Метод ветвей и границ. Теория графов. Решение задачи коммивояжера
Алгоритм метода ветвей и границ, правила ветвления, формирование нижних и верхних оценок целевой функции. Теория графов, постановка задачи, алгоритм ее решения. Анализ методов решения задачи коммивояжера, определение области их эффективного действия.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 12.01.2015 |
Размер файла | 85,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Описание метода ветвей и границ
В основе метода ветвей и границ лежит идея последовательного разбиения множества допустимых решений на подмножества. На каждом шаге метода элементы разбиения подвергаются проверке для выяснения, содержит данное подмножество оптимальное решение или нет. Проверка осуществляется посредством вычисления оценки снизу для целевой функции на данном подмножестве. Если оценка снизу не меньше рекорда - наилучшего из найденных решений, то подмножество может быть отброшено. Проверяемое подмножество может быть отброшено еще и в том случае, когда в нем удается найти наилучшее решение. Если значение целевой функции на найденном решении меньше рекорда, то происходит смена рекорда. По окончанию работы алгоритма рекорд является результатом его работы.
Если удается отбросить все элементы разбиения, то рекорд - оптимальное решение задачи. В противном случае, из неотброшенных подмножеств выбирается наиболее перспективное (например, с наименьшим значением нижней оценки), и оно подвергается разбиению. Новые подмножества вновь подвергаются проверке и т.д.
При применении метода ветвей и границ к каждой конкретной задаче в первую очередь должны быть определены две важнейшие его процедуры: 1) ветвления множества возможных решений; 2) вычисления нижних и верхних оценок целевой функции.
1.1 Правила ветвления
В зависимости от особенностей задачи для организации ветвления обычно используется один из двух способов:
1. ветвление множества допустимых решений исходной задачи D;
2. ветвление множества D' получаемого из D путем снятия условия целочисленноти на переменные.
Первый способ ветвления обычно применяется для задач целочисленного программирования и заключается в выделении подобластей возможных решений путем фиксации значений отдельных компонент целочисленных оптимизационных переменных (рис. 1). На рис. 1-а дана геометрическая интерпретация области допустимых решений задачи целочисленного программирования, определяемой двумя линейными ограничениями и условиями неотрицательности переменных, и образующихся при ветвлении подобластей, а на рис. 1-б показана соответствующая схема ветвления.
Второй способ ветвления - более универсальный, чем первый. Для осуществления ветвления некоторой области Di' этим способом на Di' решается оптимизационная задача с целевой функцией исходной задачи и действительными переменными.
Ветвление осуществляется, если в оптимальном решении значение хотя бы одной целочисленной по исходной постановке задача переменной не является целочисленным. Среди этих переменных выбирается одна, например j - я. Обозначим ее значение в найденном оптимальном решении x0[j]. Говорят, что ветвление осуществляется по переменной x[j]. Область Di' разделяется на две подобласти Di1' и Di2' следующим образом:
(1)
где [x0[j]] - целая часть значения x0[j]
На рис. 2 условно дана геометрическая интерпретация такого ветвления.
Размещено на http://www.allbest.ru/
Рис. 2. Геометрическая интерпретация ветвления
Видно, что при этом из области Di' удаляется часть между плоскостями вновь введенных ограничений. Так как переменная x[j] по условиям области допустимых решений исходной задачи - целочисленная, то из подобласти допустимых решений исходной задачи. Di (Di Di') при таком изъятии не исключается ни одного решения.
1.2 Формирование нижних и верхних оценок целевой функции
Прежде чем начать обсуждение данного вопроса, необходимо сказать, что общепринятым является применение метода ветвей и границ для задачи, в которой направление оптимизации приведено к виду минимизации. Для компактности дальнейших обозначений и выкладок запишем задачу дискретного программирования, для которой будем применять метод ветвей и границ, в следующей обобщенной форме:
(2)
где х - вектор оптимизационных переменных, среди которых часть действительных, а часть целочисленных; f(x) - в общем случае нелинейная целевая функция; D - область допустимых решений задачи дискретного программирования общего вида.
Нижние оценки целевой дикции в зависимости от выбранного способа ветвления могут определяться либо для подобластей Di D либо для подобластей Di' D' (Di' и D' получены из соответствующих множеств Di и D путем снятия условий целочисленности на дискретные переменные).
Нижней оценкой целевой функции f(x) на множестве Di (или Di') будем называть величину:
(3)
Вычисление нижних оценок в каждом конкретном случае может осуществляться с учетом особенностей решаемой задачи. При этом чтобы оценки наиболее эффективно, выполняли свою функцию, они должны быть как можно большими, т.е. быть как можно ближе к действительным значениям min f(x). Это необходимо в первую очередь для того, чтобы нижние оценки как можно точнее отражали действительное соотношение min f(x) на образовавшихся при ветвлении подмножествах и позволяли более точно определять направление дальнейшего поиска оптимального решения исходной задачи.
На рис. 3 показан такой идеальный случай, когда нижние оценки (соединены ломаной штрихпунктирной линией) правильно отражают соотношения между действительными минимальными значениями f(x) (соединены штриховой линией) для четырех подмножеств допустимых решений D1, D2, D3, D4.
Один из универсальных способов вычисления нижних оценок заключается в решении следующей задачи:
(4)
Определенная таким образом оi является нижней оценкой f(x) на Di (или Di'), так как Di Di'.
Если при решении задачи (4) установлено, что , то для общности будем полагать, что .
Необходимо отметить одно важное свойство нижних оценок, заключающееся в том, что их значения для образовавшихся при ветвлении подмножеств не могут быть меньше нижней оценки целевой функции на множестве, подвергавшемся ветвлению.
Совместно с нижней оценкой в методе ветвей и границ используются верхние оценки f(x). Как правило, вычисляют лишь одно значение верхней оценки , которую определяют как значение целевой функции для лучшего найденного допустимого решения исходной задачи. Такую верхнюю оценку иногда называют рекордом. Если же можно для решаемой задачи достаточно просто и точно получить верхние оценки f(x) для отдельных множеств, образующихся при ветвлении, то их необходимо использовать в методе для уменьшения вычислительной сложности процесса решения. При использовании единой верхней оценки ее первоначальное значение обычно полагают равным бесконечности (), если, конечно, из априорных соображений не известно ни одного допустимого решения исходной задачи. При нахождении первого допустимого решения :
(5)
Затем при определении более лучшего допустимого решения верхнюю оценку корректируют:
(6)
Таким образом, значение верхней оценки может лишь уменьшаться в процессе решения задачи.
1.3 Алгоритм метода ветвей и границ
Основные правила алгоритма могут быть сформулированы следующим образом:
1. Ветвлению в первую очередь подвергается подмножество с номером , которому соответствует наименьшее значение нижней оценки целевой функции (I - это множество номеров всех подмножеств, (или ), находящихся на концах ветвей и ветвление которых еще не прекращено). Если реализуется изложенный выше способ ветвления множеств , то может возникнуть неоднозначность относительно выбора компоненты, по которой необходимо осуществлять очередной шаг ветвления. К сожалению, вопрос о «наилучшем» способе такого выбора с общих позиций пока не решен, и поэтому в конкретных задачах используются некоторые эвристические правила.
2. Если для некоторого i-го подмножества выполняется условие , то ветвление его необходимо прекратить, так как потенциальные возможности нахождения хорошего решения в этом подмножестве (их характеризует ) оказываются хуже, чем значение целевой функции для реального, найденного к данному моменту времени, допустимого решения исходной задачи (оно характеризует ).
3. Ветвление подмножества прекращается, если найденное в задаче (4) оптимальное решение . Обосновывается это тем, что , и, следовательно, лучшего допустимого решения, чем в этом подмножестве не существует. В этом случае рассматривается возможность корректировки .
4. Если , где , то выполняются условия оптимальности для найденного к этому моменту лучшего допустимого решения. Обоснование такое же, как и пункта 2 настоящих правил.
5. После нахождения хотя бы одного допустимого решения исходной задачи может быть рассмотрена возможность остановки работы алгоритма с оценкой близости лучшего из полученных допустимых решений к оптимальному (по значению целевой функции):
(7)
1.4 Решение задачи методом ветвей и границ
Пусть
- целые .
Первоначально находим симплексным методом или методом искусственного базиса оптимальный план задачи без учета целочисленности переменных.
Если среди компонент этого плана нет дробных чисел, то тем самым найдено искомое решение данной задачи.
Если среди компонент плана имеются дробные числа, то необходимо осуществить переход к новым планам, пока не будет найдено решение задачи.
Метод ветвей и границ основан на предположении, что наш оптимальный нецелочисленный план дает значение функции, большее, чем всякий последующий план перехода.
Пусть переменная в плане - дробное число. Тогда в оптимальном плане ее значение будет по крайней мере либо меньше или равно ближайшему меньшему целому числу , либо больше или равно ближайшему большему целому числу .
Определяя эти числа, находим симплексным методом решение двух задач линейного программирования
- целые .
и
- целые .
Возможны четыре случая при решении этой пары задач:
Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции дают решение исходной задачи.
Одна из задач неразрешима, а другая имеет нецелочисленный оптимальный план. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу и строим две задачи, аналогичные предыдущим.
Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции от планов и сравниваем их между собой. Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и дает искомое решение.
Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда рассматриваем ту из задач, для которой значение целевой функции является наибольшим. И строим две задачи.
Таким образом, при решении задачи получаем схему:
Находим решение задачи линейного программирования без учета целочисленности.
Составляет дополнительные ограничения на дробную компоненту плана.
Находим решение двух задач с ограничениями на компоненту.
Строим в случае необходимости дополнительные ограничения, согласно возможным четырем случаям получаем оптимальный целочисленный план либо устанавливаем неразрешимость задачи.
Пример
Найдем решение задачи
- целые .
Решение. Находим решение без учет целочисленности задачи симплексным методом.
Рассмотрим следующую пару задач:
Задача 1
Задача 2
Первая задача имеет оптимальный план
вторая - неразрешима.
Проверяем на целочисленность план первой задачи. Это условие не выполняется, поэтому строим следующие задачи:
Задача 1.1
Задача 1.2
Задача 1.2 неразрешима, а задача №1.1 имеет оптимальный план , на котором значение целевой функции .
В результате получили, что исходная задача целочисленного программирования имеет оптимальный план и .
2. Решение задачи коммивояжера методом ветвей и границ
Рассмотрим теперь класс прикладных задач оптимизации. Метод ветвей и границ используется в очень многих из них. Предлагается рассмотреть одну из самых популярных задач - задача коммивояжера. Вот ее формулировка. Имеется несколько городов, соединенных некоторым образом дорогами с известной длиной; требуется установить, имеется ли путь, двигаясь по которому можно побывать в каждом городе только один раз и при этом вернуться в город, откуда путь был начат («обход коммивояжера»), и, если таковой путь имеется, установить кратчайший из таких путей.
2.1 Постановка задачи
Формализуем условие в терминах теории графов. Города будут вершинами графа, а дороги между городами - ориентированными (направленными) ребрами графа, на каждом из которых задана весовая функция: вес ребра - это длина соответствующей дороги. Путь, который требуется найти, это - ориентированный остовный простой цикл минимального веса в орграфе (напомним: цикл называется остовным, если он проходит по всем вершинам графа; цикл называется простым, если он проходит по каждой своей вершине только один раз; цикл называется ориентированным, если начало каждого последующего ребра совпадает с концом предыдущего; вес цикла - это сумма весов его ребер; наконец, орграф называется полным, если в нем имеются все возможные ребра); такие циклы называются также гамильтоновыми.
Очевидно, в полном орграфе циклы указанного выше типа есть. Заметим, что вопрос о наличии в орграфе гамильтонова цикла достаточно рассмотреть как частный случай задачи о коммивояжере для полных орграфов. Действительно, если данный орграф не является полным, то его можно дополнить до полного недостающими ребрами и каждому из добавленных ребер приписать вес Ґ, считая, что Ґ - это «компьютерная бесконечность», т.е. максимальное из всех возможных в рассмотрениях чисел. Если во вновь построенном полном орграфе найти теперь легчайший гамильтонов цикл, то при наличии у него ребер с весом Ґ можно будет говорить, что в данном, исходном графе «цикла коммивояжера» нет. Если же в полном орграфе легчайший гамильтонов цикл окажется конечным по весу, то он и будет искомым циклом в исходном графе.
Отсюда следует, что задачу о коммивояжере достаточно решить для полных орграфов с весовой функцией. Сформулируем теперь это в окончательном виде:
пусть - полный ориентированный граф и - весовая функция; найти простой остовный ориентированный цикл («цикл коммивояжера») минимального веса.
Пусть конкретный состав множества вершин и - весовая матрица данного орграфа, т.е. , причем для любого .
Рассмотрение метода ветвей и границ для решения задачи о коммивояжере удобнее всего проводить на фоне конкретного примера. Пользуясь введенными здесь обозначениями, мы проводим это описание в следующей лекции.
Введем некоторые термины. Пусть имеется некоторая числовая матрица. Привести строку этой матрицы означает выделить в строке минимальный элемент (его называют константой приведения) и вычесть его из всех элементов этой строки. Очевидно, в результате в этой строке на месте минимального элемента окажется ноль, а все остальные элементы будут неотрицательными. Аналогичный смысл имеют слова привести столбец матрицы.
Слова привести матрицу по строкам означают, что все строки матрицы приводятся. Аналогичный смысл имеют слова привести матрицу по столбцам.
Наконец, слова привести матрицу означают, что матрица сначала приводится по строкам, а потом приводится по столбцам.
Весом элемента матрицы называют сумму констант приведения матрицы, которая получается из данной матрицы заменой обсуждаемого элемента на Ґ. Следовательно, слова самый тяжелый нуль в матрице означают, что в матрице подсчитан вес каждого нуля, а затем фиксирован нуль с максимальным весом.
Приступим теперь к описанию метода ветвей и границ для решения задачи о коммивояжере.
Первый шаг. Фиксируем множество всех обходов коммивояжера (т.е. всех простых ориентированных остовных циклов). Поскольку граф - полный, это множество заведомо не пусто. Сопоставим ему число, которое будет играть роль значения на этом множестве оценочной функции: это число равно сумме констант приведения данной матрицы весов ребер графа. Если множество всех обходов коммивояжера обозначить через G, то сумму констант приведения матрицы весов обозначим через j(G). Приведенную матрицу весов данного графа следует запомнить; обозначим ее через M1; таким образом, итог первого шага:
множеству G всех обходов коммивояжера сопоставлено чис-ло j(G) и матрица M1.
Второй шаг. Выберем в матрице M1 самый тяжелый нуль; пусть он стоит в клетке ; фиксируем ребро графа и разделим множество G на две части: на часть , состоящую из обходов, которые проходят через ребро , и на часть , состоящую из обходов, которые не проходят через ребро .
Сопоставим множеству следующую матрицу M1,1: в матрице M1 заменим на Ґ число в клетке . Затем в полученной матрице вычеркнем строку номер i и столбец номер j, причем у оставшихся строк и столбцов сохраним их исходные номера. Наконец, приведем эту последнюю матрицу и запомним сумму констант приведения. Полученная приведенная матрица и будет матрицей M1,1; только что запомненную сумму констант приведения прибавим к j(G) и результат, обозначаемый в дальнейшем через j(), сопоставим множеству .
Теперь множеству тоже сопоставим некую матрицу M1,2. Для этого в матрице M1 заменим на Ґ число в клетке и полученную в результате матрицу приведем. Сумму констант приведения запомним, а полученную матрицу обозначим через M1,2. Прибавим запомненную сумму констант приведения к числу j(G) и полученное число, обозначаемое в дальнейшем через j(), сопоставим множеству .
Теперь выберем между множествами и то, на котором минимальна функция j (т.е. то из множеств, которому соответствует меньшее из чисел j() и j()).
Заметим теперь, что в проведенных рассуждениях использовался в качестве исходного только один фактический объект - приведенная матрица весов данного орграфа. По ней было выделено определенное ребро графа и были построены новые матрицы, к которым, конечно, можно все то же самое применить.
При каждом таком повторном применении будет фиксироваться очередное ребро графа. Условимся о следующем действии: перед тем, как в очередной матрице вычеркнуть строку и столбец, в ней надо заменить на Ґ числа во всех тех клетках, которые соответствуют ребрам, заведомо не принадлежащим тем гамильтоновым циклам, которые проходят через уже отобранные ранее ребра.
К выбранному множеству с сопоставленными ему матрицей и числом j повторим все то же самое и так далее, пока это возможно.
Доказывается, что в результате получится множество, состоящее из единственного обхода коммивояжера, вес которого равен очередному значению функции j; таким образом, оказываются выполненными все условия, обсуждавшиеся при описании метода ветвей и границ.
После этого осуществляется улучшение рекорда вплоть до получения окончательного ответа.
2.2 Условие задачи
Студенту Иванову поручили разнести некоторые важные документы из 12-ого корпуса. Но, как назло, у него на это очень мало времени, да и еще надо вернуться обратно. Нужно найти кротчайший путь. Расстояния между объектами даны в таблице
. |
12-ый корпус |
Белый дом |
КРК «Премьер» |
Администрация |
5-ый корпус |
|
12-ый корпус |
0 |
6 |
4 |
5 |
2 |
|
Белый дом |
6 |
0 |
3 |
3,5 |
4,5 |
|
КРК «Премьер» |
4 |
3 |
0 |
5,5 |
5 |
|
Администрация |
5 |
3,5 |
5,5 |
0 |
2 |
|
5-ый корпус |
2 |
4,5 |
5 |
2 |
0 |
2.3 Математическая модель задачи
Для решения задачи присвоим каждому пункту маршрута определенный номер: 12-ый корпус - 1, Белый дом - 2, КРК «Премьер» - 3, Администрация - 4 и 5-ый корпус - 5. Соответственно общее количество пунктов . Далее введем альтернативных переменных , принимающих значение 0, если переход из i-того пункта в j-тый не входит в маршрут и 1 в противном случае. Условия прибытия в каждый пункт и выхода из каждого пункта только по одному разу выражаются равенствами (8) и (9).
(8)
(9)
Для обеспечения непрерывности маршрута вводятся дополнительно n переменных и дополнительных ограничений (10).
(10)
Суммарная протяженность маршрута F, которую необходимо минимизировать, запишется в следующем виде:
(11)
В нашем случае эти условия запишутся в следующем виде:
(8 а)
(9 а)
(10 а)
(11 а)
2.4 Решение задачи методом ветвей и границ
1) Анализ множества D.
Найдем оценку снизу Н. Для этого определяем матрицу минимальных расстояний по строкам (1 где расстояние минимально в строке).
=> ;
Аналогично определяем матрицу минимальных расстояний по столбцам.
=> ;
;
Выберем начальный план: . Тогда верхняя оценка:
. Очевидно, что , где означает переход из первого пункта в j-тый. Рассмотрим эти подмножества по порядку.
2) Анализ подмножества D12.
;
;
;
;
;
3) Анализ подмножества D13.
;
;
;
;
4) Анализ подмножества D14.
;
;
;
;
;
5) Анализ подмножества D15.
;
;
;
;
;
6) Отсев неперспективных подмножеств.
;
Подмножества D13 и D15 неперспективные. Т.к. , но , то далее будем рассматривать подмножество D14.
.
7) Анализ подмножества D142.
;
;
;
;
;
8) Анализ подмножества D143.
;
;
;
;
9) Анализ подмножества D145.
;
;
;
;
;
10) Отсев неперспективных подмножеств
;
Подмножество D143 неперспективное. Т.к. , но , то далее будем рассматривать подмножество D145.
.
11) Анализ подмножества D1452.
;
;
;
;
;
ветвь граница целевой алгоритм
12) Анализ подмножества D1453.
;
;
;
;
;
;
Оптимальное решение: .
.
Таким образом, маршрут студента: 12-ый корпус - Администрация - 5-ый корпус - Белый дом - КРК Премьер - 12-ый корпус.
Размещено на http://www.allbest.ru/
Список использованной литературы
1. Абрамов Л.А., Капустин В.Ф. Математическое программирование. - Л.: Изд-во ЛГУ, 1981. -328 с.
2. Алексеев О.Г. Комплексное применение методов дискретной оптимизации. - М.: Наука, 1987. -294 с.
3. Корбут А.А., Финкелгейн Ю.Ю. Дискретное программирование. М.: Наука. 1969. -240 с
4. Кузнецов Ю.Н. и др. Математическое программирование: Учебное пособие. - 2-е изд., перераб и доп. - М.: Высшая школа, 1980. -300 с.
5. Пападимитриу Х., Стайглиц К. Комбинаторная оптимизация. Алгоритмы и сложность. - М.: Мир, 1985. -213 с.
Размещено на Allbest.ru
...Подобные документы
Постановка и решение дискретных оптимизационных задач методом дискретного программирования и методом ветвей и границ на примере классической задачи коммивояжера. Этапы построения алгоритма ветвей и границ и его эффективность, построение дерева графов.
курсовая работа [195,5 K], добавлен 08.11.2009Постановка задачи о коммивояжере. Нахождение оптимального решения с применением метода ветвей и границ. Основной принцип этого метода, порядок его применения. Использование метода верхних оценок в процедуре построения дерева возможных вариантов.
курсовая работа [167,8 K], добавлен 01.10.2009Особенности метода ветвей и границ как одного из распространенных методов решения целочисленных задач. Декомпозиция задачи линейного программирования в алгоритме метода ветвей и границ. Графический, симплекс-метод решения задач линейного программирования.
курсовая работа [4,0 M], добавлен 05.03.2012Моделирование передвижения муравьев. Метод ветвей и границ, ближайшего соседа. Ограничения, накладываемые на агента в стандартной постановке задачи коммивояжера. Использование графа видимости в алгоритме муравья. Структура данных алгоритма муравья.
дипломная работа [1,7 M], добавлен 07.02.2013Методы ветвей и границ первого и второго порядка. Оптимальный и пассивный поиск. Недостатки метода Ньютона. Метод золотого сечения. Примеры унимодальных функций. Динамическое и линейное программирование. Метод Жордана-Гаусса. Решение задачи коммивояжера.
курсовая работа [1,1 M], добавлен 20.07.2012Сущность теории графов и сетевого моделирования. Выбор оптимального пути и стоимости переезда коммивояжера с помощью метода ветвей и границ. Разработка программы выбора самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу.
курсовая работа [3,5 M], добавлен 08.08.2013Оптимизация решения задачи с помощью алгоритма отжига. Анализ теории оптимизации как целевой функции. Метод градиентного спуска. Переменные и описание алгоритма отжига. Представление задачи коммивояжера через граф. Сведение задачи к переменным и решение.
курсовая работа [784,0 K], добавлен 21.05.2015Постановка линейной целочисленной задачи. Метод отсекающих плоскостей. Дробный алгоритм решения полностью целочисленных задач. Эффективность отсечения Гомори. Сравнение вычислительных возможностей метода отсекающих плоскостей и метода ветвей и границ.
курсовая работа [178,2 K], добавлен 25.11.2011Задача о ранце как задача комбинаторной оптимизации. Задача о загрузке, рюкзаке, ранце. Постановка и NP-полнота задачи. Классификация методов решения задачи о рюкзаке. Динамическое программирование. Метод ветвей и границ. Сравнительный анализ методов.
курсовая работа [1,7 M], добавлен 18.01.2011Поиск верхних и нижних границ для оптимального значения на подобласти допустимых решений. Методы и проблемы решения задач нелинейного программирования. Написание и отладка программы. Создание программы для решения задачи "коммивояжёра" прямым алгоритмом.
курсовая работа [176,9 K], добавлен 22.01.2016Концептуальная модель операции. Математическая постановка задачи. Описание метода ветвей и границ, прямого перебора. Проектирование сценария диалога. Описание структур данных. Ручная реализация решения задачи с помощью алгоритма Литла и перебора.
курсовая работа [202,6 K], добавлен 14.12.2013Модификация алгоритма RPC таким образом, чтобы он не требовал входного параметра, но сохранил свою гибкость при решении задачи нахождения максимальной клики для разных графов. Метод ветвей и границ. Построение функции-классификатора. Листинг алгоритма.
курсовая работа [197,8 K], добавлен 06.10.2016Сущность и особенности выполнения метода динамического программирования. Решение математической задачи, принцип оптимальности по затратам, ручной счёт и листинг программы. Применение метода ветвей и границ, его основные преимущества и недостатки.
курсовая работа [38,9 K], добавлен 15.11.2009Задача об оптимальном графе для децентрализованного поиска. Жадный алгоритм. Модель Клайнберга. Математическая модель. Алгоритмы решения. Алгоритм локального поиска. Табу алгоритм. Метод ветвей и границ. Выбор между одинаковыми соседями. Стартовый граф.
дипломная работа [4,1 M], добавлен 23.10.2016Описание генетических алгоритмов. Применение генетического алгоритма для решения задачи коммивояжера. Постановка задачи безусловной оптимизации. Изучение распространения генетических алгоритмов на модель с несколькими взаимодействующими популяциями.
дипломная работа [979,1 K], добавлен 30.05.2015Классы задач P и NP, их сводимость. Примеры NP-полных и NP-трудных задач. Сущность метода поиска с возвратом. Алгоритмы решения классических задач комбинаторного поиска. Решение задачи о восьми ферзях. Поиск оптимального решения методом ветвей и границ.
презентация [441,5 K], добавлен 19.10.2014Области применения теории графов. Алгоритм решения задачи поиска инвариантного и полного графа. Реализация программы с графическим интерфейсом пользователя на основе алгоритма. Реализация редактора графа и вывод полученных результатов в понятной форме.
курсовая работа [493,3 K], добавлен 27.12.2008Основные способы решения задач целочисленного программирования: округление решений до целого, метод полного перебора, применение оптимизационных алгоритмов. Алгоритм метода ветвей и границ. Пример с оптимизацией побочного производства лесничества.
презентация [323,6 K], добавлен 30.10.2013Сравнение результатов работы генетического алгоритма по решению "несимметричной незамкнутой задачи коммивояжера" с результатами работы алгоритма динамического программирования по параметрам - время работы, точность результата и объем используемой памяти.
курсовая работа [65,3 K], добавлен 16.04.2014Математическая модель решения задачи коммивояжера. Поиск кратчайшего замкнутого пути обхода нескольких городов и возвращения в исходную точку. Описание программы и результатов ее тестирования. Основная форма программы после вывода конечных данных.
курсовая работа [603,3 K], добавлен 21.10.2012