддерживается единичное наследование классов, набор классов образует древовидную иерархию. При поддержании множественного наследования классы связаны в ориентированный граф с корнем, называемый решеткой классов. Объект подкласса считается принадлежащим любому суперклассу этого класса.
Можно считать, что наиболее важным качеством ООБД (объектно-ориентированной базы данных), которое позволяет реализовать объектно-ориентированный подход, является учет поведенческого аспекта объектов.
В прикладных информационных системах, основывавшихся на БД с традиционной организацией (вплоть до тех, которые базировались на семантических моделях данных), существовал принципиальный разрыв между структурной и поведенческой частями. Структурная часть системы поддерживалась всем аппаратом БД, ее можно было моделировать, верифицировать и т. д., а поведенческая часть создавалась изолированно. В частности, отсутствовали формальный аппарат и системная поддержка совместного моделирования и гарантий согласованности структурной (статической) и поведенческой (динамической) частей. В среде ООБД проектирование, разработка и сопровождение прикладной системы становятся процессом, в котором интегрируются структурный и поведенческий аспекты. Конечно, для этого нужны специальные языки, позволяющие определять объекты и создавать на их основе прикладную систему.
Специфика применения объектно-ориентированного подхода для организации и управления БД потребовала уточненного толкования классических концепций и некоторого их расширения.
Прежде всего, возникло направление, которое предполагает возможность хранения объектов внутри реляционной БД, тогда дополнительно необходимо предусмотреть хранение и использование специфических методов работы с этими объектами, а это в свою очередь требует расширения стандарта языка SQL.- Частично это уже сделано в новом стандарте SQL3, однако там далеко не все вопросы получили однозначное разрешение.
Однако часть разработчиков придерживается мнения о необходимости полного отказа от реляционной парадигмы и перехода на объектно-ориентированную парадигму. Для перехода к объектно-ориентированным БД стандарт объектного проектирования был дополнен стандартизованными средствами доступа к базам данных (стандарт ODMG93).
Поставщики коммерческих СУБД немедленно отреагировали на эту потребность. Практически каждая уважающая себя фирма обратилась к объектным технологиям и продуктивно сотрудничает с разработчиками объектно-ориентированных СУБД. IBM и Oracle доработали свои СУБД (соответственно, DB2 и ORACLE), добавив объектную надстройку над реляционным ядром системы. Другой путь выбрал Informix, который приобрел серьезную объектно-реляционную СУБД Illustra и встроил ее в свою СУБД. В результате получился продукт, именующийся универсальным сервером. Другой лидер рынка СУБД -- Computer Associates, поступил иначе. Он сделал ставку на чисто объектную базу Jasmine, активно пропагандируя ее достоинства. Кто прав -- покажет будущее.
Следующим направлением развития баз данных является появление так называемых темпоральных баз данных, то есть баз данных, чувствительных ко времени. Фактически БД моделирует состояние объектов предметной области в некоторый текущий момент времени. Однако в ряде прикладных областей необходимо исследовать именно изменение состояний объектов во времени. Если использовать чисто реляционную модель, то требуется строить и хранить дополнительно множество отношений, имеющих одинаковые схемы, отличающиеся временем существования или снятия данных. Гораздо перспективнее и удобнее для этого использовать специальные механизмы снятия срезов по времени для определенных объектов БД. Основной тезис темпоральных систем состоит в том, что для любого объекта данных, созданного в момент времени t1 и уничтоженного в момент времени t2, в БД сохраняются (и доступны пользователям) все его состояния во временном интервале (t1,t2). При обозначении интервала квадратные скобки означают, что граница интервала включена в него, а круглые скобки означают, что точка на временной оси, соответствующая границе интервала, не включается в интервал. И действительно, если объект уничтожен в момент времени t2, то в этой точке временной оси он уже не существует, поэтому мы оставляем правую границу временного интервала открытой.
Еще одним из перспективных направлений развития баз данных является направление, связанное с объединением технологии экспертных систем и баз данных и развитие так называемых дедуктивных баз данных. Эти базы основаны на выявлении новых знаний из баз данных не путем запросов или аналитической обработки, а путем использования правил вывода и построения цепочек применения этих правил для вывода ответов на запросы. Для этих баз данных существуют языки запросов, отличные от классического SQL. В экспертных системах также знания экспертов хранятся в форме правил, чаще всего используются так называемые продукционные правила типа «если описание ситуации, то описание действия». Хранение подобных правил и организация вывода на основании имеющихся фактов под силу современным СУБД.
И наконец, последним, но, может быть, самым значительным направлением развития баз данных является перспектива взаимодействия Web-технологии и баз данных. Простота и доступность Web-технологии, возможность свободной публикации информации в Интернете, так чтобы она была доступна любому количеству пользователей, несомненно, сразу завоевали авторитет у большого числа пользователей. Однако процесс накопления слабоструктурированной информации быстро проходит и далее наступает момент обеспечения эффективного управления этой разнообразной информацией. И это уже серьезная проблема. Некоторые исследователи даже вывели определенную тенденцию, которая выражается в том, что наиболее популярные сайты со временем становятся неуправляемыми, в море информации невозможно отыскать то, что требуется. С одной стороны, Web представляет собой одну громадную базу данных. Однако до сих пор, вместо того чтобы превратиться в неотъемлемую часть инфраструктуры Web, базы данных остаются на вторых ролях. Во-первых, дизайнеры крупнейших Web-серверов с миллионами страниц содержимого постепенно перекладывают задачи управления страницами с файловых систем на системы баз данных. Во-вторых, системы баз данных используются в качестве серверов электронной коммерции, помогая отслеживать профили, транзакции, счета и инвентарные листы. В-третьих, ведущие Web-издатели примериваются к использованию систем баз данных для хранения информационного наполнения, имеющего сложную природу. Однако в подавляющей части Web-узлов, особенно в тех, которые принадлежат провайдерам и держателям поисковых машин, технология баз данных не применяется. В небольших Web-узлах, как правило, используются статические HTML-страницы, хранящиеся в обычных файловых системах.
В будущем статические HTML-страницы все чаще станут заменять системами управления динамически формируемым содержимым. Уже сейчас, например, торговцы по каталогам не просто преобразуют бумажные каталоги в наборы статических HTML-страниц. Фактически они представляют электронный каталог, позволяющий заказчикам оперативно узнать то, что их интересует, не пролистывая ненужную информацию: например, продает ли поставщик серые джемперы большого размера. Продавцы предлагают клиентам персонализированные манекены, позволяющие увидеть, как будет сидеть на них одежда. Для персона-лизации требуются весьма сложные модели данных.
HTML расширяется до XML, языка расширяемой разметки, который лучше описывает структурированные данные. К сожалению, XML, похоже, способен породить хаос в системах баз данных. Развивающийся подъязык запросов XML напоминает процедурные языки обработки запросов, превалировавшие 25 лет тому назад. Кроме того, XML стимулирует использование кэшей (наборов) данных на стороне клиента с поддержкой обновлений, что заставляет разработчиков погружаться в трясину проблем распределенных транзакций. К несчастью, значительная часть работ по XML происходит без серьезного участия сообщества исследователей систем баз данных.
Авторы Web-публикаций нуждаются в инструментах для быстрого и экономичного построения хранилищ данных, рассчитанных на сложные приложения. Это, в свою очередь, формирует требования к технологии баз данных для создания, управления, поиска и обеспечения безопасности содержимого Web-узлов.
С другой стороны, универсальность Web-клиента становится весьма привлекательной для разработчиков несложных приложений, которые смогут работать с базами данных. В этом случае не требуется установка каждого клиента, достаточно выслать код доступа и клиент автоматически может уже работать с базой данных, при этом вам все равно, где находится клиент, он может работать как в локальной, так и, в глобальной сети, если технология это позволяет. А это весьма удобно, если вы можете с любого рабочего места, имея соответствующий пароль, получить доступ к необходимым данным. Подобные системы называются системами, разработанными по интранет-технологии, то есть технологии, использующей принципы технологий Интернета, но реализованные во внутренней локальной сети.
Для разработки Интернет-приложений, которые связаны с базами данных, широко используются новые средства программирования: это язык PERL, язык РНР (Personal Home Page Tools), язык Javascript и ряд других. Это действительно грандиозно и, главное, очень интересно, но это уже темы для других лекций. Пробуйте и дерзайте, я думаю, познакомившись с базами данных, вы еще не раз с ними столкнетесь в жизни. Я желаю вам успехов и корректных запросов к базам данных. Вы ведь уже знаете: каков вопрос, таков и ответ. Любая база данных может стать вашим помощником или мучителем, это зависит от разработчиков, мне хочется, чтобы для вас они всегда играли только первую роль.
Возможности:
Модель данных1 определена заранее. Является строго типизированной, содержит ограничения и отношения для обеспечения целостности данных.
Модель данных основана на естественном представлении содержащихся данных, а не на функциональности приложения.
Модель данных подвергается нормализации, чтобы избежать дублирования данных. Нормализация порождает отношения между таблицами. Отношения связывают данные разных таблиц.
Данные создаются, обновляются, удаляются и запрашиваются с использованием языка структурированных запросов (SQL).
SQL-запросы могут извлекать данные как из одиночной таблица, так и из нескольких таблиц, используя при этом соединения (join'ы).
SQL-запросы могут включать агрегации и сложные фильтры.
Реляционная БД обычно содержит встроенную логику, такую как триггеры, хранимые процедуры и функции.
Чаще всего используются собственные API, или обобщенные, такие как OLE DB или ODBC.
Данные хранятся в формате, который отображает их натуральную структуру, поэтому необходим маппинг структур приложения и реляционных структур базы.
Размещено на Allbest.ru
...Подобные документы
Базы данных с двумерными файлами и реляционные системы управления базами данных (СУБД). Создание базы данных и обработка запросов к ним с помощью СУБД. Основные типы баз данных. Базовые понятия реляционных баз данных. Фундаментальные свойства отношений.
реферат [57,1 K], добавлен 20.12.2010Основные понятия реляционной модели данных. Отношение атрибутов внутри модели. Контроль ссылочной целостности (анализ содержимого ключевых полей связанных таблиц). Нормализация отношений реляционной базы данных. Теоретико-множественные операции.
реферат [69,8 K], добавлен 19.12.2011Анализ реляционных баз данных и способов манипулирования ими. Основные понятия баз данных, архитектура СУБД, модели данных. Модель сущность-связь, характеристика связей, классификация сущностей, структура первичных и внешних ключей, целостности данных.
курсовая работа [166,6 K], добавлен 18.07.2012Понятие нормализации таблиц базы данных и ее цели. Этапы процесса нормализации. Пример ненормализованных данных. Нормальные формы, к которым приводятся таблицы. Реляционная алгебра над учебной базой. База данных для предметной области "Учебные пособия".
контрольная работа [216,1 K], добавлен 30.07.2010Цели проектирования баз данных (БД). Возникающие в процессе проектирования БД проблемы, особенности из разрешения в процессе нормализации отношений. Понятие функциональных зависимостей. Нормальные формы, обоснованные функциональными зависимостями.
контрольная работа [193,1 K], добавлен 21.06.2016Особенности разработки инфологической модели и создание структуры реляционной базы данных. Основы проектирования базы данных. Разработка таблиц, форм, запросов для вывода информации о соответствующей модели. Работа с базами данных и их объектами.
курсовая работа [981,4 K], добавлен 05.11.2011Основные проблемы проектирования реляционных баз данных "МВД". Инфологическое описание сущностей и атрибутов программного обеспечения. Разработка датологической модели данных и гарантирование ее безопасности и целостности. Реализация запросов на SQL.
курсовая работа [3,0 M], добавлен 28.06.2011Проектирование информационной системы бронирования билетов кассы аэропорта. Анализ информационных задач и круга пользователей системы. Составление реляционных отношений. Дополнительные ограничения целостности. Физическое проектирование базы данных.
курсовая работа [949,1 K], добавлен 28.03.2011Понятие реляционной модели данных, целостность ее сущности и ссылок. Основные этапы создания базы данных, связывание таблиц на схеме данных. Проектирование базы данных книжного каталога "Books" с помощью СУБД Microsoft Access и языка запросов SQL.
курсовая работа [838,9 K], добавлен 25.11.2010Инфологическая модель предметной области. Схемы простых объектов и их свойства. Построение реляционных отношений на основе инфологической модели базы данных. Сетевая и иерархическая даталогическая модели БД. Структура таблиц, реализованных в СУБД Oracle.
курсовая работа [1,0 M], добавлен 10.06.2014Основные принципы проектирования реляционных баз данных и их практическая реализация в MS Access. Концептуальная и логическая модели реляционной базы данных, ее физическое проектирование. Автоматизация процесса взаимодействия с клиентами и поставщиками.
курсовая работа [2,8 M], добавлен 10.03.2015Создание структуры базы данных на примере "Школьного журнала" с использованием метода и принципа нормализации. Понятия базы данных, архитектуры БД и проектирования. Описание предметной области; приложения для работы с базой данных TTable и TQuery.
дипломная работа [996,4 K], добавлен 01.04.2012Построение концептуальной модели. Проектирование реляционной модели данных на основе принципов нормализации: процесс нормализации и глоссарий. Проектирование базы данных в Microsoft Access: построение таблиц, создание запросов в том числе SQL – запросов.
курсовая работа [35,9 K], добавлен 08.11.2008Создание таблиц базы данных с помощью MS Access "Страны Азии". Форма базы данных и запросы к выборкам данных. Модификация структуры таблиц, создания связей между главными таблицами, редактирование данных и проектирование форм для реальной базы данных.
контрольная работа [723,9 K], добавлен 25.11.2012Определения, необходимые для понимания процесса проектирования реляционных баз данных на основе нормализации. Декомпозиция без потерь по теореме Хита. Аномальные обновления. Разработка моделей базы данных и приложений, анализ проблем при их создании.
презентация [168,3 K], добавлен 14.10.2013Система управления базой данных (СУБД), централизованное обеспечение безопасности и целостности данных, защита от несанкционированного доступа. Построение концептуальной и реляционной моделей. Процесс нормализации. Проектирование базы данных в ACCESS.
курсовая работа [1,8 M], добавлен 29.10.2008Сущность базы данных. Процесс построения концептуальной модели. Построение реляционной модели, создание ключевого поля. Процесс нормализации. Проектирование базы данных в ACCESS. Порядок создание базы данных. Создание SQL запросов и работа в базе данных.
курсовая работа [185,6 K], добавлен 08.11.2008Составление схемы концептуальной модели данных. Разработка структуры реляционной базы данных и интерфейса пользователя. Особенности главных этапов проектирования базы данных. Способы реализации запросов и отчетов. Специфика руководства пользователя.
курсовая работа [186,9 K], добавлен 18.12.2010Основные виды баз данных. Система управления базами данных. Анализ деятельности и информации, обрабатываемой в поликлинике. Состав таблиц в базе данных и их взаимосвязи. Методика наполнения базы данных информацией. Алгоритм создания базы данных.
курсовая работа [3,1 M], добавлен 17.12.2014Особенности проектирования программы на языке С++ для обработки данных из таблиц базы данных. Основные функции программы, создание концептуальной модели базы данных и диаграммы классов, разработка интерфейса пользователя и запросов к базе данных.
курсовая работа [2,1 M], добавлен 08.06.2012