Единицы измерения информации. Системы счисления
Характеристика единиц измерения информации: первичных, производных от бита – байта, килобайта, мегабайта, гигабайта. Рассмотрение понятий "байт" и расчет "кило". Сущность различных систем счисления. Перевод чисел из одной системы счисления в другую.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 06.01.2015 |
Размер файла | 48,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Единицы измерения информации
1.1 Первичные единицы
1.2 Единицы, производные от бита
1.2.1 Байт
1.2.2 Килобайт
1.2.3 Мегабайт
1.2.4 Гигабайт
1.3 Что такое «байт»
1.4 Чему равно «кило»
2. Система счисления
2.1 Сущность различных систем счисления
2.2 Перевод чисел из одной системы счисления в другую
Заключение
Введение
байт информация счисление первичный
На ранних ступенях развития общества люди почти не умели считать. Они отличали друг от друга совокупности двух и трех предметов; всякая совокупность, содержавшая большее число предметов, объединялась в понятии «много». Это был еще не счет, а лишь его зародыш.
Впоследствии способность различать друг от друга небольшие совокупности развивалась; возникли слова для обозначений понятий «четыре», «пять», «шесть», «семь». Последнее слово длительное время обозначало также неопределенно большое количество. Наши пословицы сохранили память об этой эпохе («семь раз отмерь - один раз отрежь», «у семи нянек дитя без глазу», «семь бед - один ответ» и т.д.).
Особо важную роль играл природный инструмент человека - его пальцы. Этот инструмент не мог длительно хранить результат счета, но зато всегда был «под рукой» и отличался большой подвижностью. Язык первобытного человека был беден; жесты возмещали недостаток слов, и числа, для которых еще не было названий, «показывались» на пальцах.
Поэтому, вполне естественно, что вновь возникавшие названия «больших» чисел часто строились на основе числа 10 - по количеству пальцев на руках.
На первых порах расширение запаса чисел происходило медленно. Сначала люди овладели счетом в пределах нескольких десятков и лишь позднее дошли до сотни. У многих народов число 40 долгое время было пределом счета и названием неопределенно большого количества. В русском языке слово «сороконожка» имеет смысл «многоножка»; выражение «сорок сороков» означало в старину число, превосходящее всякое воображение.
На следующей ступени счет достигает нового предела: десяти десятков, и создается название для числа 100. Вместе с тем слово «сто» приобретает смысл неопределенно большого числа. Такой же смысл приобретают потом последовательно числа тысяча, десять тысяч (в старину это число называлось «тьма»), миллион.
На современном этапе границы счета определены термином «бесконечность», который не обозначает какое либо конкретное число.
Современный человек в повседневной жизни постоянно сталкивается с числами и цифрами - они с нами везде. Различные системы счисления используются всегда, когда появляется потребность в числовых расчётах, начиная с вычислений учениками младших классов, выполняемых карандашом на бумаге, заканчивая вычислениями, выполняемыми на суперкомпьютерах. Поэтому эта тема для меня очень интересна, и мне захотелось узнать об этом больше.
1. Единицы измерения информации
Единицы измерения информации служат для измерения объёма информации - величины, исчисляемой логарифмически. [1] Это означает, что когда несколько объектов рассматриваются как один, количество возможных состояний перемножается, а количество информации - складывается. Не важно, идёт речь о случайных величинах в математике, регистрах цифровой памяти в технике или в квантовых системах в физике.
Чаще всего измерение информации касается объёма компьютерной памяти и объёма данных, передаваемых по цифровым каналам связи.
1.1 Первичные единицы
Сравнение разных единиц измерения информации. Дискретные величины представлены прямоугольниками, единица «нат» - горизонтальным уровнем. Чёрточки слева - логарифмы натуральных чисел.
Объём информации можно представлять как логарифм [2] количества возможных состояний.
Наименьшее целое число, логарифм которого положителен - это 2. Соответствующая ему единица - бит - является основой исчисления информации в цифровой технике.
Единица, соответствующая числу 3 (трит) равна log23?1,585 бита, числу 10 (хартли) - log210?3.322 бита.
Такая единица как нат (nat), соответствующая натуральному логарифму применяется в инженерных и научных расчётах. В вычислительной технике она практически не применяется, так как основание натуральных логарифмов не является целым числом.
1.2 Единицы, производные от бита
Целые количества бит отвечают количеству состояний, равному степеням двойки.
Особое название имеет 4 бита - ниббл (полубайт, тетрада, четыре двоичных разряда), которые вмещают в себя количество информации, содержащейся в одной шестнадцатеричной цифре.
Байт
Следующей по порядку популярной единицей информации является 8 бит, или байт (о терминологических тонкостях написано ниже). Именно к байту (а не к биту) непосредственно приводятся все большие объёмы информации, исчисляемые в компьютерных технологиях.
Такие величины как машинное слово и т. п., составляющие несколько байт, в качестве единиц измерения почти никогда не используются.
1.2.2 Килобайт
Для измерения больших количеств байтов служат единицы «килобайт» = 1000 байт и «Кбайт» [3] (кибибайт, kibibyte) = 1024 байт (о путанице десятичных и двоичных единиц и терминов см. ниже). Такой порядок величин имеют, например:
Сектор диска обычно равен 512 байтам то есть половине кибибайта (не Кбайт), хотя для некоторых устройств может быть равен одному или двум кибибайт.
Классический размер «блока» в файловых системах UNIX равен одному Кбайт (1024 байт).
«Страница памяти» в процессорах x86 (начиная с модели Intel 80386) имеет размер 4096 байт, то есть 4 Кбайт.
Объём информации, получаемой при считывании дискеты «3,5? высокой плотности» равен 1440 Кбайт (ровно); другие форматы также исчисляются целым числом Кбайт.
1.2.3 Мегабайт
Единицы «мегабайт» = 1000 килобайт = 1000000 байт и «Мбайт»[3] (мебибайт, mebibyte) = 1024 Кбайт = 1 048 576 байт применяются для измерения объёмов носителей информации.
Объём адресного пространства процессора Intel 8086 был равен 1 Мбайт.
Оперативную память и ёмкость CD-ROM меряют двоичными единицами (мебибайтами, хотя их так обычно не называют), но для объёма НЖМД десятичные мегабайты были более популярны.
Современные жёсткие диски имеют объёмы, выражаемые в этих единицах минимум шестизначными числами, поэтому для них применяются гигабайты.
1.2.4 Гигабайт
Единицы «гигабайт» = 1000 мегабайт = 1000000000 байт и «Гбайт»[3] (гибибайт, gibibyte) = 1024 Мбайт = 230 байт измеряют объём больших носителей информации, например жёстких дисков. Разница между двоичной и десятичной единицами уже превышает 7 %.
Размер 32-битного адресного пространства равен 4 Гбайт ? 4,295 Мбайт. Такой же порядок имеют размер DVD-ROM и современных носителей на флеш-памяти. Размеры жёстких дисков уже достигают сотен и тысяч гигабайт.
Для исчисления ещё больших объёмов информации имеются единицы терабайт и тебибайт (1012 и 240 байт соответственно), петабайт и пебибайт (1015 и 250 байт соответственно) и т. д.
1.3 Что такое «байт»
В принципе, байт определяется для конкретного компьютера как минимальный шаг адресации памяти, который на старых машинах не обязательно был равен 8 битам (а память не обязательно состоит из битов -- см., например: троичный компьютер). В современной традиции, байт часто считают равным восьми битам.
В таких обозначениях как байт (русское) или B (английское) под байт (B) подразумевается именно 8 бит, хотя сам термин «байт» не вполне корректен с точки зрения теории.
Во французском языке используются обозначения o, Ko, Mo и т. д. (от слова octet) дабы подчеркнуть, что речь идёт именно о 8 битах.
1.4 Чему равно «кило»
Долгое время разнице между множителями 1000 и 1024 старались не придавать большого значения. Во избежание недоразумений следует чётко понимать различие между:
двоичными кратными единицами, обозначаемыми согласно ГОСТ 8.417-2002 как «Кбайт», «Мбайт», «Гбайт» и т. д. (два в степенях кратных десяти);
единицами килобайт, мегабайт, гигабайт и т. д., понимаемыми как научные термины (десять в степенях, кратных трём),
эти единицы по определению равны, соответственно, 103, 106, 109 байтам и т. д.
В качестве терминов для «Кбайт», «Мбайт», «Гбайт» и т. д. МЭК предлагает «кибибайт», «мебибайт», «гибибайт» и т. д., однако эти термины критикуются за непроизносимость и не встречаются в устной речи.
В различных областях информатики предпочтения в употреблении десятичных и двоичных единиц тоже различны. Причём, хотя со времени стандартизации терминологии и обозначений прошло уже несколько лет, далеко не везде стремятся прояснить точное значение используемых единиц.
В английском языке для «киби»=1024 иногда используют прописную букву K, дабы подчеркнуть отличие от обозначаемой строчной буквой приставки СИ кило.
2. Система счисления
В повседневной жизни мы, как правило, пользуемся десятичной системой счисления. Но это лишь одна из многих систем, которая получила свое распространение, вероятно, по той причине, что у человека на руках 10 пальцев. Однако эта система не всегда удобна. Так, в вычислительной технике применяется двоичная система счисления.
В разные исторические периоды развития человечества для подсчетов и вычислений использовались те или иные системы счисления. Например, довольно широко была распространена двенадцатеричная система. Многие предметы (ножи, вилки, тарелки, носовые платки и т. д.) и сейчас считают дюжинами. Число месяцев в году двенадцать. Двенадцатеричная система счисления сохранилась в английской системе мер (например, 1 фут = 12 дюймам) и в денежной системе (1 шиллинг = 12 пенсам).
В древнем Вавилоне существовала весьма сложная шестидесятеричная система. Она, как и двенадцатеричная система, в какой-то степени сохранилась и до наших дней (например, в системе измерения времени: 1 час = 60 минутам, 1 минута = 60 секундам, аналогично в системе измерения углов: 1 градус = 60 минутам, 1 минута = 60 секундам).
У некоторых африканских племен была распространена пятеричная система счисления, у ацтеков и народов майя, населявших в течение многих столетий обширные области американского континента, двадцатеричная система. У некоторых племен Австралии и Полинезии встречалась двоичная система.
В данной работе будут рассмотрены различные системы счисления
2.1 Сущность различных систем счисления
Вначале проанализируем различия между цифрами и числами: число это абстрагированная от конкретики запись количества (например, число 25 это двадцать пять предметов чего угодно и не только предметов, а, скажем, лет или килограммов), а цифра это специальный знак для обозначения количества единиц. Следует обратить внимание, что цифры это тоже записи чисел, например 8 это не только цифра, но и число.
Слово «цифра» происходит от позднелатинского слова «cifra», первые цифры появились у египтян и вавилонян, причем интересно, что цифры, как специальные знаки, образовались позже, чем буквы. Так, многие народы (греки, финикияне, евреи, сирийцы) для цифр использовали буквы алфавита, в России аналогичная система применялась вплоть до XVI века. Современные так называемые «арабские цифры» имеют неясное происхождение, например, утверждают, что они принесены в Европу арабами в XIII веке возможно из Индии. Повсеместно их стали использовать с XV века.
Число это одно из фундаментальных и самых древних понятий математики; оно появилось сначала в связи со счетом отдельных предметов, а затем, абстрагировавшись, стало обозначать количественную меру. Это привело к идее о бесконечности натурального ряда чисел: 1, 2, 3, 4... и т. д. Для наших целей такого определения достаточно, но математиками были разработаны и другие числа. В частности, задачи измерения площадей привели к понятию рационального (дробного) числа, затем появились отрицательные числа, необходимость в вычислении отношения диагонали квадрата к его стороне привела к открытию иррациональных чисел, рациональные и иррациональные числа составляют совокупность действительных чисел и т. д. И лишь в XIX веке была разработана теория действительных чисел. Новый импульс эта теория получила в связи с развитием компьютерных технологий.
Известно, что числовая ось бесконечна, поскольку к каждому числу можно прибавить еще единицу и получить следующее число, с которым можно поступить так же. При этом понятно, что придумывать какие-либо специальные обозначения (цифры) для любого элемента (числа) бесконечной числовой оси нереально.
Поэтому для записи произвольного числа бесконечной числовой оси прибегают к помощи одной или нескольких систем счисления.
Счисление (система счисления) это способ представления любых чисел с помощью определенного количества знаков (цифр) по позиционному принципу.
В этом определении стоит выделить следующие важные моменты.
Количество знаков, которые обычно именуются «цифрами», всегда ограничено. И с помощью такого, ограниченного количества цифр (обычно мы используем десять цифр) удается записывать произвольные числа, например 23 456 или 1 000 123 456 789.
Чтобы преодолеть это ограничение, используется особый способ записи, который называется «позиционным».
Позиционная система счисления состоит в использовании ограниченного числа цифр, зато позиция каждой цифры в числе обеспечивает значимость (вес) этой цифры. Позиция цифры на математическом языке называется разрядом.
Другими словами, значение цифры «переменчиво» и зависит от ее позиции в числе. Например, в числе «одиннадцать» («11») две единицы имеют разное значение, это относится и к другим сочетаниям «единиц» «111», «1111», «11 111» и т. д.
Не всякие числовые системы используют именно такой позиционный способ записи, в истории человечества были и иные эксперименты.
Способ записи чисел с помощью римских цифр не грешит единообразием: если цифра расположена справа, то ее значение прибавляется к предыдущей, например число «XI» означает «одиннадцать», а если слева, то значение вычитается, например число «IX», состоящее из тех же цифр, уже означает только «девять». Кроме того, в римской системе счисления в числе вес цифры X в любой позиции равен просто десяти, например число XXXII (тридцать два). И, наконец, цифры разбросаны по оси чисел.
В нашу современную жизнь многое пришло из Рима, в том числе римское право, латынь в медицине и фармакологии. Однако римская система счисления не прижилась, потому что она отличается указанной выше сложностью, которая препятствует технологичности: скажем, римские числа трудно складывать или умножать, не говоря уже о более сложных функциях.
Существует не одно множество цифр, образующих систему счисления. Это множество получило особое название основание системы счисления.
Основание позиционной системы счисления это количество различных знаков или символов (цифр), используемых для отображения чисел в данной системе.
Выбор количества цифр диктуется какими-либо потребностями реальной жизни, науки или удобствами обработки. Исторически этот выбор определялся привычками или традициями конкретного народа.
Наиболее привычной для нас является десятичная система счисления. Исторически вначале, видимо, использовалась непозиционная единичная система счета с помощью камней или палочек. Система счета состояла из двух чисел один и два, а все, что больше двух, обозначалось, как «много».
Затем, благодаря наличию десяти пальцев рук у человека, возникла десятичная система счета. В этой системе используются специальные графические знаки арабские цифры, которые можно записать в следующем порядке: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Таких знаков десять, и они специально разделены запятыми, чтобы показать, что это отдельные («дискретные») знаки, которые не зависят друг от друга.
Идея позиционной системы счисления выдвигалась еще Архимедом в работе «Исчисление песка».
В разное время и у разных народов использовались системы счисления с различными основаниями:
в Древнем Вавилоне шестидесятиричная система (используемая и сейчас при измерении времени);
в Германии и Великобритании двенадцатеричная (при измерении количества, в денежных системах), у древних адыгов двадцатеричная и т. д.;
неколичественные (качество выступает в роли количества: «много», «мало» и т. д.) способы счета например, у эскимосов.
Рассмотрим основные системы счисления, помимо десятичной.
В двоичной системе счисления основание равно двум. В этой системе счисления используются всего два знака, две цифры «0» и «1».
Такая система получила название двоичной системы счисления. Ее еще называют бинарной, от английского слова «binary», что, собственно, и переводится как «двоичный». В таблице 1 представлено соответствие десятичных и двоичных чисел.
Таблица 1 - Соответствие десятичных и двоичных чисел
Десятичное число |
Двоичное число |
Десятичное число |
Двоичное число |
|
0 |
0 |
11 |
1011 |
|
1 |
1 |
12 |
1100 |
|
2 |
10 |
13 |
1101 |
|
3 |
11 |
14 |
1110 |
|
4 |
100 |
15 |
1111 |
|
5 |
101 |
16 |
10000 |
|
6 |
110 |
17 |
10001 |
|
7 |
111 |
18 |
10010 |
|
8 |
1000 |
19 |
10011 |
|
9 |
1001 |
20 |
10100 |
|
10 |
1010 |
В восьмеричной системе счисления основание - цифры 0,1,2,3,4,5,6,7.
Таблица 2. Соответствие десятичных и восьмеричных чисел
Десятичные числа |
Восьмеричные числа |
Десятичные числа |
Восьмеричные числа |
|
0-7 |
0-7 |
25-63 |
31-77 |
|
8 |
10 |
64 |
100 |
|
9-15 |
11-17 |
128 |
200 |
|
16 |
20 |
256 |
400 |
|
17-23 |
21-27 |
512 |
1000 |
|
24 |
30 |
1024 |
2000 |
Основание шестнадцатеричной системы счисления - цифры 0,1,2,3,4,5,6,7,8,9 и буквы A,B,C,D,E,F.
Соединим десятичные и шестнадцатеричные числа в единую таблицу (табл. 3).
Таблица 3 - Соответствие десятичных и шестнадцатеричных чисел
Десятичное число |
Шестнадцатеричное число |
Десятичное число |
Шестнадцатеричное число |
|
0-9 |
0-9 |
29 |
1D |
|
10 |
А |
30 |
1Е |
|
11 12 |
В С |
31 32-41 |
1F 20-29 |
|
13 |
D |
42-47 |
2A-2F |
|
14 |
Е |
48-255 |
30-FF |
|
15 |
F |
256 |
100 |
|
16 |
10 |
512 |
200 |
|
17-25 |
11-19 |
1024 |
400 |
|
26 |
1А |
1280 |
500 |
|
27 |
1В |
4096 |
1000 |
|
28 |
1C |
Шестнадцатеричная система используется, чтобы более компактно записывать двоичную информацию. В самом деле, «шестнадцатеричная тысяча», состоящая из четырех разрядов, в двоичном виде занимает тринадцать разрядов (100016 = 10000000000002).
2.2 Перевод чисел из одной системы счисления в другую
Рассмотрим способы перевода чисел из одной системы счисления в другую.
а) Перевод двоичного числа в десятичное.
Необходимо сложить двойки в степенях, соответствующих позициям, где в двоичном стоят единицы. Например:
Возьмем число 20. В двоичной системе оно имеет следующий вид: 10100.
Итак (считаем слева направо, считая от 4 до 0; число в нулевой степени всегда равно единице)
10100 = 1*24 + 0*23 + 1*22 + 0*21 + 0*20 = 20
16+0+4+0+0 = 20.
б) Перевод десятичного числа в двоичное.
Необходимо делить его на два, записывая остаток справа налево:
20/2 = 10, остаток 0
10/2=5, остаток 0
5/2=2, остаток 1
2/2=1, остаток 0
1/2=0, остаток 1
В результате получаем: 10100 = 20
в) Перевод шестнадцатеричного числа в десятичное.
В шестнадцатеричной системе номер позиции цифры в числе соответствует степени, в которую надо возвести число 16:
8A = 8*16 + 10 (0A) = 138
Напоследок приведем алгоритм перевода в двоичную и из двоичной системы, предлагаемый Л. Радюком.
Пусть А(цд) - целое десятичное число. Запишем его в виде суммы степеней основания 2 с двоичными коэффициентами. В его записи в развёрнутой форме будут отсутствовать отрицательные степени основания (числа 2):
A(цд) = a(n-1) * 2^(n-1) + a(n-2) * 2^(n-2) + … + a(1) * 2^1 + a(0) * 2^0.
На первом шаге разделим число А(цд) на основание двоичной системы, то есть на 2. Частное от деления будет равно:
a(n-1) * 2^(n-2) + a(n-2) * 2^(n-3) + … + a(1), а остаток равен a(0).
На втором шаге целое частное опять разделим на 2, остаток от деления будет теперь равен a(1).
Если продолжать этот процесс деления, то после n-го шага получим последовательность остатков:
a(0), a(1),…, a(n-1).
Легко заметить, что их последовательность совпадает с обратной последовательностью цифр целого двоичного числа, записанного в свёрнутой форме:
A(2) = a(n-1)…a(1)a(0).
Таким образом, достаточно записать остатки в обратной последовательности, чтобы получить искомое двоичное число.
Тогда сам алгоритм будет следующим:
1. Последовательно выполнять деление исходного целого десятичного числа и получаемых целых частных на основание системы (на 2) до тех пор, пока не получится частное, меньшее делителя, то есть меньше 2.
2. Записать полученные остатки в обратной последовательности, а слева добавить последнее частное.
Для перевода чисел из восьмеричной и шестнадцатеричной систем счисления в двоичную необходимо цифры числа преобразовать в группы двоичных цифр. Для перевода из восьмеричной системы в двоичную каждую цифру числа надо преобразовать в группу из трёх двоичных цифр триаду, а при преобразовании шестнадцатеричного числа в группу из четырёх цифр тетраду.
Заключение
Интуитивное представление о числе, так же старо, как и само человечество. Прежде чем человек научился считать или придумал слова для обозначения чисел, он, несомненно, владел наглядным, интуитивным представлением о числе, позволявшим ему различать одного человека и двух людей или двух и многих людей. Счет изначально был связан с вполне конкретным набором объектов, и самые первые названия чисел были прилагательными.
Высшим достижением древней арифметики является открытие позиционного принципа представления чисел. Хорошо известно, что первой из известных систем счисления, основанных на позиционном принципе, была вавилонская 60-ричная система счисления, возникшая в Древнем Вавилоне примерно во 2-м тысячелетии до новой эры.
Мы используем для повседневных вычислений десятичную систему счисления. Хорошо известно, что предшественницей десятичной системы счисления является Индусская десятичная система, возникшая примерно в 8-м столетии нашей эры. Известный французский математик Лаплас (1749-1827) выразил свое восхищение позиционным принципом и десятичной системой в следующих словах:
"Мысль выражать все числа 9 знаками, придавая им, кроме значения по форме, еще значение по месту, настолько проста, что именно из-за этой простоты трудно понять, насколько она удивительна. Как нелегко было прийти к этой методе, мы видим на примере величайших гениев греческой учености Архимеда и Аполлония, от которых эта мысль осталась скрытой".
Леонардо Пизанский (Фибоначчи) в своем сочинении "Liber abaci" (1202) выступил убежденным сторонником новой нумерации. Он писал:
"Девять индусских знаков - суть следующие: 9, 8, 7, 6, 5, 4, 3, 2, 1. С помощью этих знаков и знака 0, который называется по-арабски "zephirum", можно написать какое угодно число".
Современные компьютеры основываются на "двоичной" системе счисления.
Нужно признать важность не только самой распространенной системы, которой мы пользуемся ежедневно. Но и каждой по отдельности. Ведь в разных областях используются разные системы счисления, со своими особенностями и характерными свойствами.
Список использованной литературы
1. http://informatika.sch880.ru/p18aa1.html
2. http://www.rusedu.info/Article562.html
3. http://school.dtv.su/edinitsyi-izmereniya-teoriya/
4. Фринланд, А.Я. Информатика. - М., 2005.
5. Сидоров, В.К. Системы счисления.// Наука и жизнь 2000. №2.
6. Радюк, Л. Алгоритм перевода в двоичную и из двоичной системы счисления.
Размещено на Allbest.ru
...Подобные документы
Понятие и классификация систем счисления. Перевод чисел из одной системы счисления в другую. Перевод правильных и неправильных дробей. Выбор системы счисления для применения в ЭВМ. Навыки обращения с двоичными числами. Точность представления чисел в ЭВМ.
реферат [62,0 K], добавлен 13.01.2011Определение понятия и видов систем счисления - символического метода записи чисел, представления чисел с помощью письменных знаков. Двоичные, смешанные системы счисления. Перевод из одной системы счисления в другую и простейшие арифметические операции.
курсовая работа [232,6 K], добавлен 16.01.2012Система счисления как способ записи (изображения) чисел. История появления и развития различных систем счисления: двоичная, восьмеричная, десятичная и шестнадцатеричная. Основные принципы и правила алгоритма перевода из одной системы счисления в другую.
курсовая работа [343,1 K], добавлен 11.11.2014История систем счисления, позиционные и непозиционные системы счисления. Двоичное кодирование в компьютере. Перевод чисел из одной системы счисления в другую. Запись цифр в римской нумерации. Славянская нумерация, сохранившаяся в богослужебных книгах.
презентация [516,8 K], добавлен 23.10.2015Порождение целых чисел в позиционных системах счисления. Почему мы пользуемся десятичной системой, а компьютеры - двоичной (восьмеричной и шестнадцатеричной)? Перевод чисел из одной системы в другую. Математические действия в различных системах счисления.
конспект произведения [971,1 K], добавлен 31.05.2009Роль и практическое значение автоматизации вычислений и обработки данных. Представление информации в компьютере, сущность системы счисления. Перевод числа из одной системы счисления в другую. Арифметические операции в позиционных системах счисления.
контрольная работа [1,2 M], добавлен 23.10.2009Десятичная система счисления, ее происхождение и применение. Арифметические операции: сложение и вычитание, умножение и деление. Перевод чисел из одной системы счисления в другую. Применение систем: азбука Морзе, алфавитное кодирование, штрих-коды.
курсовая работа [2,5 M], добавлен 12.01.2015Обработка информации и вычислений в вычислительной машине. Непозиционные и позиционные системы счисления. Примеры перевода десятичного целого и дробного числа в двоичную систему счисления. Десятично-шестнадцатеричное и обратное преобразование чисел.
контрольная работа [41,2 K], добавлен 21.08.2010Примеры правила перевода чисел с одной системы в другую, правила и особенности выполнения арифметических операций в двоичной системе счисления. Перевод числа с десятичной системы в двоичную систему счисления. Умножение целых чисел в двоичной системе.
контрольная работа [37,3 K], добавлен 13.02.2009Система счисления как способ записи информации с помощью заданного набора цифр. История развития различных систем счисления. Позиционные и непозиционные системы. Вавилонская, иероглифическая, римская система счисления. Система счисления майя и ацтеков.
презентация [3,2 M], добавлен 05.05.2012Описание логической структуры программы "perevod" для перевода числа из одной системы счисления в другую. Блок-схема алгоритма обработчика события Button1Click. Разработка и испытание приложений. Назначение и условия применения программы, листинг.
курсовая работа [945,5 K], добавлен 03.01.2011Общее представление о системах счисления. Перевод чисел в двоичную, восьмеричную и шестнадцатеричную системы счисления. Разбивка чисел на тройки и четверки цифр. Разряды символов числа. Перевод из шестнадцатеричной системы счисления в десятичную.
практическая работа [15,5 K], добавлен 19.04.2011Система счисления и перевод числа из одной системы в другую. Машинное предоставление информации. Числа с фиксированной точкой: прямой, обратный (инверсный) или дополнительный код. Программная реализация алгоритма и описание использованных процедур.
курсовая работа [96,7 K], добавлен 20.11.2010Системы счисления: понятие и содержание, классификация и типы, отличительные свойства и принципы. Перевод чисел из одной системы счисления в другую, виды программного обеспечения. Возможности программы сканирования и распознавания текста Fine Reader.
контрольная работа [37,2 K], добавлен 15.12.2013Двоичный код, особенности кодирования и декодирования информации. Система счисления как совокупность правил записи чисел с помощью определенного набора символов. Классификация систем счисления, специфика перевода чисел в позиционной системе счисления.
презентация [16,3 K], добавлен 07.06.2011Основные виды программного обеспечения. Характеристика пакетов прикладных программ. Виды и группы систем счисления. Перевод целых и дробных чисел из одной системы счисления в другую. Арифметические операции в двоичной системе. Компьютерные преступления.
шпаргалка [65,2 K], добавлен 19.01.2014Сущность и характеристика цифровой и аналоговой информации. Бит как основа исчисления информации в цифровой технике. Компьютерная система счисления как способ записи (изображения) чисел. Сущность и понятие позиционных и непозиционных систем исчисления.
доклад [15,7 K], добавлен 04.06.2010Команды вычислительной машины, которые интерпретируются микропроцессором или микропрограммами. Правила для записи чисел цифровыми знаками. Способы кодирования информации. Практическое применение машинных кодов, систем счисления, кодировки информации.
курсовая работа [1,6 M], добавлен 15.03.2015Предыстория чисел, связь названий чисел с определенной схемой счета. Системы счисления в Древнем Египте, Вавилоне, Греции, Риме, Америке, Китае, Индии, Аравии и Западной Европе. Обозначения чисел у древних евреев. Позиционные системы счисления.
реферат [34,3 K], добавлен 15.03.2013Двоичная, восьмеричная и шестнадцатеричная системы счисления и перевод из одной в другую. Форматы хранения чисел с плавающей точкой. Позиционная система счисления. Подпрограмма вывода служебных слов и полученных данных. Альтернативные варианты решения.
курсовая работа [920,9 K], добавлен 13.07.2014